
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Praveen Dhyani,
University of Koblenz, Germany

REVIEWED BY

Claudia Bita-Nicolae,
Institute of Biology Bucharest of the
Romanian Academy, Romania
Qicong Wu,
Shandong Agricultural University, China

*CORRESPONDENCE

Guanzhi Liu

czylgz@imau.edu.cn

Runhong Gao

grhzwdm@163.com

†These authors have contributed equally to
this work and share first authorship

RECEIVED 30 March 2024
ACCEPTED 15 July 2024

PUBLISHED 07 August 2024

CITATION

Li Z, Qiao J, Li Z, Gao X, Hong G, Yang H,
Hu E, Liu C, Wang X, Liu G and Gao R (2024)
Shallow tillage mitigates plant competition by
increasing diversity and altering plant
community assembly process.
Front. Plant Sci. 15:1409493.
doi: 10.3389/fpls.2024.1409493

COPYRIGHT

© 2024 Li, Qiao, Li, Gao, Hong, Yang, Hu, Liu,
Wang, Liu and Gao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 07 August 2024

DOI 10.3389/fpls.2024.1409493
Shallow tillage mitigates plant
competition by increasing
diversity and altering plant
community assembly process
Zihao Li1,2†, Jirong Qiao3†, Zhuofan Li1, Xiaowei Gao1,
Guangyu Hong1, Haifeng Yang1, Ercha Hu1,2,
Chenming Liu1, Xiaojiang Wang1, Guanzhi Liu3*

and Runhong Gao2*

1Institute of Forest Ecology, Inner Mongolia Academy of Forestry Sciences, Hohhot, China, 2College
of Forestry, Inner Mongolia Agricultural University, Hohhot, China, 3College of Grassland, Resources
and Environment, Inner Mongolia Agricultural University, Hohhot, China
Introduction: Understanding how human activities affect biodiversity is needed

to inform systemic policies and targets for achieving sustainable development

goals. Shallow tillage to remove Artemisia ordosica is commonly conducted in

the Mu Us Desert. However, the impacts of shallow tillage on plant community

species diversity, phylogenetic structure, and community assembly processes

remain poorly understood.

Methods: This study explores the effects of shallow tillage on species diversity

including three a-diversity and two b-diversity indicators, as well as phylogenetic

structure [phylogenetic diversity (PD), net relatedness index (NRI), and nearest

taxon index (NTI)]. Additionally, this research analyzes the effects of shallow

tillage on the community assembly process.

Results and discussion: The results showed that the a-diversity index, b-diversity

index, and PD of the shallow tillage (ST) communities were significantly higher than

those of the non-shallow tillage (NT) communities, and the phylogenetic structures

of both the ST and NT communities tended to be differentiated, with competitive

exclusion being the main mechanism of plant assembly. However, shallow tillage

increased the relative importance of the stochastic processes dominated by

dispersal limitation, mitigating plant competition in the communities. This

conclusion was supported by the Raup–Crick difference index-based analysis.

Conclusion: Therefore, for the ecological restoration of the Mu Us Desert,

species with adaptability and low niche overlap should be selected to increase

the utilization efficiency of the environmental resources. The results of this study

provide a foundation for policy development for ecosystem management and

restoration in the Mu Us Desert.
KEYWORDS

shallow tillage, species diversity, phylogenetic structure, community assembly, Mu
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1 Introduction

Biodiversity underpins ecosystem stability and social

development, yet it is declining globally due to human activities

(Zhang and Chen, 2022; Zhang et al., 2023). Desert ecosystems cover

12% of the Earth’s land surface (Durant et al., 2012; Chen et al., 2023)

and, compared to other ecosystems, are environmentally fragile and

sensitive to disturbance, which can have disproportionately severe

impacts on biodiversity. Previous studies have shown that even the

smallest soil disturbance can significantly alter plant community

structure and biodiversity in arid ecosystems (Valone, 2003;

Erfanian et al., 2019). Shallow, a common disturbance measure in

agroecosystems, is also used for desert grassland improvement,

whereby local people remove vegetation that does not provide

economic benefits by plowing it to utilize desert grassland

resources. This practice, although tailored to local needs,

significantly risks community species composition biodiversity and

the natural processes supporting desert ecosystems (Randriamalala

et al., 2012; Cordeau et al., 2017). Consequently, understanding the

ecological consequences of anthropogenic interventions is essential

for developing more sustainable management practices

(Jaureguiberry et al., 2022).

Community assembly is an intrinsic mechanism of biodiversity

change and maintenance and can be used to assess the impacts of

external drivers, such as human activities, on biodiversity (Chase,

2010). Ecological niche theory (based on deterministic processes)

and neutral theory (based on stochastic processes) are the two

hypotheses for the community assembly process, and it is widely

accepted that deterministic and stochastic factors work together in

the community assembly process. However, assessing the relative

importance of these factors is challenging, especially in arid regions.

Traditionally, species a-diversity and b-diversity are often used in

community assembly process analyses (Mori et al., 2018; Jin et al.,

2023). However, species diversity reflects only one dimension of

biodiversity and does not consider evolutionary diversity

(Capmourteres and Anand, 2016; Heino and Tolonen, 2017).

Therefore, the use of phylogenetic structures to analyze

community assembly processes has gained prominence (Cadotte

et al., 2009; Mishler et al., 2014). This methodology not only assesses

the evolution of biodiversity and evolutionary distances among taxa

but also reflects functional diversity, as closely related species often

exhibit similar traits (Cadotte et al., 2008). Although species

diversity and phylogenetic structure are often highly correlated,

they may indicate different patterns of community assembly

(Tucker and Cadotte, 2013). Accordingly, it is vital to integrate

various measures of biodiversity to achieve a more comprehensive

understanding of community assembly. Uncovering these hidden

patterns can provide more targeted guidance for restoring damaged

ecosystems and deepen the understanding of diversity formation

and maintenance.

The studies on the effects of tillage on community diversity and

assembly processes have mainly focused on agroecosystems

(Travlos et al., 2018). It has been shown that the removal of

native vegetation by tillage creates a large number of gap

ecological niches that favor plant species colonization (Czerwiński

et al., 2018). Consequently, tillage alters the species composition of
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weed communities, in which perennial species shifted to annual

species, and increases the community evenness index (Booth and

Swanton, 2002) but does not change diversity indices such as

species richness and the Shannon–Weiner index (Légère et al.,

2005; Randriamalala et al., 2012; Barroso et al., 2015). Tillage

imposed environmental filtering, an artificial deterministic

process, on the weed community and therefore altered the drivers

of weed community assembly (Alarcón et al., 2018). However, the

relative importance of deterministic and stochastic processes is

largely influenced by community type (Cordeau et al., 2017).

Although phylogenetic structure is important for understanding

the mechanisms of community diversity change and formation,

l i t t le is known about the effects of ti l lage on plant

phylogenetic structure.

Artemisia ordosica plays a crucial role in wind and sand control

(Wei et al., 2016). However, its strong odor leads to its unpopularity

among livestock. Consequently, local herders frequently remove it

through shallow tillage, which is defined as soil disturbance up to a

depth of 10–15 cm (Cooper et al., 2016; Laudicina et al., 2017) to

improve grasslands. This practice promotes the growth of more

palatable herbaceous plants to support production and livelihoods

in the Mu Us Desert but also heightens the risk of desertification

(Wang et al., 2017). However, less research has been conducted on

shallow tillage on plant diversity and community assembly

processes in desert grasslands. This study evaluates the short-term

impacts of shallow tillage on plant communities in the Mu Us

Desert, focusing on changes in species diversity and phylogenetic

structure, as well as community assembly processes, before and after

tillage. Specifically, we aim to answer the following: (1) “Does

shallow tillage affect the species diversity and phylogenetic

structure of the communities and how?” and (2) “Does shallow

tillage affect the ecological processes that drive community

assembly?” We propose the hypothesis that shallow tillage

increases community species and phylogenetic diversity but does

not alter its community assembly processes because studies have

shown that shallow tillage leads to a large number of blank

ecological niches, while multiple tillage alters weed community

assembly processes. The study of the effects of shallow tillage on

multilevel of biodiversity (species diversity and phylogenetic

diversity) of desert ecosystems is an important reference for

conservation strategies and land management practices.
2 Materials and methods

2.1 Study area

The study was conducted in a fixed monitoring site at the Ulan

Tolgoi Desertification Control Station located in Wushen Banner

(38°48′N, 109°19′E, at 1,390 m), Inner Mongolia, China (Figure 1).

This region in the hinterland of the Mu Us desert has a semi-arid

continental monsoon climate, which is dry and windy. The average

annual temperature ranges from 6.0°C to 9.0°C (Zheng et al.,

2019a). The annual precipitation in the area varies greatly,

ranging from 250 to 400 mm, and the precipitation is mainly

concentrated in July–September, accounting for up to 75% of the
frontiersin.org
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annual precipitation. The precipitation in August can account for

up to 54% of the whole rainy season, and the average annual

evaporation ranges from 2,100 to 2,600 mm (She et al., 2017). The

predominant soil type is sandy (FAO soil classification), and the

geomorphological types include fixed, semi-fixed, wandering dune,

and inter-dune lowlands (Chen et al., 2022). Drought-tolerant

plants, such as A. ordosica, Salix cheilophila, Caragana

microphylla, and Corethrodendron fruticosum var. mongolicum,

are widely distributed in the area (Zhang et al., 2018).
2.2 Sample plots and data collection

In March 2022, shallow tillage was applied to the A. ordosica

community (there is no history of any tillage). In mid-August of the

same year, 10 shallow tillage (ST) strips and 10 non-shallow tillage

(NT) strips, each approximately 8 m wide and 200 m long, were

selected, in which the two were interleaved, and the distance

between adjacent strips under the same treatment was greater

than 200 m to include more heterogeneous habitats. Three 8 m ×

20 m sample plots were randomly set up in each shallow-tillage and

non-shallow-tillage strip, and a detailed survey of plant species and

their abundance occurring in the plots was conducted

(Supplementary Table S1) to assess species diversity and

phylogenetic structure.
2.3 Species diversity and
phylogenetic structure

2.3.1 a-Diversity
Based on the species matrix data that were obtained from the

survey, we calculated the Shannon–Weiner index (H), Simpson’s

index (D), Pielou’s evenness index (J), and the cumulative number
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of species as measures of species a-diversity, and the formulas are

as follows:

Shannon diversity index:

H = −o
S

i=1
Pi ln Pi

Simpson’s index:

D = 1 −o
S

i=1
P  2
i

Pielou’s evenness index:

J =
H
ln S

where S is the number of species and Pi is the relative abundance

of species i. Pi = ni/N, where ni represents the number of individuals

of species i and N represents the total number of individuals of all

the plant species in a particular sample.

2.3.2 b-diversity
The Bray–Curtis dissimilarity index (bBC) and the Jaccard

dissimilarity index (bJ) were used to explore the b-diversity
characteristics of the plant communities in the shallow and non-

shallow tillage belts. The bBC is based on the species multiplicity

matrix to measure the compositional dissimilarity between

the plots based on differences in species abundance, and it

ranges from 0 (when both plots have the same species with

equal abundances) to 1 (when the plots do not share any

species; Catalán et al., 2023). The bBC was calculated using the

following equation:

bBC = o
S
i=1 xij − xik

�
�

�
�

oS
i=1xij + xik
FIGURE 1

Geographic location of the study area.
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where S is the number of species in the sample-species matrix, and

xij and xik are the abundance of species i in j and k plots, respectively.

The bJ is based on the incidence to measure the compositional

dissimilarity between the plots based only on the differences in

species occurrence (presence/absence), and it ranges from 0 (when

both plots have the same species) to 1 (when the plots do not share

any species; Catalán et al., 2023). Podani and Schmera (2011)

proposed that the bJ consists of two components: the first

component (Rrel = 2 min(b,c)/n) accounts for species

replacement, and the second (Drel = |b − c|/n) accounts for

richness differences. bJ was calculated using the following equation:

b J =
b + c

a + b + c
=
number of  species not shared

total number of  species

=
2min(b, c)
a + b + c

+
b − cj j

a + b + c
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2.3.3 Phylogenetic structure
Based on the list of species from the survey, the Chinese Flora

(http://www.iplant.cn/frps) and the Plant List website (http://

www.theplantlist.org/) were used to standardize the descriptions

(Kalwij, 2012). To construct the phylogenetic tree, the awk version

of the “phylomatic” software was used, and the phylogenetic tree

was visualized using the “ggtree” package in R (Zheng et al.,

2019b; Figure 2).

To characterize the phylogenetic diversity (PD), the PD

index was used, which represents the sum of the lengths of

the evolutionary branches of all the species in the community,

and the phylogenetic structure was measured using the

net relatedness index (NRI) and the net nearest taxon index

(NTI). The PD index and phylogenetic structure were

calculated using the “picante” package in R (Chai et al., 2016;

Qian and Sandel, 2017).
FIGURE 2

The phylogenetic tree of the plant species in the survey. The branch is the distance between the species.
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The NRI and NTI were calculated using the following equations:

NRI = −1� MPDs −MPDmds

SD(MPDmds)

NTI = −1� MNTDs −MNTDr

SD(MNTDr)

where MPD is the mean phylogenetic distance between all the

species pairs in the community, and MPDs and MNTDs denote the

average observed paired phylogenetic distance and the average

observed nearest neighbor phylogenetic distance, respectively.

MPDmds and MNTDmds denote the average paired phylogenetic

distance and the average nearest neighbor phylogenetic distance,

respectively, under 999 null model simulations. SD is the

standard deviation.
2.4 Data analysis

The statistical analyses were performed in the R platform (version

3.5.3). The significant differences between the different communities

for the diversity indicators were evaluated using the Kruskal–Wallis

rank sum test and the “dplyr” library. The overall change in the

species composition was measured using a similarity percentage

analysis (SIMPER) and the “vegan” package to calculate the

contribution of the individual species to the overall community

dissimilarity. The b-diversity was separated into two components,

species replacement [or turnover (Repl)] and richness differences [or

nestedness (RichDiff)], to clarify their relative contribution using the

“adespatial” package. To examine whether the ST and NT

communities were spatially similar, non-metric multidimensional

scaling and hierarchical clustering were performed based on the

Raup–Crick distance using the “vegan” library. Then, a correlation

analysis was conducted between the phylogenetic and species

diversity indices using the “corrplot” package. The roles of the

deterministic and stochastic processes in community assembly were

assessed using the b-null model (Tucker et al., 2016).
3 Results

3.1 Species composition and diversity

The survey revealed that there were 20 species of seed plants

from 12 families and 20 genera identified in the ST communities,

with Asteraceae having the most species (20.0%), followed by

Amaranthaceae (15.0%). The proportion of the remaining

families was less than 10.0%. There were nine herbaceous

annuals, nine herbaceous perennials, and two semi-shrub species,

with Setaria arenaria and Corispermum candelabrum

(Supplementary Table S1). A total of 15 species of seed plants

from eight families and 14 genera were identified in the NT

communities, among which Asteraceae had the highest number

of species (33.3%), which was followed by Amaranthaceae (20.0%)

and Gramineae (13.3%), and the proportion of the remaining

families was less than 10.0%. There were nine herbaceous
Frontiers in Plant Science 05
annuals, four herbaceous perennials, one semi-shrub species, and

one shrub species, with A. ordosica being the dominant species

(Supplementary Table S1).

3.1.1 a-diversity
The plant community in the shallow-tilled area had a high

species diversity and evenness, with an H, D, J, and richness (S) of

1.68 ± 0.18, 0.72 ± 0.07, 0.66 ± 0.07, and 12.90 ± 2.85, respectively.

In the control area, those measures were 0.98 ± 0.44, 0.46 ± 0.20,

0.54 ± 0.16, and 6.10 ± 2.38, respectively, and they were significantly

higher (p < 0.05) in the shallow plowed area than in the control

area (Table 1).

3.1.2 b-diversity
The b-diversity analysis that was based on the Bray–Curtis

dissimilarity index showed that the mean values of the b-diversity of
the plant communities in the ST and NT communities were 0.48

and 0.42, respectively, and there was a highly significant difference

between them (p < 0.001, Figure 3). The b-diversity decomposition

analyses showed that the species replacement process contributed

more (60.82%) to the differences in the plant community

composition in the ST, and the richness differences contributed

less to the b-diversity (Figure 4A). The differences in the richness

and species turnover processes contributed similarly to the

differences in the plant community composition in the NT, being

54.68% and 45.32%, respectively (Figure 4B).

The Venn diagram (Supplementary Figure S1) shows the presence

of 13 common species between the two communities. Of the reported

species in this survey, eight were exclusively identified in the ST

(Ferula bungeana, Oxytropis racemose, Polygala tenuifolia, Allium

mongolicum, Dracocephalum moldavica, Tribulus terrestris, Panzeria

alaschanica, and Cynanchum thesioides), and three were only found in

the NT (Tragus mongolorum, Hypecoum erectum, and A. ordosica).

The results of SIMPER analysis showed that C. candelabrum, S.

arenaria, and Chenopodium acuminatum contributed the most to

the inter-community species differences and that the contribution

of the three plants to the inter-community dissimilarity between the

ST and the NT was more than 10% (C. candelabrum, 18.44%; S.

arenaria, 17.52%; C. acuminatum, 10.57%). The three plants’

cumulative contribution to the inter-community variation

amounted to 68.13%, while the contribution of the other four

plants to the inter-community differences amounted to 10.57%.
TABLE 1 Species diversity indices of the different communities.

Community type ST NT

Shannon–Weiner
index (H)

1.68 ± 0.18a 0.98 ± 0.44b

Simpson index (D) 0.72 ± 0.07a 0.46 ± 0.20b

Pielou’s evenness
index (J)

0.66 ± 0.07a 0.54 ± 0.16b

Richness (S) 12.90 ± 2.85a 6.10 ± 2.38b
Different lowercase letters in the same row indicate significant differences between the two
data groups (p < 0.05).
ST, shallow tillage area; NT, non-shallow tillage area.
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The cumulative contribution of the seven plants to the inter-

community variation amounted to 86.87% (Table 2).
3.2 Phylogenetic structure

The mean values of the PD, NRI, and NTI were 1,251.06 ±

70.94, −0.74 ± 0.03, and −0.06 ± 0.18 in the ST, respectively; the
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mean values of the PD, NRI, and NTI were 683.26 ± 62.37, −0.89 ±

0.13, and −0.84 ± 0.51 in the NT, respectively. The PD was

significantly higher in the ST than in the NT, and the NRI was

significantly lower in the ST than in the NT (p < 0.001,

Supplementary Table S2). No significant correlation was found

between the PD values and species diversity indices in the ST and

NT communities. In the ST communities, the NTI was significantly

and positively correlated with the H, D, and J (p < 0.001; Figure 5A).
FIGURE 3

Differences in the Bray–Curtis dissimilarity index between the communities. The horizontal lines indicate the median values, the boxes indicate 25%–
75% confidence intervals, the vertical lines indicate 10%–90% confidence intervals, the solid circles indicate outliers, and the different lowercase
letters indicate significant differences among the communities. ST, shallow tillage area; NT, non-shallow tillage area.
BA

FIGURE 4

Triangular plots of the b-diversity comparisons (using the Jaccard index) for the plant communities among the (A) shallow tillage area (ST) and (B)
non-shallow tillage area (NT). Each point represents a pair of sites. Its position is determined by a triplet of values, namely, the similarity (S),
replacement (Repl), and richness difference (RichDiff) matrices, with each triplet summing to 1. The mean values of S, Repl, and RichDiff are shown.
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The NTI and NRI were significantly and positively correlated with

the SR in the NT communities (p < 0.05, Figure 5B).
3.3 Community assembly process

The results revealed that the NT communities were more similar,

indicating that they deviated from the null hypothesis (Figure 6).

However, the ST communities were farther apart and spread over half

of the space, suggesting that the null hypothesis may be supported.

These results suggest that stochastic processes play a greater role in

the ST communities. A similar result was observed for the

phylogenetic structure. In the ST and NT communities, the NRI

and NTI were both less than 0 (Supplementary Table S2), indicating

that the phylogenetic structure of the plant community diverged,

there were more distantly related species in the community, the

construction of the ST and NT communities was dominated by
Frontiers in Plant Science 07
stochastic processes, and competitive exclusion was the primary

mechanism of plant construction. However, when compared with

the NT communities, the NRI and NTI were closer to 0 in the ST

communities, indicating that the ST communities were subject to

stronger stochastic processes.
4 Discussion

4.1 Species diversity and
species composition

The plant community structure and function are determined by a

variety of biotic and abiotic drivers, but anthropogenic environmental

changes may alter these drivers and their effects on the plant

communities (Brooker, 2006). The Mu Us Desert, as a typical

agricultural and pastoral area, is ecologically fragile and frequently

disturbed by human activities, and a full understanding of the

biodiversity changes before and after disturbance is needed for

effective conservation. Studies have confirmed that the SR of woody

and herbaceous plants is strongly affected by environmental changes

and anthropogenic disturbances (Zhou et al., 2018). Shallow tillage

removes almost all the existing above-ground vegetation, increases the

ecological niche space for communities (Tortorelli et al., 2022), and

alters the physical properties, such as soil compactness, creating open

and variable soil conditions and promoting soil seed germination and

organic matter decomposition (Lu et al., 2018). Herbaceous plants,

whose seeds are generally small and easy to disseminate, can quickly

and effectively utilize temporary habitats for reproduction and

respond to external disturbances than woody plants, which resulted

in a significantly higher species diversity index in the ST communities

than in the NT communities. Additionally, the allelopathic effect of A.

ordosica significantly inhibits seed germination and seedling growth of

herbaceous plants (Lopes et al., 2022). When a layer of up to 80%
TABLE 2 Contribution of the main species to community dissimilarity.

Species
Average

contribution
Cumulative
contribution

Corispermum
candelabrum

0.1844 0.3348

Setaria arenaria 0.1752 0.5253

Chenopodium
acuminatum

0.1057 0.6813

Grubovia dasyphylla 0.0749 0.7384

Aster altaicus 0.0355 0.7911

Ixeris chinensis
subsp. versicolor

0.0235 0.8363

Euphorbia esula 0.0147 0.8687
BA

FIGURE 5

Correlation analysis between the species diversity and phylogenetic indices. (A) Shallow tillage area (ST). (B) Non-shallow tillage area (NT). Blue
indicates a positive correlation, and orange indicates a negative correlation; the darker the color, the stronger the correlation. PD, phylogenetic
diversity; NRI, net relatedness index; NTI, net nearest taxon index; H, Shannon–Weiner index; D, Simpson’s index; J, Pielou’s evenness index; SR,
species richness. *p < 0.05; **p < 0.01; ***p < 0.001.
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shrubs is formed, annual and biennial herbaceous plants are

disadvantaged in resource competition and are mostly distributed in

the unshaded edges of A. ordosica scrub. Thus, competition for

available resources, such as light and soil nutrients, influences the

maintenance of species diversity (Adler et al., 2018). At the same time,

the stochastic nature of seed dispersal produced a preferential effect

(Weidlich et al., 2021), with large differences in the species

composition among the ST communities, which were clearly

differentiated from the NT communities. Analyses of the b-diversity
also revealed differences in the species composition between the ST

and NT communities, with the bST being dominated by species

replacement processes, indicating that the different communities

tended to have more endemic species, and differences in abundance

played a larger role than species replacement processes in the bNT.
This showed that a few communities contained the vast majority of

the species in that state.

Several studies have demonstrated a negative correlation

between the community restoration time and the SR; with the

extension of the restoration time, early colonizing herbaceous plants

will largely disappear (Daws et al., 2021; Standish et al., 2021).

Ecological communities are always dynamic and vary in space and

time, and they often develop along relatively predictable

successional trajectories (Mori et al., 2018). We speculate that

without re-imposed anthropogenic disturbance, the ST

community will become more similar to the NT and form a zonal

sub-top-level community with A. ordosica as a single dominant
Frontiers in Plant Science 08
species (Webb et al., 1987; Li et al., 2015), i.e., a convergent process

of community succession.
4.2 Phylogenetic structure

The low PD values shown for the NT communities suggested that

fewer clades successfully colonized the NT and that the NT has a high

frequency of closely related species. This could reflect the fact that

phylogenetic diversity is lower in environments with greater competitive

pressures for resources, as these environments may represent

ecophysiological barriers that are difficult to surmount evolutionarily

(Honorio Coronado et al., 2015); however, due to the small sample size

and the limited extent of plots, further research is needed.

The increase in the SR may imply more complex interspecific

affinities, which in turn leads to increased PD values, but no

significant positive correlation between the PD values and the

species diversity index was found in both the ST and NT in this

study. Most studies have demonstrated a correlation between the

two, but the correlation decreases with unbalanced evolutionary

trees or narrow species distributions (Gascuel et al., 2015). When

the ST and NT communities were viewed as a whole, the PD, NTI,

and NRI were significantly positively correlated with the H, D, and S

(Supplementary Figure S2). This significant relationship indicates

that the species composition and distribution have some influence

on the phylogenetic structure.
FIGURE 6

Non-metric multidimensional scaling (NMDS) analysis of the species composition in the sample plots. ST, shallow tillage area (yellow circle); NT,
non-shallow tillage area (blue circle).
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4.3 Community assembly

The phylogenetic structure of both the ST and NT communities

tended to diverge (NTI < 0 and NRI < 0), suggesting that competitive

exclusion is a dominant mechanism influencing community

assembly. This pattern may be attributed to the limited availability

of soil water and nutrients in the Mu Us Desert, which likely prevents

closely related species with similar ecological niches from coexisting

due to competition for these scarce resources, ultimately leading to

the strengthening of interspecific ecological niche differentiation and

the dispersion of phylogenetic structure (Webb et al., 2002;

Silvertown, 2004). It is important to note that shallow tillage did

not alter the major ecological processes driving community assembly,

but the relative importance of deterministic and stochastic processes

differed between the two treatments. The NRI and NTI of the ST

communities differed significantly from those of the NT communities

(p < 0.05, Supplementary Table S2), and analysis based on the Raup–

Crick dissimilarity index also showed that the bRC within the ST

communities was closer to the zero expectation than in the NT

communities (Supplementary Figure S4), suggesting that in addition

to being dominated by competitive exclusion, the ST was also largely

influenced by stochastic processes dominated by dispersal limitation,

which resulted in lower species similarity within the communities.

Studies have confirmed that disturbance may promote stochastic

processes (Didham et al., 2005; Didham and Norton, 2006).

The desert maintains environmental consistency at large scales

(Teramoto et al., 2022), and it can be assumed that the effective seed

bank is the result of deterministic abiotic factors, such as

temperature or precipitation, and stochastic factors, such as

dispersal constraints. In contrast, habitat sieving at small scales

mainly consists of biotic factors, such as interspecific interactions

(Royo and Ristau, 2013; Zou et al., 2021). As A. ordosica requires a

large amount of resources as a community-building species,

including light, it results in a limited number of ecological niches

being available in the community, which prevents certain species

from persisting (Deng et al., 2022). In contrast, under shallow tillage

conditions, where the community species are essentially removed

and available ecological niches proliferate, herbaceous seeds can

germinate rapidly and complete their life history cycles when the

climatic conditions are favorable (Grime, 1977). Under these

conditions, rapid reproductive processes may reduce the role of

severe constraints on the hydrothermal conditions and inter- and

intraspecific competition in shaping community membership. In

future investigations, more attention should be paid to the role of

annual and biennial herbaceous plants in the process of community

assembly under human interference.
5 Conclusions

Shallow tillage increases species alpha, beta, and phylogenetic

diversity and reduces the importance of competitive exclusion in

community assembly. Therefore, we suggest that plant species with

low ecological niche overlap should be selected for artificial

vegetation restoration in the Mu Us Desert to reduce competition

for the same resources.
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