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Modeling QTL-by-environment
interactions for multi-
parent populations
Wenhao Li1, Martin P. Boer1, Ronny V. L. Joosen2,
Chaozhi Zheng1, Lawrence Percival-Alwyn3, James Cockram3

and Fred A. Van Eeuwijk1*

1Biometris, Wageningen University and Research Center, Wageningen, Netherlands, 2Rijk Zwaan
Breeding B.V., De Lier, Netherlands, 3Plant Genetics, NIAB, Cambridge, United Kingdom
Multi-parent populations (MPPs) are attractive for genetic and breeding studies

because they combine genetic diversity with an easy-to-control population

structure. Most methods for mapping QTLs in MPPs focus on the detection of

QTLs in single environments. Little attention has been given to mapping QTLs in

multienvironment trials (METs) and to detecting and modeling QTL-by-

environment interactions (QEIs). We present mixed model approaches for the

detection and modeling of consistent versus environment-dependent QTLs, i.e.,

QTL-by-environment interaction (QEI). QTL effects are assumed to be normally

distributed with variances expressing consistency or dependence on

environments and families. The entries of the corresponding design matrices

are functions of identity-by-descent (IBD) probabilities between parents and

offspring and follow from the parental origin of offspring DNA. A polygenic effect

is added to the models to account for background genetic variation. We illustrate

the wide applicability of our method by analyzing several public MPP datasets

with observations from METs. The examples include diallel, nested association

mapping (NAM), and multi-parent advanced inter-cross (MAGIC) populations.

The results of our approach compare favorably with those of previous studies

that used tailored methods.
KEYWORDS

multi-parent population, diallel, NAM, MAGIC, QTL-by-environment interaction,
multienvironment trial, maize, wheat
1 Introduction

Genotype-by-environment interaction (GEI) implies the differential behavior of

genotypes across a range of environmental conditions. Broadly adapted genotypes show

stable performance across environmental conditions, whereas narrowly adapted genotypes do

well under specific conditions. Adequate description and understanding of GEI patterns is

fundamental to the creation of better adapted varieties that comply with environmental and
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societal challenges. Obviously, adaptation to conditions imposed by

climate change will be a major target for many breeding programs.

GEI is a common phenomenon in many crops, and cereals are

no exception to that. Typically, a diversity panel is evaluated in a

multi-environment trial (MET) or a number of managed stress

trials and the GEI is explained in terms of marker or QTL effects

that are environment dependent. Some recent examples of this

approach using a QTL analysis in the form of a genome-wide

association analysis are Bustos-Korts et al. (2019) and Bretani et al.

(2022) in barley and Millet et al. (2016) and Shu et al. (2023) in

maize. Examples of the same approach with an emphasis on

genomic prediction are Burgueño et al. (2012); Lopez-Cruz et al.

(2015), and Jarquıń et al. (2017) in wheat and Millet et al. (2019)

and Barreto et al. (2024) in maize, whereas Cuevas et al. (2017) give

examples in wheat and maize. It is less common to use biparental

populations for the investigation of the genetic bases of GEI in the

form of QTL by environment interactions (QEI). Two somewhat

older examples are Boer et al. (2007) for maize and Mathews et al.

(2008) for wheat. All the above papers use a linear mixed model

approach or a Bayesian equivalent to model the data. For a

description of such models in relation to the modeling of GEI

and QEI, see van Eeuwijk et al. (2010); Malosetti et al. (2013), and

Van Eeuwijk et al. (2016).

The utilization of multi-parent populations (MPPs) in the

investigation of QEI offers several advantages. Compared with the

use of biparental populations in METs, the higher genetic diversity

of MPPs will increase the chance of displaying polymorphisms at

QTLs that interact with environments. In comparison with diversity

panels, the known pedigree of MPPs alleviates the problems of

population structure and minor allele frequencies. A few papers

have attempted to analyze multi-environment trials for multi-

parent populations (MET&MPP) with often QTL analyses per

environment and subsequent comparison of QTL test statistics or
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−log10(p-value) profiles. An attractive variation on this single-

environment single-response QTL analysis was given by Coles

et al. (2010) for a maize diallel design where QTLs for the

photoperiod sensitivity were mapped using an integrated response

variable, i.e., the difference between observations under long-day

and short-day conditions was analyzed (Coles et al., 2010). In a

maize NAM design, QTL effects for yield were assessed between two

weakly correlated trial locations with consideration of the genetic

covariance between environments (Garin et al., 2020). Other

examples of maize NAM and diallel MET&MPPs (Buckler et al.,

2009; Giraud et al., 2014) demonstrated QTL detection for the

average response across environments, ignoring QEI. For MAGIC

populations, Verbyla et al. (2014) present mixed model technology

to study QEI. Puglisi et al. (2021) analyzed a barley MAGIC

population in a MET for genomic prediction.

A generic statistical approach for studying QEI for any type of

MPP seems to be missing. We propose such an approach in the

form of an IBD-based mixed model framework with random QTL

effects whose stability depends on both the environment and the

family. A background polygenic effect is added that itself can be

structured again by family and environment. We illustrate our

approach in several MET&MPP cereal datasets: a maize diallel

(Coles et al., 2010), two maize NAM designs (Bauer et al., 2013;

Giraud et al., 2014; Garin et al., 2020), and a wheat MAGIC

population (Scott et al., 2021).
2 Materials and methods

2.1 General framework

Figure 1 illustrates the framework of MET&MPP analysis for

investigating QEI. The process begins with the computation of IBD
FIGURE 1

Description of framework for Identity By Descent (IBD)-based QTL analysis of Multi-Environment Trial (MET) data collected for a Multi-Parent
Population (MPP) allowing the study of QTL by environment interactions (QEI).
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probabilities using pedigree and genome information of parents and

progenies. Next, the best linear unbiased estimates (BLUEs) for

genotypic means are obtained through single-trial analysis, which

includes corrections for block and spatial effects. Subsequently, a

MET&MPP analysis is conducted using mixed model approaches to

study QEI. An important issue in the building of mixed models for

GEI and QEI in METs is the formulation of the variance–covariance

(VCOV) structure between trials (Smith et al., 2005; Boer et al.,

2007). An informal exploration of this structure is possible via the

fitting of a genotype-plus-genotype-by-environment interaction

(GGE) model and the corresponding visualization by a GGE

biplot (Yan et al., 2000; Yan and Kang, 2002). Details of each step

in Figure 1 are described below, and descriptions of the proposed

IBD-based MET&MPP analysis using mixed models for QEI are

elaborated in section 2.2 “Mixed models for IBD-based QTL

analysis of METs for MPPs”.

The entries of design matrices, representing genetic predictors

for testing QTL main effects and QEI, are derived from marker

information and have the form of expected numbers of alleles

originating from individual parents. These expected allele numbers

are simple functions of IBD probabilities between parents and

offspring. IBD probabilities can be calculated using the R package

statgenIBD (Boer and van Rossum, 2021) for a wide range of MPP

designs, whereas a Mathematica tool called RABBIT can be used for

more complex designs (Zheng, 2019). Both RABBIT and statgenIBD

employ hidden Markov models (HMM) and inheritance vectors to

calculate IBD probabilities based on the pedigree and genome

information of parents and offspring (Zheng et al., 2014, 2015;

Boer and van Rossum, 2021). In the current paper, we chose to

compute IBD probabilities at a grid of 5 cM along the genome for

the empirical MET&MPP datasets as a compromise between

mapping resolution and computation time. The exception was the

analysis of a MAGIC wheat data set for which we defined a grid at

0.5 cM.

The multi-environment phenotypes used as inputs to our

MET&MPP models are typically genotypic means for offspring

belonging to segregating families evaluated in multiple field trials.

Trial-specific genotypic means, which have been corrected for

block, row, column, and spatial effects, are calculated as best

linear unbiased estimators (BLUEs). The R package SpATS

(Rodriguez-Alvarez et al., 2018) offers a convenient and efficient

way to convert the trial data at plot level into vectors of adjusted

genotypic means. Similarly, the R package statgenSTA (Rossum

et al., 2021b) can be employed to compute genotypic BLUEs per

trial together with corresponding standard errors.

To explore the heterogeneity of genotypic variances and

correlations across trials, we performed a GGE biplot analysis

(Yan et al., 2000). The GGE biplot is a rank 2 principal

component fit to the genotype-by-trial table of BLUEs in which

the first axis is closely related to the genotypic main effects whereas

the second axis shows GEI effects. The R package statgenGxE

(Rossum et al., 2021a) was used to create the GGE biplots. These
Frontiers in Plant Science 03
plots can be helpful to investigate whether the contributions of

individual QTLs to the genetic correlations between trials align with

the overall correlations.
2.2 Mixed models for IBD-based QTL
analysis of METs for MPPs

2.2.1 Models for QTL effects
Four QTL models are proposed differing in the effect types at

a putative QTL in terms of stability across families and

environments: consistent across both environments and families

(environment-consistent and family-consistent, EC&FC

QTL), environment-specific and family-consistent (ES&FC QTL),

environment-consistent and family-specific (EC&FS QTL), or

environment-specific and family-specific (ES&FS QTL). For

MAGIC populations, we consider the consistency and specificity

of QTL effects only in relation to the environments.

We elaborate these four QTL models for a MET&MPP with C

crosses (or families) derived from P parents across J environments

or trials; ncj denotes the number of observations (genotypic BLUEs)

for the c-th family in the j-th environment; the total number of

observations from the c-th family across all J environments is

ojncj = nc·; the total number of observations in the j-th

environment across all C families is ocncj = n·j; so the total

number of observations in the MET&MPP is ojocncj =ocnc· =

ojn·j = N . In all model descriptions, we present later, matrices (and

vectors) are presented in bold font and random terms are

underlined. The general mixed model for a single-locus QTL

model at the q-th genomic position can be expressed as:

Y = Xb + Zquq + g + e

Y is the N � 1 column vector for all N observations in a

MET&MPP. The fixed part, Xb , models effects for families and

environments and their interactions. The structure of the design

matrix for the random QTL effects, Zq, and the vector of QTL

effects, uq, is determined by the effect type at the QTL. The four

QTL models have different design matrices Zq and QTL effect

vectors uq and will be described with superscripts to indicate the

matrix dimensions to help distinguish the model structures.

In the EC&FC QTL model, the QTL effect at the q-th genomic

position is assumed to be stable across environments and families,

which is comparable with the generic IBD-based mixed model

approach to map additive QTLs in previous studies (Li et al., 2021,

2022):

Z(N�P)
q = ½p (N�1)

q,1 … p (N�1)
q,k … p (N�1)

q,P �,

u(P�1)
q = ½aq,1 … aq,k … aq,P�T ∼  MVN(0,   IPS

2
q)

(EC&FC QTL model)
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Z(N�P)
q is a N � P design matrix that can be partitioned into P

column vectors. Each of the P column vectors is a N � 1 column

vector, p (N�1)
q,k , containing expected numbers of allelic copies

associated with the k-th (k = 1, 2,…,   P) parent for all N

observations. The P � 1 column vector u(P�1)
q contains element

aq,k representing the QTL effect associated with the k-th parent. The

variance of u(P�1)
q is IPS2

q, where IP is the P-dimensional identity

matrix and S2
q is the genetic variance for the putative QTL, implying

a homogeneous VCOV structure for the QTL effect across all

environments and families.

In the ES&FC QTL model, the QTL effect is defined as being

unstable across J environments due to QEI but consistent across C

families. The design matrix and the QTL effects become:

Z(N�PJ)
q = ⊕J

j=1Z
(n·j�P)
q,j

u(PJ�1)
q = u(P�1)

q,1

� �T
… u(P�1)

q,j

� �T
… u(P�1)

q,J

� �T
� �T

∼MVN(0,⊕J
j=1IPS

2
q,j)

(ES&FC QTL model)

Z(N�PJ)
q is a N � PJ design matrix that can be split into J

diagonal components. Each of these J components is a n·j � P

design matrix, Z
(n·j�P)
q,j , whose entries correspond to an n·j � P sub

matrix of Z(N�P)
q , i.e., the entries corresponding to the j-th

environment in Z(N�P)
q are copied to Z

(n·j�P)
q,j , with n·j being the

number of observations in the j-th environment. The vector of

effects u(PJ�1)
q is a PJ � 1 column vector that can be partitioned into

J sub vectors. Each of the J sub vectors is a P � 1 column vector

u(P�1)
q,j that contains the QTL effects of the P parents in the j-th

environment with IPS2
q,j being the environment-specific QTL

variance. The ⊕ symbol stands for a direct sum (Schott, 2016).

In the EC&FS QTL model, parental QTL effects are specified

within each of C biparental families and therefore vary between

families, while being stable across all J environments. The design

matrix for the QTL effects and the vector of QTL effects are defined

as follows:

Z(N�2C)
q = ⊕C

c=1½p (nc·�1)
q,P1c

  p (nc·�1)
q,P2c

�

u(2C�1)
q = ½aq,P11   aq,P21 … aq,P1c   aq,P2c

… aq,P1C   aq,P2C �T eMVN(0,⊕C
c=1I2S

2
q,c)

(EC&FS QTL model)

Z(N�2C)
q is aN � 2C design matrix that can be partitioned into C

diagonal components. Each of these components contains two nc :
�1 column vectors, p (nc·�1)

q,P1c
and p (nc·�1)

q,P2c
, whose elements indicate

the expected numbers of allele copies associated with the two

parents of that family, P1c and P2c. The random QTL effects

u(2C�1)
q form a 2C � 1 column vector associated with the pairs of

parents across the families, and for the c-th family, the variance of

the QTL effects is I2S2
q,c.

In the ES&FS QTL model, the QTL effects are stable across

neither environments nor families, but both are environment and
Frontiers in Plant Science 04
family specific. The ES&FS QTL model is established by merging

the ES&FC and EC&FS QTL models. The design matrix for the

QTL effects and the corresponding vector of QTL effects is:

Z(N�2CJ)
q = ⊕J

j=1 ⊕
C
c=1 p (ncj�1)

q,P1c
  p (ncj�1)

q,P2c

h i
,

u(2JC�1)
q = u(2C�1)

q,1

� �T
… u(2C�1)

q,j

� �T
… u(2C�1)

q,J

� �T
� �T

∼MVN(0,⊕J
j=1

⊕C
c=1 I2S

2
q,j,c)

(ES&FS QTL model)

Z(N�2CJ)
q is a N � 2CJ design matrix with JC diagonal

components. Each of these components possesses a pair of ncj � 1

column vectors, p (ncj�1)
q,P1c

and p (ncj�1)
q,P2c

, whose structure resembles that

in the EC&FS QTL model, but now the vectors are designated for the

j-th environment, where ncj is the number of observations in the c-th

family and j-th environment. Remember thatoJ
j=1oC

c=1ncj = N . The

2JC � 1 column vector u(2JC�1)
q can be partitioned into J column

vectors with each column vector having the form u(2C�1)
q,j , comparable

with that in the EC&FS QTL model. For the j-th environment, the

variance of the QTL effects across the C families can be written as

⊕C
c=1 I2S2

q,j,c. QTL variances are heterogeneous and depend on

environment and family simultaneously.

2.2.2 Models for polygenic effect
The QTL models above can be combined in single- or multi-QTL

models with a structured polygenic effect, g . We write for the VCOV of

g , Sg = SMET ⊗SMPP , with SMPP defined by the relations between the

families and SMET by the relations between the environments. For SMPP

, we allowed for identity, i.e., homogeneity across families (SMPPid ),

heterogeneity across families (SMPPidh ), or a population structure as a

marker-based kinship matrix (SMPPkin ). For SMET , we assumed identity

or homogeneity of genetic variance across environments and no genetic

correlation between environments (SMETid
), heterogeneity of genetic

variance across environments and no genetic correlation (SMETidh
), and

an unstructured model with environment-specific genetic variances

and correlations (SMETus
). The combination of three structure models

for SMPP and three structure models for SMET generates nine VCOV

structures for the polygenic background effect. However, in practice for

our data, the polygenic model that worked best in all cases was Sg =

SMETus
⊗SMPPidh .
2.2.3 Model selection and genome-wide
QTL scans

To conduct genome-wide QTL scans, several strategies can be

employed. We adopted the following protocol. Based on preliminary

analyses, we first chose the VCOV model for the polygenic effects in

all genome-wide scans Sg = SMETus
⊗SMPPidh . We then conducted

four series of full genome scans, one for each type of QTL (EC&FC,

ES&FC, EC&FS, and ES&FS). Within each series of scans, we

performed significance tests for QTLs using likelihood ratio tests

(LRT) for single-variance components. The corresponding p-value

followed from an approximation of the test statistic by a mixture of c2
frontiersin.org
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distributions with 0 and 1 degrees of freedom (Self and Liang, 1987).

A conservative Bonferroni-corrected significance threshold was used

at a genome-wide level of 0.05. Within a series of scans for a

particular QTL type, in the first round, we selected the most

significant QTL with the highest −log10(p-value) as a cofactor for a

second round. In this second round, an exclusion window of 20 cM

around the cofactor was defined in which no tests for QTLs were

performed. This is to avoid collinearity problems. The process of

identifying cofactors was repeated in subsequent rounds of scans until

no further QTLs were found and the −log10(p-value) profile

stabilized. This procedure can be thought of as a forward

regression variable selection procedure. For each particular type of

QTL (EC&FC, ES&FC, EC&FS, and ES&FS), a multi-QTLmodel was

produced that comprised all of the QTLs identified in the series of

scans. The QTLs as appearing in the four final multi-QTL models

corresponding to the four specific QTL types were then combined

within one model. When in this combined model QTLs of different

types (EC&FC, ES&FC, EC&FS, and ES&FS) coincided with respect

to their position, we assessed for that position the nature of the QTL

by comparing AIC values (Akaike, 1974) for models with different

formulations for the QTL effect. The model with the smallest AIC

value then determined the nature of the QTL effect.
2.3 Data

To test our approach, we collected several empirical

MET&MPP datasets (Table 1) including a wheat MAGIC
Frontiers in Plant Science 05
population, a maize diallel, and two maize NAM designs. The

wheat MAGIC population was phenotyped in two field trials in the

UK in 2017 and 2018. The maize diallel designs were screened in

managed stress trials, whereas the two maize NAM designs were

screened across several geographic locations in the EU. In this

paper, we did not distinguish the two types of trials and use the term

“environments” to describe the trial conditions.

2.3.1 Maize diallel
In the maize diallel design, four biparental families were created

by crossing each of two temperate inbred parents to each of two

photoperiod-sensitive tropical parents (Coles et al., 2010).

Recombinant inbred lines (RILs) were screened under long-day

(summer seasons) and short-day (winter seasons) conditions for

photoperiod-related traits, e.g., days to silking (DTS) and anthesis

(DTA), whose measurements were converted to growing degree days

(GDDTS and GDDTA) to account for the influence of temperature.

In the previous study (Coles et al., 2010), QTL mapping for

photoperiodic responses was performed by calculating the

difference in responses between summer and winter conditions. In

addition, QTLmapping for the separate conditions was performed by

the tool MCQTL 4.0 (Jourjon et al., 2005).

2.3.2 Maize NAM, dent and flint panels
Two maize NAM designs, a flint panel and a dent panel, were

taken from the maize EU-NAM project (Bauer et al., 2013; Giraud

et al., 2014; Lehermeier et al., 2014). In the flint panel, 11 doubled

haploid (DH) families were derived from the central parent UH007
TABLE 1 Overview of MET&MPP data sets. Structure, size, traits, nature of phenotypic data, and reference to earlier data presentations and analyses.

MPPs Size Traits METs Reference

569
Growing degree days to silking

(GDDTS) and anthesis (GDDTA)
Summer and winter seasons Coles et al., 2010

811
Dry matter yield (DMY), plant

height (PH), days to
silking (DtSILK)

Six geographic locations
across EU

Giraud et al., 2014; Garin
et al., 2020

841
Dry matter yield (DMY), plant

height (PH), days to
silking (DtSILK)

Four geographic locations
across EU

Giraud et al., 2014

504

Grain yield (GY), grain protein
content (GPC), height to flag leaf

base (HFLB), flag leaf to ear
distance (FLED)

Two year at same UK location.
Environment 1 = 2016-2017

season. Environment 2 = 2017-
2018 season

Scott et al., 2021
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crossed with 11 peripheral parents. Multiple traits such as dry matter

yield (DMY), days to silking (DtSILK), and plant height (PH) were

measured across six locations in the EU, namely, Wadersloh

(Germany), Ploudaniel (France), La Coruña (Spain), Einbeck

(Germany), Roggenstein (Germany), and Eckartseier (Germany). In

the dent panel, 10 families were derived from the central parent F353

which was crossed with 10 peripheral parents. The same traits as

measured in the flint panel were measured again but across four

locations only, namely, Wadersloh (Germany), Mons (Germany),

Einbeck (Germany), and Roggenstein (Germany).

In previous work by Giraud et al. (2014), combined linkage and

linkage disequilibrium mapping was performed for both NAM

panels, whereas Garin et al. (2020) used the NAM flint panel as

an example for a QEI study using only the Roggenstein and La

Coruña locations.

2.3.3 Wheat MAGIC
Construction, genotyping, and phenotyping of the bread wheat

(Triticum aestivum L.) cultivars in the NIAB Diverse MAGIC

population was previously described (Scott et al., 2021). Briefly,

16 northwestern wheat cultivars were selected based on genetic

diversity as founders. These were inter-crossed using a funnel

design scheme across four generations, with the outputs of the

crossing funnel selfed over six generations to produce 504

recombinant inbred lines (RILs). The founders were genotyped

via exome capture and the RILs via whole-genome low-coverage

sequencing, allowing 1.1 M high-quality single-nucleotide

polymorphisms (SNPs) to be called in the RILs via imputation

(Scott et al., 2021). The populations were phenotyped for

agronomic traits in two field trials conducted in the United

Kingdom in 2017 and 2018, as described by Scott et al. (2021).

Although genome wide scans for QEI were performed for all traits

recorded in both years, in this paper we will focus on QTLs close to

the long-day photoperiod response locus Photoperiod-B1 (Ppd-B1)

on chromosome 2B for the traits grain yield (GY), grain protein

content (GPC), flag leaf to ear distance (FLED), and height to flag

leaf base (HFLB). Earlier QTL analyses on the same data were

performed by Scott et al. (2021) for all trait-by-year combinations,

where neither QEI issues nor allelic differences between parents

were addressed.
3 Results

3.1 Detecting QEI from QTL models

We present the results of QEI analysis for the maize diallel, two

maize NAMMET&MPPs, and for the NIAB Diverse wheat MAGIC

population. For the maize diallel and NAM populations, we

emphasize genome-wide QTL analyses. We also examined the

GGE biplot to explore the genotypic correlations between the

environments. Environments with weak correlations and

therefore high GEI will reveal underlying QEI effects. We

inspected environment-specific QTLs to see whether their effect
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profiles corresponded to the genotypic correlations observed

between the environments. For the wheat MAGIC, we

concentrated on the interpretation of allele effect profiles for a

pleiotropic QTL on chromosome 2B, more specifically the region

around the Ppd-B1 locus. We compared our findings with previous

studies that employed different methods to investigate QEI.
3.2 Maize diallel design for days to silking
and anthesis

Two flowering-related traits, growing degree days to silking

(GDDTS) and growing degree days to anthesis (GDDTA), were

measured in the summer and winter seasons to evaluate the

photoperiod sensitivity under long-day and short-day conditions.

For both traits, the correlations between summer and winter

conditions were weak (Figures 2A, B).

In the QEI analysis, we found that nearly half of the identified

QTLs were environment-specific QTLs for both GDDTS and

GDDTA. For the trait GDDTA (Figure 2A), in total 10 QTLs

were detected, among which six QTLs were environment specific.

Five of the six environment-specific QTLs were comparable with

QTLs for photoperiodic responses (calculated as differences of

responses between the two seasons) from a previous study (Coles

et al., 2010). Particularly strong environment-specific QTLs on

chromosomes 8, 9, and 10 were identified with contrasting

parental effects in especially the summer season. The same

summer season, QTLs were identified by Coles et al. (2010) using

single-environment analysis. As for the trait GDDTS (Figure 2B),

we identified six environment-specific QTLs out of a total of 13

QTLs, which were in accordance with the QTLs for photoperiodic

responses identified by Coles et al. (2010) with strong effects under

summer conditions.

For both traits GDDTA and GDDTS, a few environment-

consistent QTLs were estimated with specific effects within

families (EC&FS QTLs), which implied QTL-by-family

background interactions. We did not identify ES&FS QTLs for

GDDTA and GDDTS, but analysis of other traits, such as plant

height (PH), ear height (EH), and total leaf number (TLN) in this

maize diallel MET&MPP, revealed some ES&FS QTLs (results not

shown here).
3.3 Maize NAM design (dent panel) for dry
matter yield, days to silking, and
plant height

The NAM dent panel of maize was screened for important traits

including dry matter yield (DMY), plant height (PH), and days to

silking (DtSILK) across four locations in the EU. The GGE plots

(Figure 3) depict varying levels of genetic correlations between the

environments. For DMY, the environments Roggenstein and Mons

exhibited a weak correlation, whereas the environments Einbeck

and Wadersloh displayed a highly positive correlation. For PH, the
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Roggenstein environment stood apart with a weak correlation to the

remaining environments. Regarding DtSILK, the environments

Wadersloh, Mons, and Einbeck formed a cluster with a weak

correlation to Roggenstein.

In our QEI analysis, we successfully identified several

environment-specific QTLs for each trait. For instance, our

methodology detected five environment-specific QTLs out of a

total of 13 QTLs for the DMY trait (Figure 3A). The effect

profiles of these five environment-specific QTLs exhibited strong

variations between the two weakly correlated environments, Mons

and Roggenstein. In a separate study, Giraud et al. (2014) conducted

combined linkage disequilibrium linkage analysis (LDLA) using

adjusted means across all environments. The environment-

consistent QTLs identified through our QEI analysis were

comparable with those QTLs on chromosome 1, 3, 6, and 7

reported by Giraud et al. (2014). However, it is worth noting that

our study revealed environment-specific QTLs on chromosomes 1,

2, and 4 that were not previously reported by Giraud et al. (2014).

For the PH trait, we found two environment-specific QTLs out of a

total of 13 QTLs (Figure 3B), and these QTLs displayed differential

effect profiles between the two weakly correlated environments,

Roggenstein and Wadersloh. Regarding the DtSILK trait, our

analysis identified five environment-specific QTLs out of a total
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of 16 QTLs (Figure 3C), which exhibited distinct effect profiles

between Roggenstein and the other environments.

For all traits, we detected QTLs with consistent effects across

environments that could be either consistent across families as well

as specific to families (EC&FC and EC&FS QTLs), but no

environment-specific and family-specific (ES&FS) QTLs were

found for any of the traits.
3.4 Maize NAM design (flint panel) for dry
matter yield, days to silking and
plant height

The flint panel of the maize NAM design was screened for

DMY, PH, and DtSILK across six locations in the EU. For the DMY

trait (Figure 4A), the GGE biplot reveals three clusters: La Coruña,

Roggenstein, and the remaining environments. Among the detected

nine QTLs, two QTLs on chromosomes 2 and 6 were found to be

specific to certain environments. These environment-specific QTLs

were previously studied by Garin et al. (2020), who assessed QEI

between the weakly correlated environments La Coruña and

Roggenstein. Our results corroborate Garin’s work by confirming

an environment-specific QTL on chromosome 6 with significant
B

A

FIGURE 2

Results of QEI analysis of maize diallel. (A) Analysis for growing degree days to anthesis (GDDTA). (B) Analysis for growing degree days to silk
(GDDTS). On the left, GGE biplot for exploring genetic correlations between environments. Top right shows the −log10(p) profile for QTL detection
with superimposition of QTL allele effect types indicating consistency of allele effects across environments and families. Bottom right shows allele
effect profiles with alleles being either consistent or inconsistent across environments and/or families. Environment-consistent QTLs show the same
color and intensity across environments. Environment-specific QTLs show environment specific colors and/or intensities. Family consistent QTLs
show a parent specific color and intensity that does not depend on the family and that is either consistent across environments or particular to each
environment. Family-specific QTLs show colors and/or intensities for parents that change across families.
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B

C

A

FIGURE 3

Results of QEI analysis of maize NAM dent design. (A) Dry matter yield (DMY), (B) Plant height (PH). (C) Days to silk (DtSILK). Interpretation of plots as
in Figure 2.
B

C

A

FIGURE 4

Results of QEI analysis of maize NAM flint design. (A) dry matter yield (DMY), (B) plant height (PH), and (C) days to silk (DtSILK). Interpretation of plots
as in Figure 2.
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effects in the Roggenstein environment. The QEI signal identified by

Garin et al. (2020) on chromosome 5, displaying a relatively weak

signal, was not detected in our analysis across the six environments.

We discovered an additional environment-specific QTL on

chromosome 2, which exhibited different effect profiles between

Eckartseier and the other environments. This particular QTL was

not reported in the study by Garin et al. (2020), which only

considered the locations of Roggenstein and La Coruña.

For PH (Figure 4B), two QTLs were family-specific while being

environment-consistent (EC&FS). For DtSILK (Figure 4C), we even

found four such EC&FS QTLs. Furthermore, for this trait, we also

identified two QTLs that were both environment- and family-

specific (ES&FS).
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3.5 NIAB diverse wheat MAGIC

Outcomes of genome wide QTL scans for two grain traits (GY,

GPC) and two plant height related traits (HFLB, FLED) are

presented in Figure 5. The most remarkable result of these scans

is that on chromosome 2B, around 62 Mb, QEI was detected for all

four traits with the direction of the allelic effect tending to reverse

for the majority of founder alleles between the two seasons

(Table 2). Notably, founder Kloka showed the most extreme QEI

at this locus for all four traits. With respect to the two grain-related

traits, the Kloka allele showed a strong negative effect for GY in

2016–2017, and a light negative effect in 2017–2018, whereas for

GPC, the Kloka allele effect was strongly positive in 2016–2017 and
FIGURE 5

Results of QEI analysis in wheat MAGIC for the traits grain yield (GY), grain protein content (GPC), flag leaf to ear distance (FLED), and height to flag
leaf base (HFLB).
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lightly positive in 2017–2018. Therefore, a strong negative

correlation could be observed between the Kloka allele effects for

GY and GPC at this locus, as would be expected from well-

established trade-offs between yield and protein content in wheat

(e.g., Scott et al., 2021; White et al., 2022). For the plant height traits,

the QTL effect from Kloka at this locus on chromosome 2B reduced

HLFB across both seasons, but very strongly in 2016–2017 and

somewhat in 2017–2018. For FLED, the Kloka allele effect was

moderately positive in 2016–2017 and somewhat negative in 2017–

2018. Previous studies show that the long-day photoperiod response

locus Photoperiod-B1 (Ppd-B1) is located at this approximate

genome position and that it affects flowering time in the NIAB

Diverse MAGIC population (Scott et al., 2021). Allelic effects at

Ppd-B1 are known to be controlled by copy number variation

(CNV) in the underlying gene, whereby wild-type photoperiod-

sensitive Ppd-B1b alleles are associated with a haploid CNV of 1,

whereas photoperiod-sensitive Ppd-B1a alleles that result in earlier

flowering are associated with elevated copy number variation (e.g.,

CNV = 2 in the cultivar Récital, CNV = 3 in Sonora64, and CN0V =

4 in Chinese Spring) (Dıáz et al., 2012). To further determine

whether allelic variation at Ppd-B1may underpin the environment-

specific interactions at this genomic region for GY, GPD, HFLB,

and FLED, we assessed Ppd-B1 CNV in the 16 NIAB Diverse
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MAGIC founders. Using quantitative TaqMan® assay, we found

that whereas 14 founders carried one copy (indicative of wild-type

Ppd-B1b alleles), two founders had increased CNV indicative of

photoperiod insensitive Ppd-B1a alleles associated with early

flowering: Kloka (CNV = 3) and Maris Fundin (CNV = 4).
4 Discussion

4.1 QEI analysis by assessing the stability of
QTL effects across families
and environments

The MET&MPP analysis employs IBD-based mixed model

approaches to detect QEI by testing various types of QTL effects

across diverse environments and families. Previous studies have

discussed the advantages of utilizing multiallelic IBD markers

compared with biallelic identity-by-state (IBS) markers (Jurcic

et al., 2021; Li et al., 2021), as well as the distinction between

modeling QTL terms as random or fixed effects (Boer et al., 2007;

Wang et al., 2022). In our current study, we propose fitting

functions of IBD probabilities as genetic predictors within the

MET&MPP analysis. This approach enables the estimation of
TABLE 2 Heat plot for parental allele effects estimated for four traits in wheat MAGIC in two environments (2016–2017, 2017–2018) at chromosome
2B close to PpdB1 locus.

Season

Trait

GY GPC HFLB FLED

2016–
2017

2017–
2018

2016–
2017

2017–
2018

2016–
2017

2017–
2018

2016–
2017

2017–
2018

Parent

Banco −0.03 0.06 0.01 −0.07 −0.18 −0.46 0.08 −0.10

Bersee −0.18 0.01 −0.02 0.00 0.48 −0.03 −0.08 0.19

Brigadier 0.14 −0.06 0.00 0.10 0.75 1.29 0.23 0.02

Copain 0.10 0.01 −0.02 −0.05 1.54 0.57 −0.33 0.20

Cordiale 0.12 0.00 −0.15 0.02 −0.47 −0.48 0.17 −0.25

Flamingo −0.03 −0.03 0.19 0.00 0.54 −0.47 −0.08 0.05

Gladiator 0.00 0.02 0.04 −0.04 −0.06 0.53 −0.16 0.00

Holdfast 0.02 −0.01 0.24 −0.02 −0.90 0.85 0.20 −0.12

Kloka −0.44 −0.02 0.35 0.09 −4.11 −1.51 0.64 −0.22

Maris Fundin −0.01 0.00 0.01 −0.02 −0.47 −1.30 −0.27 0.01

Robigus 0.01 0.03 −0.01 −0.04 0.32 −0.12 −0.40 0.10

Slejpner −0.01 −0.02 −0.12 0.06 −0.03 0.55 0.21 0.05

Soissons 0.10 0.00 −0.23 −0.01 0.63 0.58 −0.12 0.12

Spark 0.12 −0.06 −0.11 0.13 0.30 −0.27 0.38 −0.28

Steadfast 0.04 0.03 −0.09 −0.09 0.93 −0.08 −0.31 −0.02

Stetson 0.03 0.04 −0.09 −0.06 0.74 0.35 −0.16 0.27
The color scales are defined per trait to run from strongly negative (deep blue), to moderately negative (light blue), neutral (white), moderately positive (light red), to strongly positive (deep red).
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multiallelic QTL effects with respect to parent origins, considering

the expected numbers of allele copies from each parent (Wei and

Xu, 2016; Li et al., 2021). In contrast to modeling fixed QTL effects

in the MET&MPP analysis, treating QTL effects as random terms

addresses the issue of overfitting the number of genetic parameters,

particularly in complex MET&MPPs involving a large number of

parents, families, and environments. Our QTL modeling approach

allows for defining the nature of random QTL effects, such as

EC&FC, ES&FC, EC&FS, and ES&FS, by modeling combinations of

homogeneity or heterogeneity of genetic structures corresponding

to both environments and families.

EC&FC QTLs can be regarded as the most stable QTLs in the

MET&MPP analysis. EC&FC QTLs are comparable with those

QTLs identified by an analysis on genotypic means across

environments (Giraud et al., 2014; Garin et al., 2020). EC&FC

QTLs identified in MET&MPP analyses at particular genomic

positions will in general agree with QTLs for the same trait

identified in single-environment analyses, like those in Coles et al.

(2010), but there is no guarantee that all the QTLs identified in

simpler types of analyses will be reproduced by a more complex

MET&MPP analysis. EC&FC QTLs tend to be detected with higher

power and resolution in MET&MPP analysis than when analyzing

separate environments or a genotypic main effect across

environments, as the joint analysis of all environments increases

the sample size for mapping stable QTLs.

QTLs detected in separate environments with differential

mapping profiles are likely to be detected as ES&FC QTLs by

MET&MPP analysis. Parental effect profiles of ES&FC QTLs across

environments tend to show differences between weakly correlated

environments, whereas highly and positively correlated

environments rarely convey QEI signals. Positions for ES&FC

QTLs in our MET&MPP analyses coincided with QTLs found by

a simpler single trait/environment QTL procedure in which the

response variable was the difference between two environments,

such as in the maize diallel MPP (Coles et al., 2010). However, we

remark that with small population sizes, weak QEI signals that

occur in a limited number of environments may not be detected as

these signals are diluted by the noise in all those environments in

which the QTL did not show an effect. For example, in the maize

NAM flint panel (811 genotypes across 6 environments), the QEI

signal on chromosome 5 specific to the environments La Coruña

and Roggenstein (Garin et al., 2020) disappeared in our MET&MPP

analysis on the full set of six environments, but this QTL was indeed

identified when the MET&MPP analysis was restricted to La

Coruña and Roggenstein.

Defining QTL effects to vary across families allows the

evaluation of QTL-by-family interactions (QFI) (Jannink and

Jansen, 2001; Blanc et al., 2006; Han et al., 2016). For family-

specific QTLs that are stable across environments (EC&FS), simple

digenic interaction can be investigated for pairs of markers by two-

dimensional genome scans in families. Such two-dimensional QTL

scans for epistatic interactions require large family sizes for

sufficient detection power. For the detection of ES&FS QTLs with

family-specific effects that are unstable across environments, even

larger families are required. As an illustration of this point, we

detected very few ES&FS QTLs in the maize diallel design, with
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around 140 genotypes per family over two environments, and

hardly any ES&FS QTL in the maize NAM design, with around

80 genotypes per family.
4.2 Pleiotropic effects of QTL at Ppd-B1 in
the NIAB Diverse MAGIC population

In a previous paper (Scott et al., 2021), it was shown that the

photoperiod response locus Ppd-B1 affects the time taken to reach

key developmental stages in the NIAB Diverse MAGIC population,

including flag leaf emergence (growth stage 39, GS39), ear

emergence (GS55), and flowering time (GS65). Under field

conditions, the increasing day length across spring and summer

help trigger transition from vegetative to reproductive plant growth

and rate of progress across all subsequent developmental stages.

Thus, allelic variation at Ppd-B1 helps define the timepoints that key

development stages are exposed to the prevailing environmental

conditions. Here, we identified QEI at a pleiotropic QTL controlling

multiple plant height and grain traits at the Ppd-B1 locus, finding

QTL effects from the founder Kloka to be both notably strong, and

affected by environment. Kloka was unique among the NIAB

Diverse MAGIC founders in that it carried three copies of the

Ppd-B1 gene, predictive of an early flowering photoperiod

insensitive Ppd-B1a allele. Interestingly, no QTL for total plant

height was identified in the population at Ppd-B1 (Scott et al., 2021).

Together, these results indicate that Ppd-B1a alleles promote

flowering and that whereas overall height is not affected, under

some growth environments, the Kloka photoperiod-insensitive

Ppd-B1a allele results in a shift in plant height ratios between the

upper and lower stems and is associated with effects on final grain

yield and protein content. In environment 1, height to flag leaf base

(HFLB) showed a strong decrease whereas height from flag leaf to

ear base (FLEB) exhibited a marked increase, whereas in

environment 2 the effects of the Kloka Ppd-B1a allele were much

reduced. While the two field trials investigated here were located on

the same farm in the UK, analysis of weather data has shown that

both years were unusual compared with historical data across the

preceding 56 years: environment 1 was characterized by extreme

high temperatures and drought in the developmental stages before

anthesis (March and April), and extreme precipitation during grain

filling, whereas environment 2 was characterized by extreme

terminal heat and drought during the grain filling stage (June and

July) (Fradgley et al., 2023). Thus, the combined effects of the early

flowering Kloka Ppd-B1a allele in environment 1 would have led to

earlier development of the reproductive meristem, stem extension,

and mid-canopy emergence during extreme temperatures and low

precipitation. As temperature was unusually high throughout

anthesis and start of grain filling (May–June) in both test

environments, and subsequent grain filling stages in environment

1 took place under average temperatures, it is not likely that the

known negative impact of high temperatures around anthesis and

grain filling on wheat yield (e.g., Djanaguiraman et al., 2020) are the

cause of reduced yield and high grain protein content in

environment 1. Interestingly, analysis of CNV at Ppd-B1 genes in

tetraploid wheat show that the photoperiod-insensitive Ppd-B1b
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allele results in increased spikelet number per ear (Arjona et al.,

2018). This suggests that the pronounced negative effect of allelic

variation at Ppd-B1 on yield in environment 1 may have been due to

earlier exposure of each developmental stage to the extreme heat

and drought conditions across the stem extension phases across

which final spikelet number is determined in the shoot apical

meristem as it reaches the terminal spikelet phase (as well as

possible impacts of changed stem length ratios on later

development during grain filling).

In addition to Kloka, the only other founder to have increased

Ppd-B1 CNV was Maris Fundin, predicted to carry four copies via

TaqMan®. While increased CNV is associated with early flowering

photoperiod-insensitive Ppd-B1a alleles in wheat (Dıáz et al., 2012;

Würschum et al., 2015), other factors may influence the allelic effect.

For instance, previous characterization of the photoperiod-insensitive

Ppd-B1a allele in Chinese Spring found that it carries four tandemly

duplicated copies of the gene: three intact and one truncated (Dıáz

et al., 2012). Indeed, analysis of three sets of near isogenic lines (NILs)

in which photosensitive Ppd-B1a alleles from either Chinese Spring

(CNV = 4), Sonora64 (CNV = 3), or Récital (CNV = 2) had been

introgressed into a Paragon genetic background found the insensitive

allele from Sonora64 to be significantly earlier flowering than that

from Chinese Spring (Dıáz et al., 2012). This highlights that whereas

increased copy number results in an early flowering allele, the allelic

effect is not wholly dependent on the number of copies of the genes

present and that functionality of the copies present also plays a role.

Indeed, whereas we found the NIAB Diverse MAGIC founder Maris

Fundin to have four copies of Ppd-B1, analysis of allelic effects found

that it did not have as strong an effect on the four target grain and

plant height traits compared with the Kloka allele (CNV = 3). Surveys

of >1,100 global wheat varieties (Dıáz et al., 2012; Kane et al., 2013;

Würschum et al., 2015) finds that the occurrence of cultivars with

four copies of Ppd-B1 is very rare, having previously been identified in

only a limited number of Australian cultivars with pedigree links to

Chinese Spring (Kane et al., 2013). Comparison of the pedigree of

Maris Fundin (Capelle Desprez × [Vilmorin-29 × Vogel-8058]) ×

TJB-16 (Fradgley et al., 2019), with cultivars previously assayed for

Ppd-B1 CNV, did not enable insight into the parental donor of the

Maris Fundin CNV. However, collectively our results indicate that

while the Maris Fundin allele characterized by the presence of four

Ppd-D1 copies likely confers a photoperiod-insensitive Ppd-B1a

allele, its effect is not as strong as the CNV = 3 Kloka allele

identified here.
4.3 Conclusion

We introduced a general framework for studying QEI in METs

for MPPs. The framework creates design matrices for QTL effects

starting from IBD probabilities between parents and offspring for any

kind of MPP. The IBD probabilities are combined with a standard

procedure for creating factorial interactions between quantitative

(IBD for genomic position) and qualitative (environment, family)

covariates. In this way, four types of design matrices are produced

that correspond to four types of QTL effects: EC&FC, ES&FC,

EC&FS, and ES&FS. The effects are assumed to come from normal
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distributions. Following up on the definition of the QTL models, a

relatively simple stepwise protocol is followed to arrive at multi-QTL

models with mixtures of QTL effect types at the different loci. We

illustrated with various examples the power of our approach to dissect

the genetic basis of GEI in any kind of MPP.
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