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Hyperspectral imaging and
artificial intelligence enhance
remote phenotyping of
grapevine rootstock influence on
whole vine photosynthesis
Prakriti Sharma, Imasha Thilakarathna and Anne Fennell*

Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
Rootstocks are gaining importance in viticulture as a strategy to combat abiotic

challenges, as well as enhancing scion physiology. Photosynthetic parameters

such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of

electron transport driving RuBP regeneration (Jmax) have been identified as ideal

targets for potential influence by rootstock and breeding. However, leaf specific

direct measurement of these photosynthetic parameters is time consuming,

limiting the information scope and the number of individuals that can be

screened. This study aims to overcome these limitations by employing

hyperspectral imaging combined with artificial intelligence (AI) to predict these

key photosynthetic traits at the canopy level. Hyperspectral imaging captures

detailed optical properties across a broad range of wavelengths (400 to 1000

nm), enabling use of all wavelengths in a comprehensive analysis of the entire

vine’s photosynthetic performance (Vcmax and Jmax). Artificial intelligence-based

prediction models that blend the strength of deep learning and machine learning

were developed using two growing seasons data measured post-solstice at 15 h,

14 h, 13 h and 12 h daylengths for Vitis hybrid ‘Marquette’ grafted to five

commercial rootstocks and ‘Marquette’ grafted to ‘Marquette’. Significant

differences in photosynthetic efficiency (Vcmax and Jmax) were noted for both

direct and indirect measurements for the six rootstocks, indicating that rootstock

genotype and daylength have a significant influence on scion photosynthesis.

Evaluation of multiple feature-extraction algorithms indicated the proposed Vitis

base model incorporating a 1D-Convolutional neural Network (CNN) had the

best prediction performance with a R2 of 0.60 for Vcmax and Jmax. Inclusion of

weather and chlorophyll parameters slightly improved model performance for

both photosynthetic parameters. Integrating AI with hyperspectral remote

phenotyping provides potential for high-throughput whole vine assessment of

photosynthetic performance and selection of rootstock genotypes that confer

improved photosynthetic performance potential in the scion.
KEYWORDS

V. hybrid ‘Marquette’, graft, Vitis, daylength, convolutional neural network, computer
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1 Introduction

Most of the commercial grapevines are grafted to improve their

growth, physiology, and sustainability in diverse soil types. Many

studies have indicated that it can lead to changes in source-sink

relations, modifying carbon dynamics that can impact the overall

performance of the vine (Di Filippo and Vila, 2011; Jones et al., 2009).

Nevertheless, the literature on the physiological and molecular

influence of rootstock mediated influence is very dependent on the

rootstock and scion genotypes and environmental conditions of

the studies.

Carbon gain is an outcome of plants leveraging photosynthesis to

transform carbon dioxide (CO2) and water into organic compounds.

Various studies have shown that the interaction between rootstock

and scion has a significant impact on photosynthesis (Koundouras

et al., 2008; Nimbolkar et al., 2016; Zhang et al., 2016). In grapevines,

the rootstock is found to impact carbon gain through regulation of

stomatal conductance in stress conditions (Shinozaki and

Yamaguchi-Shinozaki, 2007). The rootstock is also found to impact

photosynthetic rate by increasing carboxylation efficiency and net

CO2 assimilation rate (Düring, 1994; Koundouras et al., 2008).

Consequently, the underlying mechanisms through which rootstock

affects photosynthesis remain ambiguous, necessitating research at

both the molecular and physiological levels to enable the effective

choice of rootstock for optimizing photosynthetic efficiency to

enhance carbon gain in grapevine.

Selection of rootstocks for an improved conferred photosynthetic

capacity phenotype is a complex and lengthy process (Cousins, 2005).

Therefore, high-throughput measures are required to effectively select

rootstocks that confer enhanced photosynthetic capacity in the scion.

Direct measurement of photosynthesis using infrared gas analyzers

(IRGA), can be employed to estimate light and CO2 curves that are

used to gain photosynthetic mechanistic information (Farquhar et al.,

1980; Von Caemmerer and Farquhar, 1981). Indeed, photosynthetic

system derived biochemical kinetic metrics like 1) maximum rate of

carboxylation of RuBP (Vcmax) and 2) maximum rate of electron

transport driving RuBP regeneration (Jmax) together with biochemical

modeling is extensively used to understand photosynthetic

performance in plants (Long and Bernacchi, 2003). However, direct

gas exchange measurements require a long leaf acclimation time inside

the measuring cuvette and accurate regulation of cuvette environment,

which is best achieved under relatively constant ambient environments

(Haworth et al., 2018). Thus, to maintain similar environments across

measures, the gas-exchange measurements are typically performed for

only a small portion of the day. Rapid A/Ci response curves (RACiR)

plotting the relationship between net photosynthetic rate and CO2

concentration has been introduced, yet the technique is still lengthy

and unsuitable for high-throughput of large sample numbers

(Stinziano et al., 2019). In addition, grapevine photosynthesis is

better understood as a characteristic at the vine canopy level, rather

than at a single leaf level as found with IRGA measurements (Fu et al.,

2022). Therefore, it is important to explore other remote or proximal

sensing technologies that indirectly assess photosynthesis at the

canopy level.

Hyperspectral imaging features from visible to near-infrared

spectrum, for each pixel within the canopy area can be used as
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proxy for photosynthetic efficiency (Watt et al., 2020; Zarco-Tejada

et al., 2016). Few studies have used hyperspectral information to

estimate grapevine canopy level Vcmax and Jmax parameters,

highlighting the need for validation experiments to investigate the

relationship between grapevine leaf and canopy level photosynthesis

measurements (Asner et al., 2015; Barnes et al., 2017; Camino et al.,

2022). As shown in aspen, cottonwood and other crops, hyperspectral

reflectance measures may be integrated with several AI-based

modelling approaches to predict ground based photosynthetic

parameters (Fu et al., 2020; Serbin et al., 2012). Indeed, recent trends

show a significant use of deep learning algorithms for the prediction of

photosynthetic parameters using hyperspectral imagery (Furbank et al.,

2021; Yu et al., 2022). However, a major challenge while implementing

deep learning algorithms in physiological trait prediction is the

limitation of ground-truth data samples. A hybrid model

incorporating feature extraction using deep learning and

classification/regression tasks with traditional ML algorithms is often

employed to address this (Nguyen et al., 2021). The convolutional

neural network (CNN) is extensively used for extracting spatial-spectral

features, for predicting plant photosynthetic pigments and parameters

(Deng et al., 2024; Prilianti et al., 2021; Zhang et al., 2022). Use of 1D-

CNN and 2D-CNN for extraction of patterns in the hyperspectral

signal have shown a higher prediction accuracy of photosynthetic

parameters than traditional machine learning algorithms (Prilianti

et al., 2019; Prilianti et al., 2021; Zhang et al., 2022). Another

approach to address the issue of limited ground-truth data samples,

is to use transfer learning algorithms as a feature extractor (Tan et al.,

2018; Weiss et al., 2016). This method uses a pre-trained model to

transform unprocessed data into a collection of features that can be

comprehended by a machine learning model to extract pertinent

patterns or characteristics. These machine learning models

demonstrate superior generalization across networks and rapid

convergence speeds (Alzubaidi et al., 2021).

The challenge of effectively extracting and utilizing both spectral

and spatial information found in hyperspectral data persists. Our study

addresses this challenge through a proposed hybrid model that blends

the strength of both deep learning and machine learning techniques to

unlock the potential of dimensional hyperspectral data for

photosynthesis prediction. The hybrid approach used here is based

on powerful feature extraction algorithms to extract significant

information from the hyperspectral data for one- and three-

dimensional datasets. This study leverages models like principal

component analysis (PCA) (Wold et al., 1987), autoencoders (Bank

et al., 2023) and 1D-CNN as feature extraction algorithm for 1-D

hyperspectral data. For 3-D hyperspectral data, the approach

incorporates several transfer learning algorithms such as VGG16 (a

widely used feature extractor in computer vision applications (Pardede

et al., 2021; Simonyan and Zisserman, 2014; Tammina, 2019)) and

Inception-ResNet (which combines inception modules and residual

connections (Ferreira et al., 2018)) and two-dimensional convolutional

neural networks (2D-CNN). In addition to performing feature

extraction, the hybrid model integrates XGBoost (eXtreme Gradient

Boosting) (Chen and Guestrin, 2016) to tackle regression tasks,

leveraging decision trees as base learners in a boosting technique

where models are sequentially added until the error is minimized

(Chen and Guestrin, 2016).
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The scope of this research is to assess the influence of rootstocks on

scion photosynthetic parameters and determine the accuracy of

hyperspectral imagery in predicting these phenomena. Accordingly,

the study sets forth the following specific objectives: 1) to conduct a

comparative study of photosynthetic efficiency in various rootstocks

using both direct (ground-truth) and indirect (spectral) methods; 2) to

confirm the effectiveness of hyperspectral remote sensing in accurately

measuring photosynthesis by incorporating AI-based algorithms for

feature extraction of hyperspectral data. This study uses a ground based

remote phenotyping hyperspectral system to capture the vines’

extensive vertically distributed canopy rather than an aerial system

that only captures the smaller top portion of the grapevine canopy.

Further, the measurements were made throughout the season to

capture photosynthesis during the natural declining daylength.

Evaluation of the hybrid model here uses all wavelengths measured

instead of specific wavelengths that have been related to photosynthetic

parameters in other remote sensing studies.
2 Methods

2.1 Plant materials

Vitis hybrid ‘Marquette’ grafted to five commercial rootstocks

1103 Paulsen (1103P), 3309 Couderc (3309 C), Teleki 5C (5C),

Freedom (FREE), Selection Oppenheim 4 (SO4), and ‘Marquette’

grafted to ‘Marquette’ (homograft) (Table 1) were used to measure

rootstock influence on photosynthetic parameters. Vines were

custom grafted in 2018, using same aged dormant cane materials,

by Double A Vineyards (Fredonia, NY, USA) and grown for one

year prior to planting. The Marquette homograft provides the

inherent photosynthetic characteristics of the ‘Marquette’

genotype in a grafted vine so that the conferred influence from

the commercial rootstocks on the Marquette scion can be

determined in direct comparison of grafted vines. There were

four replicates for each graft combination, organized in four

complete blocks that were randomly placed within four rows (1

block per row) of a larger experimental vineyard.

Vine photosynthetic and hyperspectral profiles were measured in

the field at the South Dakota State University research vineyard in

Brookings, SD (44.3114 °N, -96.7984 °W). A high cordonmanagement

system was imposed on vines in 2020. The vines had a 1.828 m spacing

within the row and 3.048m between rows. Vines were maintained with

fruit during measurement years (2022 and 2023). The vineyard used an

automated irrigation system to supplement natural precipitation when

less than 5.08 cm/month from the flowering stage until grape

maturation. Both direct photosynthetic measurements and

hyperspectral profiling was carried out post-summer solstice in 2022

and 2023, targeting daylengths of 15 h, 14 h, 13 h, and 12 h. These time

points were chosen as summer solstice, the longest day of year (June 20,

15 h 31 min), occurs about 2 weeks after flowering and subsequently

daylength begins decreasing, the sampling period was chosen to cover

photosynthetic activity during fruit development and ripening period.

Measurements were taken between 9:00 am and 12:00 pm to minimize

the potential influence of large environmental fluctuations.
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2.2 Direct measurement of photosynthesis
attributes using infrared gas analyzer

The ground-truth data was acquired using a LI-COR (Li-6800,

LICOR Biosciences, Lincoln, NE, USA) portable photosynthesis

system. The LI-COR settings were fixed for the temporal

measurements: Flow rate of 600 mmols-1, temperature and relative

humidity set closest to ambient conditions, reference CO2 to 400

mmol mol-1, and saturating light of 1800 mmolm-2 s-1. One leaf from

mid-shoot for each vine was chosen for measurement, providing

four replicate samples per genotype (six genotypes), totaling 24

samples (6 genotypes x 4 replicates) for each sampling date. The

selected leaves were fully developed, healthy middle leaves, adapted

to sunlight conditions to ensure uniformity in photosynthetic

measurements and minimize potential variability due to leaf

development stages or environmental factors. The Rapid A/Ci
TABLE 1 Rootstock genotypes pedigree and characteristics.

Rootstock Pedigree Characteristics

1103 Paulsen

V. berlandieri
Planch. and V.
rupestris Scheele

- expanded, deep branching roots,
high resistance to phylloxera,
adapted to a wide range of soil
conditions
- good grafting aptitude, confers a
high vigor, long vegetative cycle and
delays ripening.

3309 Couderc

V. riparia
Michx. and V.
rupestris
Scheele ‘Martin’

- slow root system generation,
expanded root types, sensitive to
water stress and Mg, N, B and K,
good resistance to phylloxera
- Good affinity to grafts, confer low
to moderate vigor

Teleki 5C (5C)

V. berlandieri
Planch. and V.
riparia Michx.

- Low to medium tolerance to
different soil conditions (drought,
salinity, lime), high resistance to
phylloxera.
- tends to have a low yield-to-
pruning ratio and is well suited for
varieties with poor fruit set.

Freedom

1613 (V. Longii
Prince ‘solonis’ x

V. hybrid
‘Othello’) and
V. champini

- Low to medium tolerance to
different soil conditions (drought,
salinity, lime)
- Susceptible to phylloxera but
resistant to broad spectrum of
nematodes
- Confers high vigor, sensitive to
latent viruses

Selection Oppenheim
4 (SO4)

V. berlandieri
Planch. and V.
riparia Michx.

- Highly tolerant to phylloxera,
moderate vigor rootstock (low vigor
in first years of development),
compatible with grafts but limited
radial trunk growth
- impacts on early development and
maturity of scion

Marquette

V. hybrid (MN
1094 and
Ravat 262)

- Cold hardy resistant
- Resistant to common grape
diseases (downy and powdery
mildew) and moderate resistant to
foliar phylloxera
- Used as control in this study
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curves (RACiR, net CO2 assimilation rate A, versus calculated

substomatal CO2 concentration, Ci) was measured to derive

photosynthetic parameters from a clamped leaf area of 6 cm².The

Farquhar-Berry-von Caemmerer model was used to fit A/Ci curve

to derive photosynthetic capacity in the vines in terms of maximum

rate of carboxylation of RuBP (Vcmax) and maximum rate of

electron transport driving RuBP regeneration (Jmax) (Farquhar

et al., 1980). The R package ‘racir’ (Stinziano et al., 2019) was

used to perform calibration fits which allowed to select appropriate

polynomial fit based on AIC criterion. Selected fit was used to derive

Vcmax and Jmax using package in R ‘plantecophys’ (Duursma, 2015).
2.3 Indirect measurement of
photosynthesis using hyperspectral
remote sensing

The hyperspectral sensor SPECIM IQ (Specim, Spectral Imaging

Ltd., Oulu, Finland) was used to collect canopy reflectance measure to

predict photosynthetic parameters Vcmax and Jmax (Behmann et al.,

2018; Deng et al., 2024). The operation hardware of the Specim IQ

sensor utilizes push broom technology where it simultaneously

captures a single spatial line of the image with the entire

wavelength spectrum, then moves to the next line. It acquires

reflectance for 204 narrow wavelength bands with a spectral range

of 397nm to 1000nm with a spectral resolution of 7nm. This sensor

acquires spectral information in line scanning of 512 pixels, resulting

in static image size of 512 by 512 pixels. The viewing area is 0.55 m by

0.55 m., which achieves a spatial resolution of 1.07 mm when placed

at one meter from the object. For this study, the hyperspectral sensor

was placed one meter from the trellis wire used for the vines. A

Spectralon white reference panel (Specim, Spectral Imaging Ltd.,

Oulu, Finland) was placed next to the vine to ensure calibration of

radiance image. The sensor built-in function was used for digital

number to reflectance conversion. Hyperspectral data was collected

using the default recording option for saving hyperspectral data

cubes, to generate the unprocessed reflectance data. The images

were processed using ENVI software (L3Harris Geospatial

Solutions Inc., Broomfield, CO, USA). First, the canopy surfaces

consisting only of leaves, were extracted as the region of interest

(ROI) and background pixels were omitted. The radial basis kernel

function in support vector machine (SVM) classifier was used to

create binary layer that eliminated shadow and background pixels

from the imagery. The accuracy of SVM in this process was found to

range from 96 to 98.12%. The end bands were eliminated thereby

reducing background noise and resulted 187 total wavelengths for

further analysis. Images were subsequently resized to a 250x250

dimension to decrease the computational time required for the

modeling algorithms. Similarly, one-dimensional spectral data were

extracted from the leaf ROI (Region of Interest) areas, which were

used as input features in some models.
2.4 Environmental and chlorophyll features

Additional meteorological parameters and leaf chlorophyll

values were measured for use in modeling photosynthetic
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parameters in combination with the hyperspectral features.

Chlorophyll levels were measured at the same time as the LI-6800

photosynthesis measurements using the MC-100 Chlorophyll

Concentration Meter (Apogee Instruments, Inc., UT, USA) for

the ground-truth data collection (Parry et al., 2014). For these

measurements, the instrument was configured to the ‘GRAPE’

option in its selection menu. Three fully grown middle leaves

were sampled from each genotype, and the average value was

calculated. The temperature, solar radiation (SR), and relative

humidity (RH) were recorded by SDmesonet station situated at

the vineyard site in South Dakota State University (SDmesonet,

2023). The real time weather data corresponding to the time when

CO2 assimilation curves were measured for each genotype were

retrieved for each sampling date. The mean of temperature, solar

radiation (SR), and relative humidity (RH) were determined by

averaging the maximum and minimum values recorded during the

specified sampling hour. These averages were used as model input

parameters during the second phase of model analysis.
2.5 Statistical analysis

2.5.1 Data exploration of direct and indirect
photosynthetic measures

Ground-truth photosynthetic data was normalized by z-score

transformation and then a two-way ANOVA was performed to

determine whether there were significant differences between

genotypes and measurements taken at specified daylengths (15, 14,

13, and 12 h) (Abdi and Williams, 2010). The ‘ggplot’ package in R

was employed to create visual representations, using violin plots to

demonstrate the genotypic differences across both years, as well as

line plots to depict the trend of photosynthesis in relation to changes

in daylength (Wickham et al., 2016). A principal component analysis

was conducted to determine genotypic differences based on their

spectral signature using built-in ‘stats’ package in R (Team et al.,

2018). This method was also applied to determine if spectral

signature varied based on environmental settings.
2.5.2 Prediction model development
For the model development, the focus was solely on

development of integrated/hybrid model. To predict Vcmax and

Jmax independently, both one-dimensional hyperspectral data and

three-dimensional data in image format were used. Multiple of

algorithms were employed to extract features, these were combined

with the XGBoost algorithm for prediction purposes, resulting in

the formation of an advanced hybrid model (Chen and Guestrin,

2016). For one-dimensional hyperspectral data (spectral), the

algorithms included principal component analysis (PCA),

autoencoders, and proposed one-dimensional convolutional

neural network (VIT-CNN1D) (Wold et al., 1987). For three-

dimensional hyperspectral data (spectral-spatial), different

transfer learning techniques such as VGG16, Inception-ResNet,

and a proposed two-dimensional convolutional neural network

mode l (V IT-CNN2D) was app l i ed ( S imonyan and

Zisserman, 2014).
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For model assessment, the complete dataset of both years

measured was split into two parts: 80% for training and 20% for

testing. During the training of all the models, a resampling strategy

employing 10-fold cross-validation was implemented (Fushiki,

2011). Additionally, hyperparameter optimization was conducted

to select the most suitable parameters for each model. To evaluate

the performance of the models, three important evaluation metrics

were used to analyze both the training and testing predictions.

These metrics were Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), and the Coefficient of Determination (R²).

 RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
( yi  –  byi )2
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1
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 o
n
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yi  )

 

2.6 Model feature extraction and
prediction assignment algorithms

2.6.1 Principal component analysis
Fifteen PC components, that captured more than 99% of total

variation of spectral features were selected for this study to predict

photosynthetic parameters. PCA implementation was done in

Python using the scikit-learn library (Pedregosa et al., 2011).

2.6.2 Autoencoders
The autoencoder models used in this study were built using a set

of hyperparameters, allowing for the broad assessment of various

architectural configurations. Two dense layers with the activation

function Rectified Linear Input (ReLU) were designed for encoders

(Agarap, 2018). Hyperparameters were used to specify the units for

these layers. For the decoder, a single dense layer followed by the final

output layer, units were set at 50. The parameters for the model

compilation were the mean squared error (MSE) as the loss function

and Adam as the optimizer (Kingma and Ba, 2014). Similarly, the

‘kerastuner’ package from TensorFlow was used to optimize an

autoencoder model’s hyperparameters (Table 2) (Abadi et al., 2016).

2.6.3 VIT-CNN1D model
The 1D-CNN models were implemented to derive pattern(s) or

information across the spectral dimensions of hyperspectral data for

prediction of photosynthetic parameters. This algorithm is defined as

VIT-CNN1D, which was specifically designed for feature extraction

from one-dimensional hyperspectral data. To meet the modeling goals

of this research, the 1D-CNN was employed with hyperparameter

optimization, utilizing the Tensorflow modules ‘kerastuner’ (Abadi

et al., 2016; Pon and KK, 2021). The CNN framework consisted of

three convolutional layers and two pooling layers as shown in Figure 1.
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The Rectified Linear Input (ReLU) was employed as the convolutional

output activation function (Agarap, 2018). The flattened layer was then

connected to the output layer, derived with linear function. The hyper

parameters i.e., filter size, kernel size and learning rate were selected

using RandomSearch that operates in hyperparameter combinations at

random in attempt to discover the best effective set for a given model

(Table 2) (Bergstra and Bengio, 2012; Li and Talwalkar, 2020). Using 15

trials, the model with the smallest validation mean squared error was

selected and flattened layer were extracted as features. The resultant

spectral features were then passed on as input for prediction task for

estimating photosynthetic parameters.
2.6.4 Transfer learning approaches (VGG16,
Inception-ResNet)

The VGG16 architecture was used only as a feature extraction

technique, such that top layers were omitted and pre-trained weights

were excluded, to implement the model from scratch on our dataset

(Simonyan and Zisserman, 2014). The input dimensions of

250*250*187 were used which indicated that the model was modified

to process data with more channels. The custom VGG16 configuration

was used to retrieve features from original images, which were then

used to feed XGBoost algorithm for the regression task (Chen and

Guestrin, 2016). Similarly, the InceptionResNetV2 model (Inception-

ResNet) was altered to specifically operate for this study by excluding

top classification layers and pretrained weights (Szegedy et al., 2017).
TABLE 2 Hyperparameters and specifications for each model selection
using random search cross validation.

Models Hyperparameters Specifications

Autoencoders units min:32, max:256, step = 32

VIT-CNN1D Filters min:16, max:128, step = 16

kernel size min:2, max:7

Learning rate min: 1e-4, max:1e-1

Optimizer Adam

epoch 100 per trial

loss function Mean squared error

VIT-CNN2D Filters min:32, max:256, step = 16

kernel size min:2, max:7

Learning rate min: 1e-4, max:1e-1

Optimizer Adam

epoch 100 per trial

loss function Mean squared error

XGBoost maxdepth min:2, max:10, step = 2

Learning rate min:0.01, max:0.1

n_estimators min:100, max:400

min_child_weight min:1, max:4

reg_alpha min:0, max:0.01
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2.6.5 VIT-CNN2D
The VIT-CNN2D architecture defined in this study was used

for extracting features from hyperspectral data cube. Since the

ground-truth data size was very small, the architecture was kept

fairly simple, like the VIT-CNN1D with 3 convolutional layers and

2 pooling layers as shown in Figure 2. Similar to the previous

scenarios, the Rectified Linear Input (ReLU) was used as the

activation function for the convolutional output (Agarap, 2018).

The hyperparameters, such as filter size, kernel size, and learning

rate, were determined using RandomSearch (Table 2) (Bergstra and

Bengio, 2012; Li and Talwalkar, 2020).

2.6.6 XGBoost
After the hyperspectral feature extraction, XGBoost was used in

this study for the regression task incorporating regularization to

prevent overfitting (Chen and Guestrin, 2016). Model training was

performed optimizing the hyperparameters such as learning rate,

tree depth, number of trees used in model and regularization terms

as described in Table 2 using RandomSearch (Bergstra and Bengio,

2012). The scikit-learn library was used to implement the model

workflow, consisting of 10-fold cross validation technique to ensure

the robustness and generalizability of the trained model (Pedregosa

et al., 2011). These parameters were used to prevent overfitting and
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assess the true predictive performance of the model before applying

it to the test data.
2.7 Analysis with environmental data

Following the identification of the top-performing hybrid model

during the initial phase analysis, chlorophyll concentration (CC) and

weather parameters (temperature, SR, and RH) were incorporated to

test their ability to improve model performance. To predict Vcmax and

Jmax, the model was tested in two ways: first by incorporating

chlorophyll values with the spectral data, and second by incorporating

weather variables with the spectral data.
3 Results

3.1 Ground-truth measures for main
factors of rootstocks genotype
and daylength

The distribution pattern of Vcmax and Jmax varied between

grafted rootstock genotypes for 2022 and 2023 (Figures 3A, B).
FIGURE 2

Schematic representation of two-stage machine learning model with components: a feature extraction module as VIT-CNN2D (consists of three
convolution layers and two pooling layers) and a regression model as XGBoost to predict Vcmax and Jmax.
FIGURE 1

Schematic representation of two-stage machine learning model with components: a feature extraction module VIT-CNN1D (consists of three
convolution layers and two pooling layers) and a regression model as XGBoost to predict Vcmax and Jmax.
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‘Marquette’ on 3309C showed higher values compared to other

combinations, including the homograft of ‘Marquette’ for both

photosynthetic parameters. The main effects of genotype and

daylength on Vcmax were significant and indicated the scion

maximum rate of RuBP carboxylation differed significantly as
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influenced by rootstock genotypes (Table 3). Post-hoc analysis

revealed that ‘Marquette’ on 3309C rootstock had the greatest

average value for Vcmax. ‘Marquette’ on 5C and SO4 had the

lowest Vcmax and differed considerably from the other graft

combinations. A similar trend was observed for Jmax, both the
FIGURE 3

Distribution of Vcmax (A) and Jmax (B) for all rootstocks in field conditions. The measures for each genotype are the cumulative measures for four
different replicates of each graft combination sampled over different daylength conditions. Year of measure 2022 (green) and 2023 (purple), V. hybrid
‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom (FREE), SO4 and homografted to ‘Marquette’.
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main effects for rootstock genotype and daylength were significant

and the greatest average was observed for ‘Marquette’ on 3309C and

1103P, while the lowest average was observed for ‘Marquette’ on 5C.

A decrease in Vcmax was detected for ‘Marquette’ on all

genotypes including the homograft as the daylength hours

progressed from 15 h to 12 h (Figure 4A). Similarly, a decrease in

Jmax was observed with daylength hour progression (Figure 4B).

Post-hoc analysis also revealed that significant differences were

observed across the different daylengths (Table 3).
3.2 Rootstock genotype induced
hyperspectral response differences

The genotypes showed different spectral signatures in response

to a declining daylength (Figure 5). The genotype response is

identified as reflectance on the y-axis in relation to the spectral

bands measured on the x-axis. The variability around the central

tendency is observed as the shaded region around the mean

response for each wavelength (solid line) band. The greater the

variability around the mean suggested that the response varied

more across replicates or daylength conditions. The red-edge

region, which is typically associated with chlorophyll absorption,

is characterized by a substantial increase in reflectance that starts at

approximately 700 nm across all genotypes. The spectra exhibit

typical plant reflectance patterns, with peaks and troughs that

correspond to specific absorption features, and their structure is

consistent across genotypes. Nevertheless, there was genotype

variation in wavelength reflectance patterns observed in 2022

(Figure 5A) and 2023 (Figure 5B). Also, there was a greater

variation range for 2022 than in 2023. Vines of ‘Marquette’

grafted to 5C had wider regions (greater variation) than the other

rootstocks for both years. The PCA (Figure 6A) revealed first

principal component (PC1), explaining 75.25% of the variance in

the data, while the second principal component (PC2), explaining

17.66% of the variance. The PCA space showed that the spectral

characteristics of genotypes like ‘Marquette’ on 1103P and

‘Marquette’ on FREE were significantly different from those of

other genotypes. On further analysis, variation associated with the

first two principal components was primarily attributable to
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fluctuations in the 580 nm and 710 nm regions as shown by

loading plots (Figure 6B). The variations in the spectral signature

(Figures 6C, D) were significantly influenced by daylength. In both

years, data for 15 h was in the lower right quartile of the PCA plot

separated from the other daylengths (Figures 6C, D).

3.3 Prediction of
photosynthetic parameters

3.3.1 Prediction of Vcmax and Jmax using different
feature extraction algorithms

Of the feature extraction algorithms,VIT-CNN1D model

acquired the highest R² value of 0.91 on the training set for

predicting Vcmax (Table 4) This indicated that the model

accounted for 91% of the variability in the data. VIT-CNN1D

demonstrated the lowest Root Mean Square Error (7.23) and

Mean Absolute Error (5.92) on the test set, indicating a robust

prediction capability and a high level of generalization to test data.

Figure 7 displays a comparison between the measured Vcmax, and

the predictions made by various algorithms for both training

(Figure 7A) and test performance (Figure 7B). Likewise, for Jmax

estimation, the VIT-CNN1D model performed best in terms of test

RMSE (14.79) and exhibited a competitive test MAE (12.09),

reinforcing its robustness across different types of predictions

(Table 4 and Figure 8). Considering the test R2 among the

various algorithms showed that VIT-CNN1D had the highest

value for both Vcmax (0.59) and Jmax (0.60) predictions.

Comparison of other feature extraction algorithms used for one

dimensional hyperspectral data, indicated that PCA showed a

strong ability to explain variance in training data but did not

perform well in test data in contrast to Autoencoders and VIT-

CNN1D. Autoencoders showed some improvement over PCA, but

VIT-CNN1D had the lowest RMSE for test performance indicating

the best overall predictive capability for both Vcmax and Jmax.

The transfer learning algorithms (VGG16 and InceptionResNet)

used for feature extractions from images had greater RMSE andMAE

for the test set than VIT-CNN1D, PCA, and Autoencoders (Table 4).

This showed that, while they are effective for image recognition, they

may not be the best fit for this specific feature extraction task. Also,

VIT-CNN2D model showed improvement over transfer learning
TABLE 3 Photosynthetic parameter ANOVA.

A. Rootstock Genotype

M_1103P M_3309C M_5C M_Freedom M_SO4 M_Marquette

Vcmax 0.31ab 0.35a -0.32c -0.16bc -0.19c -0.02abc

Jmax 0.17ab 0.51a -0.28bc -0.16bc -0.28c 0.0bc

B. Daylength

15 h 14 h 13 h 12 h

Vcmax 0.73a 0.63a -0.34b -1.02c

Jmax 0.91a 0.51b -0.46c -0.96d
Initial measurements of Vcmax and Jmax were recorded in molm-2s-1 prior to undergoing z-transformation for normalization conformity. A) Rootstock comparisons, B. Daylength comparisons.
Within each row, mean values with common letters indicate no significant variance amongst them, as determined through Tukey’s Honest Significant Difference (HSD) test for multiple
comparisons, n=4. M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, SO4 and homografted to ‘Marquette’.
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approaches but it did not perform as well as the VIT-

CNN1D algorithm.

3.3.2 Integration of additional chlorophyll and
weather features with the best performing VIT-
CNN1D model

The ground-truth photosynthetic parameter and hyperspectral

data were collected across the growing season which included a
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gradually decreasing daylength, temperature, SR, and variable RH.

Chlorophyll concentration was relatively similar in concentration

across the ‘Marquette’_rootstock combinations (Supplementary

Figure 1A), although it appeared to decrease at 12h daylength

(Supplementary Figure 1B). Solar radiation (SR) was lower in 2023

than 2022 at 12h daylength and RH was greater at the 12 h

daylength in 2023 than in 2022 (Supplementary Figures 3, 4).

Addition of these parameters into the best performing model
FIGURE 4

Temporal trend of Vcmax (A) and Jmax (B) across the decreasing daylength in field conditions The measures for each rootstock combination in year
2022 (green) and 2023 (purple); mean values calculated for each daylength interval with standard error of the mean; M = V. hybrid ‘Marquette’
common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, SO4 and homografted to ‘Marquette’.
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VIT-CNN1D resulted in small changes in model performance

(Figure 9). The Vcmax prediction increased the training and test

performance slightly with R2 values of 0.91 to 0.92 and 0.60 to 0.62,

respectively across the spectral + chlorophyll, and spectral +

temperature + RH + SR feature sets (Table 5). The test RMSE

and MAE for Vcmax were comparable or lower with the addition of
Frontiers in Plant Science 10
chlorophyll and slightly higher with the addition of weather

parameters. The performance of VIT-CNN1D with consideration

of chlorophyll and weather parameters for Jmax exhibits a

comparable pattern. The training R2 values for model are similar

for both the spectral and spectral plus chlorophyll and spectral plus

weather feature sets (Table 5). Test performance however showed
FIGURE 5

Average spectral signature for each rootstock combination in field at different daylengths. The hyperspectral reflectance derived for each rootstock
combination in 2022 (A) and 2023 (B); M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, SO4 and
homografted to ‘Marquette’.
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an increased R2 with variable RMSE and MAE that were greater or

less than the spectral input alone. The variability of RMSE andMAE

in training and testing for these additional features suggested the

possibility of overfitting and indicated the importance of refining

the model or collecting more data to enhance its ability to make

accurate predictions for both Vcmax and Jmax.
4 Discussion

‘Marquette’_3309C and ‘Marquette’_1103P had the highest

average value for both Vcmax and Jmax, while ‘Marquette’_5C and

‘Marquette’_SO4 had the lowest average value and indicated differences

in photosynthetic performance. The results from post-hoc analysis was
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particularly meaningful and indicated differences in rootstock genotype

influence on scion photosynthesis. The rootstock genotypes displayed

different levels of photosynthetic efficiency representing a conferred

rootstock impact on the structure and function of the photosynthetic

machinery in the scion. In accordance with these findings, when

comparing other physiological measures like stomatal conductance to

water vapor and net assimilation rate among these genotypes in the

same settings, there was significant difference between their

performances. It was observed in another study, that Marquette on

3309C and 1103P exhibited the highest net assimilation rate and

stomatal conductance, which are direct measurements of the

physiological processes associated with photosynthesis (Sharma et al.,

2024). Many studies of grapevine rootstock’s influence on

photosynthesis are based on stress treatment conditions in
FIGURE 6

Principal component of spectral signature response as influenced by rootstock. (A) Data from all daylengths in 2022 and 2023; (B) PCA loadings
from PC1 and PC2 derived from PCA in panel A; (C, D) PCA of 2022 and 2023 grafted rootstock response for all daylengths, 15h (black), 14 h (green),
13 h (blue), 12 h (pink). M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, and SO4 and homografted
to ‘Marquette’.
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comparison to an unstressed control (da Silva et al., 2018; Prinsi et al.,

2021). Rootstocks are found to alter the plant’s response to

physiological stress conditions which possibly leads to reduction of

photosynthetic efficiency through stomatal and non-stomatal

limitations (Dinis et al., 2018; Tombesi et al., 2019). In this study

with no intentional stress treatments, the rootstock genotypes

conferred significant differences in scion’s photosynthetic efficiency.

This implied that there is a genetic basis underlying rootstock influence

on photosynthetic parameters. Similarly, Pou et al. (2022) show in V.

vinifera ‘Tempranillo’ 30-year-old vines, on four different rootstocks,

that gas exchange parameters, vine vigor, and chlorophyll content is

influenced by rootstock genotype. Like these findings, our results

suggested that the rootstocks with a V. rupestris X V. riparia

pedigree (1103P and 3309C, Table 1) had significantly increased

photosynthetic performance over those with a V. berlanderi x V.

riparia pedigree (5C and SO4). In this study, it is not possible to

determine whether it is V. rupestris, V. berlanderi, V. riparia, or an

interaction of the different species in the rootstocks genetic makeup

that resulted in the conferred photosynthetic difference. Thus, it is

crucial to conduct comprehensive, locale-specific, long-term research

due to the complex chain of interactions among the rootstock, the scion

cultivar, and the environmental conditions before recommending a

specific rootstock for a given set of soil and climatic conditions.

The PCA results demonstrated the effectiveness of

hyperspectral imaging in distinguishing genotypes according to

their photosynthetic efficacy (Figure 6). Through distinct
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clustering, the PCA score plots for different years highlighted the

variability in photosynthetic responses across genotypes and

environmental conditions. The detailed spectral information and

subtle differences in their signature patterns obtained through

hyperspectral imaging helped to differentiate genotypes. Despite

extensive research, the precise physiological signals captured by

hyperspectral reflectance for predicting Vcmax remain poorly

understood (Meacham-Hensold et al., 2020). So far, Predictive

models developed have consistently identified significant

wavelengths in the visible (400–700 nm) and red-edge (700–740

nm) regions, areas typically associated with pigment content

(Barnes et al., 2017; Ely et al., 2019; Meacham-Hensold et al.,

2019). Similar to these finding, the loadings plot (Figure 6B)

offered an insight into the specific wavelengths that were most

indicative of these differences; the peaks corresponding to the

spectral features of chlorophyll (approximately 710 nm) and

carotenoids (approximately 460 nm) (Falcioni et al., 2023) as well

as the NIR region at 760 nm, which is indicative of other

physiological properties related to photosynthetic efficiency

(Sexton et al., 2021). The changes in PCA plots from 2022 to

2023 showed how hyperspectral imaging can record changes in

photosynthetic efficiency over time. These changes could be caused

by environmental factors or changes in the scions’ development.

Research related to validation of hyperspectral data as indirect

measure of photosynthesis is very limited in grapevines (Yang et al.,

2022). Validation analysis of indirect measures of photosynthesis in

this study indicated that there was a relationship between

hyperspectral data and direct measured photosynthetic

parameters. The best performing model VIT-CNN1D was able to

explain around ~60% variation in test dataset for both parameters.

In contrast, estimation of Vcmax and Jmax for Populus species using

leaf-level hyperspectral data show that the best model had R2 value

of 0.51 and 0.54, respectively (Kyaw et al., 2022). Meacham-

Hensold et al. (2020) show that the hyperspectral data retrieved

from sunlit section of Nicotiana tabacum, yielded an R2 0.79 for

Vcmax and an R2 of 0.59 for Jmax using partial least square regression

model. However, the Nicotiana tabacum study used transgenic lines

with genetically altered photosynthetic pathways, thus were able to

capture greater photosynthetic variability, in contrast to our

common scion grafted grapevine research. Developing trait values

with intentionally modified photosynthetic qualities in an ungrafted

plant offers the models a potentially more simplified prediction

goal. In this study, the vines although fruiting were relatively young

and might still be undergoing changes, as the vine structure

continues to mature in their site, that may affect the influence of

its rootstock on photosynthesis. However, it is noted that vineyards

with 30-year-old ‘Tempranillo’ vines grafted on 1103P show higher

net photosynthetic rate than other less vigorous rootstocks (Pou

et al., 2022). Similarly, we show a greater Vcmax and Jmax in

‘Marquette’ on 1103P than ‘Marquette’ on 5C, SO4 or Freedom

rootstocks. Further studies through time will be needed to

determine if differences identified will remain through the life a

vine and to increase confidence of the use of hyperspectral imagery

to measure photosynthesis in long- lived perennial plants in diverse

geographical locations.
TABLE 4 Model performance for training and test dataset used for the
prediction of maximum rate of carboxylation of RuBP (Vcmax) and the
maximum rate of electron transport driving RuBP regeneration (Jmax).

Vcmax

Prediction
Training

performance
Test Performance

Model R2 RMSE MAE R2 RMSE MAE

PCA 0.89 4.37 3.21 0.43 8.57 6.73

Autoencoders 0.89 4.45 3.27 0.50 7.97 5.96

VIT-CNN1D 0.91 4.22 3.03 0.59 7.23 5.92

VGG16 0.90 4.09 3.09 0.31 10.96 7.32

InceptionResNet 0.88 4.31 3.19 0.31 12.27 7.69

VIT-CNN2D 0.88 4.72 3.59 0.49 8.03 6.83

Jmax Prediction Training
performance

Test Performance

Model R2 RMSE MAE R2 RMSE MAE

PCA 0.90 8.41 6.41 0.52 18.38 14.67

Autoencoders 0.89 8.78 6.68 0.55 15.67 12.77

VIT-CNN1D 0.91 8.21 6.13 0.6 14.79 12.01

VGG16 0.90 8.17 6.29 0.37 21.92 18.74

InceptionResNet 0.89 8.28 6.94 0.42 21.13 17.27

VIT-CNN2D 0.87 9.93 7.89 0.42 17.81 14.54
Each of model type mentioned is feature extractor type which was integrated with XGBoost to
retrieve model prediction results. The model performance metrics for both training and test
dataset are provided.
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A comparison of the PCA, autoencoders and VIT-CNN1D

algorithms, all having one-dimensional hyperspectral data as input

indicated that VIT-CNN1D had the best model performance in both

training and test dataset as compared to PCA and autoencoders. The

working approach of a 1D-CNN includes a convolutional filter (or

kernel) moving across the one-dimensional input data where at each

position it executes a multiplication of elements and then combines
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the results into a single output value. As the convolutional filters

move across the input, they can extract important features (such as

specific patterns) from the data. In our analysis, the VIT-CNN1D

architecture, with the potential to detect sequential patterns in the

hyperspectral data, gave it an advantage over PCA and autoencoders

which do not account for the inherent order of data points. Deep

learning models like CNN are shown to have better prediction
FIGURE 7

Actual Vcmax versus predicted Vcmax that were retrieved for different feature extraction algorithms. Training performance (A) and test performance
(B) for each model type. The green dashed line represents the ideal prediction where predicted values perfectly match the measured ones.
Evaluation metrics R2 and RMSE are on top left of each model graphic.
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accuracies as compared to traditional machine learning approaches

(Kumar et al., 2020). 1D-CNNs can learn a hierarchy of features, in

contrast to PCA, which takes a linear approach, and Autoencoders,

which are usually shallow in comparison to deep CNNs. This implies

that 1D-CNNs are able to identify intricate patterns across various

scales, identifying both local and global characteristics in sequential

data (Kiranyaz et al., 2021). Likewise, VIT-CNN1D outperformed
Frontiers in Plant Science 14
other transfer learning models and the VIT-CNN2D algorithm, used

for image-based feature extraction, in this study. Two-dimensional

deep convolutional neural networks (2D-CNNs) are specifically

effective in addressing computer-vision issues, directly using the

raw image as input without any manual preprocessing. The

convolutional layer in 2D-CNN performs feature extraction

through a combination of several linear and nonlinear algorithms
FIGURE 8

Actual Jmax versus predicted Jmax retrieved for each feature extraction algorithms. Training performance (A) and test performance (B) for each model
type. The green dashed line represents the ideal prediction where predicted values perfectly match the measured ones. Evaluation metrics R2 and
RMSE are on top left of each model graphic.
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applied using activation function. To spatially compress the input

volume, the pooling layers determine the maximum (max pooling) or

average (average pooling) value in the neighborhood pixels. This

helps to decrease the dimensionality of the maps, thus decreasing the

complexity of their computation. However, in order to achieve robust

performance for 2D-CNN requires an extensive number of training
Frontiers in Plant Science 15
samples (Alzubaidi et al., 2020, 2021). One of the our study’s

limitations lies in the lower number of ground-truth samples, as

biological data for direct physiological measures are very time-

consuming to acquire and hence difficult to gather in a given

timeframe (Haworth et al., 2023). VIT-CNN1D had fewer

parameters compared to other 2D-CNN based algorithms making
FIGURE 9

Actual versus predicted plots retrieved for Vcmax and Jmax using VIT-CNN1D + XGBoost. Training performance (A) and test performance (B) for each
model type. The green dashed line represents the ideal prediction where predicted values perfectly match the measured ones. Evaluation metrics R2

and RMSE are on top left of each model graphic.
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it more efficient with limited training samples (Kiranyaz et al., 2019;

Wang et al., 2017). An additional reason for superior performance of

VIT-CNN1D over VIT-CNN2D could be that the photosynthetic

measures in this case are more correlated to the spectral features

rather than the spatial features.

In this study, the ground-truth photosynthetic parameter and

hyperspectral data were collected across the growing season;

therefore, it was important to consider chlorophyll concentration

and environmental factors. The model metrics and additional

parameters (chlorophyll concentration or temperature, HR, and

SR), did not drastically alter the model’s performance. Many studies

use chlorophyll content as proxy for photosynthetic activity

parameter (Mandal and Dutta, 2020; Prilianti et al., 2021; Shi

et al., 2022). The test R2 prediction increased slightly for Vcmax

and Jmax with a decrease in RMSE with the addition of chlorophyll.

The addition of weather parameters to the VIT-CNN1D model

provided more mixed results with the test R2, RMSE and MAE

varying little for Vcmax and Jmax. Several studies (Bassow and Bazzaz,

1998; Serbin et al., 2012), show that “biophysical” parameters

measured at leaf level are directly associated with photosynthesis.

The emphasis of our research was on broad physical parameters

associated with weather conditions. Although these parameters are

noteworthy, they do not cover the entire range of factors that

impact the phenomena of photosynthesis. To attain greater

comprehension, prospective research should attempt to integrate

measurements of leaf-level biophysical parameters. These factors

encompass internal leaf structure, stomatal density, and leaf

temperature, as well as incoming photosynthetically active

radiation, among others.
5 Conclusions

The effect of rootstock mediation on the photosynthesis of scion

is an important topic in viticulture due to the opportunity it offers

for selection and identification of rootstocks that can improve scion
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response to a changing climate. This study investigated common

scion photosynthetic measures with different rootstock

combinations, leveraging two different methodological

approaches: direct measures through IRGA and indirect measures

using hyperspectral remote sensing. The study also examined the

efficacy of indirect measurements in different environments and

verified its validity through the integration of multiple AI/computer

vision algorithms. Comprehensively, the following are significant

findings derived from this research: 1. Across two growing seasons,

substantial variation in photosynthetic efficacy (Vcmax and Jmax) was

observed for six distinct ‘Marquette’_rootstock combinations across

four daylengths. This suggested that the rootstock genotype exhibits

a significant influence on the scion physiological response related to

photosynthesis. Similarly, substantial variation in hyperspectral

signature was observed among graft combinations relative to the

rootstock genotypes. Both direct and indirect measures were hugely

influenced by daylength conditions in all graft combinations. 2. To

derive spectral and spatial features, numerous feature extraction

algorithms were evaluated and VIT-CNN1D demonstrated the

greatest potential with an R2 of 0.60 for both parameters. Spatial

feature extraction models, namely VGG16, Inception-ResNet, and

VIT-CNN2D, exhibited subpar performance due to their restricted

training samples and the lack of association between response

variables and spatial relationships. 3. Incorporating additional

input features of chlorophyll gave a small improvement

in training and test performance in contrast to the weather

parameters. This study highlights the substantial impact of

rootstock genotype on the photosynthetic efficacy of scion plants,

indicating that the selection of suitable rootstocks can improve the

resilience of vineyards to climate change. By utilizing AI algorithms

to validate hyperspectral remote sensing, the research reflects the

potential for nondestructive, efficient monitoring techniques

in viticulture. The substantial influence of daylength on

photosynthetic measures shows the necessity of considering

whole growing season environmental factors when selecting

rootstocks. Future recommendations include the following:

conducting thorough rootstock trials, optimizing hyperspectral

imaging and AI models, integrating environmental data, and

leveraging chlorophyll and pigment data to continuously improve

the nondestructive assessment of photosynthesis.
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TABLE 5 Model performance for training and test dataset used for the
prediction of maximum rate of carboxylation of RuBP (Vcmax) and the
maximum rate of electron transport driving RuBP regeneration (Jmax).

Prediction
Model

Training
performance

Test Performance

R2 RMSE MAE R2 RMSE MAE

Vcmax Spectral
+ Chlorophyll

0.91 4.00 3.02 0.60 7.14 6.08

Vcmax Spectral +
Temperature + RH
+ SR

0.92 3.75 3.03 0.62 7.62 6.40

Jmax Spectral
+ Chlorophyll

0.92 7.59 5.86 0.62 14.39 12.25

Jmax Spectral +
Temperature + RH
+ SR

0.91 7.66 6.26 0.65 15.15 11.66
Each set of results represents differences in model input features: Spectral + Chlorophyll and
Spectral + Temperature + RH + SR and the training and test performance metrics.
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