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Introduction: Fingered citron slices possess significant nutritional value and

economic advantages as herbal products that are experiencing increasing

demand. The grading of fingered citron slices plays a crucial role in the

marketing strategy to maximize profits. However, due to the limited adoption

of standardization practices and the decentralized structure of producers and

distributors, the grading process of fingered citron slices requires substantial

manpower and lead to a reduction in profitability. In order to provide

authoritative, rapid and accurate grading standards for the market of fingered

citron slices, this paper proposes a grading detection model for fingered citron

slices based on improved YOLOv8n.

Methods: Firstly, we obtained the raw materials of fingered citron slices from a

dealer of Sichuan fingered citron origin in Shimian County, Ya'an City, Sichuan

Province, China. Subsequently, high-resolution fingered citron slices images

were taken using an experimental bench, and the dataset for grading detection

of fingered citron slices was formed after manual screening and labelling. Based

on this dataset, we chose YOLOv8n as the base model, and then replaced the

YOLOv8n backbone structure with the Fasternet main module to improve the

computational efficiency in the feature extraction process. Then we redesigned

the PAN-FPN structure used in the original model with BiFPN structure to make

full use of the high-resolution features to extend the sensory field of the model

while balancing the computation amount and model volume, and finally we get

the improved target detection algorithm YOLOv8-FCS.

Results: The findings from the experiments indicated that this approach

surpassed the conventional RT-DETR, Faster R-CNN, SSD300 and YOLOv8n

models in most evaluation indicators. The experimental results show that the

grading accuracy of the YOLOv8-FCS model reaches 98.1%, and the model size

is only 6.4 M, and the FPS is 130.3.
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Discussion: The results suggest that our model offers both rapid and precise

grading for fingered citron slices, holding significant practical value for promoting

the advancement of automated grading systems tailored to fingered citron slices.
KEYWORDS
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1 Introduction

Fingered citron (citrusmedical. Var. Sarco-dactylisSwingle), a plant

of the genus Citron in the family Rutaceae, is named because its fruit

petals are shaped like fingers, resembling the hand of the Buddha, and

is also known as Bergamot, bergamot citron, miro, and longevity

oranges, which is one of the major traditional Chinese medicinal herbs

in China (Wang et al., 2020). The Pharmacopoeia of the People’s

Republic of China has included fingered citron since the 1963 edition,

and it has been included until now (Zhang et al., 2018). Fingered citron

has a long history of medicinal use. The fruit is used as medicine, which

has the effect of regulating the flow of Qi and stopping vomiting,

harmonizing the stomach and spleen, eliminating food and resolving

phlegm (Luo et al., 2020). Modern medicine is even more research has

proved that fingered citron has antidepressant, antibacterial, anti-

inflammatory, anticancer, antitumor, antiaging, blood pressure

lowering and other effects (Peng et al., 2009; Karp and Hu, 2018;

Li et al., 2018). Fingered citron slices are harvested in its autumn when

the fruits have not yet turned yellow or yellow, and are often primed by

slicing and then sun-drying or low-temperature drying to become

fingered citron slices (Klein, 2014; Wu, 2015; Chen et al., 2020).

In today’s market, fingered citron slices, as the most widely

distributed fingered citron agricultural by-products, are preferred to

those with large slices, green skin and white flesh, and strong aroma

(Xu et al., 2021a). They are classified into three grades, namely first-

grade, second-grade and third-grade. At the same time, due to the

low prevalence of standardization and the fragmentation of farmers

and dealers, unusable bad slices and counterfeit slices are often

mixed in (Xu et al., 2021b), resulting in the loss of interests of many

parties. Moreover, most of the agricultural products such as

fingered citron slices are judged by laborers using manual visual

estimation to determine the grade, which is inconsistent and labor-

intensive (Meena et al., 2011; Ismail and Malik, 2022).The

continuous loss of agricultural labor in recent years and the

unprecedented increase in labor costs (Patel and Patil, 2024),

which became more prominent after the COVID-19 pandemic

(Nawaz et al., 2021), are detrimental to the market for fingered

citron slices and the expansion of fingered citron cultivation scale.

In summary, fingered citron slices grading technology, as a key

factor to improve the quality of fingered citron slices and to liberate

the orchard labor force, is of great significance to increase the added

value of the product, to improve the competitiveness of the market,
02
and to alleviate the shortage of orchard labor. A high-precision,

high-speed and damage-free grading method is needed to grade

fingered citron slices effectively and objectively.

With the continuous development of computer science and

technology, computer vision technology in deep learning has

penetrated into people’s production and life. More and more

research has applied computer vision technology to agricultural

production and has a wide range of practical applications

(Chen et al., 2024a). In research focusing on the grading of

agricultural goods using traditional machine learning, Castro and

colleagues (Castro et al., 2019) assessed the efficacy of four distinct

machine learning strategies paired with three different color spaces

for the categorization of cape gooseberry fruit based on their stage of

ripeness. Their findings revealed that the utilization of the Lab* color

space in conjunction with a Support Vector Machine (SVM) classifier

yielded the highest levels of precision and f-measure. In another

study, Moallem and associates (Moallem et al., 2017) introduced an

algorithm that employs computer vision to evaluate apples. This

method involved extracting both textural and geometric attributes

from defective regions of the apples. The fruits were then categorized

into first-grade, second-grade, and irregular categories using a

combination of SVM, Multi-Layer Perceptron (MLP), and K-

Nearest Neighbors (KNN) classifiers. Gui et al (Gui et al., 2014).

suggested a method for classifying apple shapes based on wavelet

rectangles, which successfully sorted apples into three categories:

normal, slightly misshapen, and severely misshapen, with respective

classification accuracies of 86.2%, 85.8%, and 90.8%. Among these

machine learning-based grading techniques, preprocessing of images

is a common necessity, and the reliance on singular features for

classification can lead to challenges such as suboptimal real-time

performance and diminished robustness.

In a research project centered on fruit grading using deep

learning techniques, Chakraborty and colleagues (Chakraborty

et al., 2023) crafted a specialized, lightweight Convolutional Neural

Network (CNN) known as “SortNet”. This model is designed for

straightforward implementation on edge devices to facilitate real-time

citrus fruit sorting through visual analysis. The model’s performance,

as demonstrated on a test dataset, is detailed in the accompanying

table, highlighting an impressive accuracy rate of 97.6%. Chen et al

(Chen et al., 2024b. introduced a multi-task Deep Convolutional

Neural Network (DCNN) detection model, MTD-YOLOv7, which is

an enhancement of the YOLOv7 framework. This model is tailored
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https://doi.org/10.3389/fpls.2024.1411178
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1411178
for ripeness detection in cherry tomato clusters and has achieved a

composite score of 86.6% in multi-task learning, with an average

inference time of merely 4.9 milliseconds. Momeny and team

(Momeny et al., 2020) enhanced the CNN’s generalization

capabilities by integrating Max-pooling and Average-pooling

techniques for cherry classification. The CNN model delivered

classification accuracy of 99.4%, 98.7%, and 99.1% for various input

image dimensions. Fan et al (Fan et al., 2020). employed a

Convolutional Neural Network (CNN) to recognize apple quality.

After training the CNN, they achieved a 96.5% accuracy on the test

set. They developed a CNN-based classification software and

integrated a computer vision module into a four-threaded fruit

sorting machine, capable of sorting at a pace of five fruits per

second, with an overall classification accuracy of 92%. However,

the model’s size is considerable, leading to relatively low

computational efficiency. Raikar et al (Raikar et al., 2020). explored

the quality classification of okra, categorizing it into four size-based

types: small, medium, large, and extra-large. They utilized three deep

learning models—AlexNet, GoogLeNet, and ResNet50—with the

ResNet model achieving a remarkable accuracy exceeding 99%.

Luna et al (De Luna et al., 2019). proposed a deep learning-based

approach for identifying defective areas in individual tomatoes. This

method utilized the OpenCV library and Python programming. They

collected 1200 tomato images of varying qualities using an image

capture box. These images were used to train VGG16, InceptionV3,

and ResNet50 deep learning models. Upon comparing the

experimental outcomes, they determined that VGG16 is the most

effective deep learning model for defect detection. Asriny et al

(Asriny et al., 2020). suggested a deep learning-based CNN

model for categorizing orange images into five distinct classes.

They experimented with ReLU and Tanh activation functions,

finding that the ReLU activation function surpassed Tanh in the

hidden layer. The classification results using the ReLU activation

function for data training showed an accuracy of 98.6%, while the

validation data yielded 92.8%, and the test data achieved 96%. Fu and

associates (Fu et al., 2022) constructed a linear regression model to

assess and measure fruit freshness by analyzing the darkness and

color changes in the fruit’s skin. They evaluated a range of fruits,

including apples, bananas, dragon fruits, kiwis, oranges, and

pears, for freshness grading, and the highest average accuracy

attained was 96.34%. The results indicated that deep learning

algorithms are highly effective in addressing this issue. Gururaj and

colleagues (Gururaj et al., 2023) developed an innovative CNN

architecture for the in-depth grading of three mango varieties.

They achieved an accuracy of 93.23% for variety identification and

an impressive 95.11% for quality grading.

However, the above deep learning model grading methods still

have problems such as insufficient model optimization, poor real-

time performance, and are less applied to herbal medicines such as

fingered citron slices. Drawing from this foundation, the present

study focuses on fingered citron slices as the subject of investigation

and delves into the development of an efficient grading detection

system specifically tailored for these segments. The paper proposes

a fingered citron slices grading detection algorithm based on an

improved YOLOv8n, using FasterNet instead of the original

YOLO8 backbone, which consumes fewer memory accesses and
Frontiers in Plant Science 03
tends to have higher FLOPS, in order to achieve an improved

computational efficiency of the model. The architecture of the initial

model is re-envisioned by incorporating the BiFPN (Bi-directional

Feature Pyramid Network) module, enhancing the model’s capacity

for feature integration while simultaneously eliminating

superfluous connections to achieve a more streamlined design.

Experiment data indicates that this refined approach successfully

elevates the detection accuracy of the model, all without incurring

additional costs in the training process. Finally, we substantiated the

method’s viability and dependability through a series of ablation

studies and rigorous statistical analyses. The outcomes substantiate

that the YOLOv8-FCS algorithm, as introduced in this work, is

adept at executing swift and precise grading of fingered citron slices.

It can provide a relatively authoritative grading standard and the

basis of counterfeit detection for the fingered citron slices market,

and help to promote the development of automation in the fingered

citron industry.
2 Materials and methods

2.1 Dataset construction

Fingered citron grows in most of the warm citrus producing

areas of China (Karp and Hu, 2018). The fingered citron slices used

in this dataset were obtained from a Sichuan fingered citron origin

dealer in Shimian County, Ya’an City, Sichuan Province, China.

The image acquisition devices used in the experiment were Canon

camera (60D, 18 megapixel DIGIC4, 18–200 IS lens), iphone15, and

Redmi K50 (Xiaomi Technology Co. Ltd., Beijing, China) in order

to simulate a variety of filming devices in the real application

environment. The above equipment is installed on a self-made

shooting platform to shoot at a fixed angle, and partially uses LED

light strips as supplementary light sources to capture images of

fingered citron slices under diffuse illumination. The fixed position

for shooting is 40 centimeters away from the sample. The shooting

platform is shown in Figure 1.

According to the 2020 edition of Chinese Pharmacopoeia,

Identification of Traditional Chinese Medicines, Introduction to

the Identification of Practical Chinese Medicinal Traits and

Instructions for Clinical Use of the Pharmacopoeia of the People’s

Republic of China, fingered citron slices are preferable to those with

large slices, green skin and white flesh, and strong aroma. It can be

seen that the original medicinal materials are preferred to those with

heavy quality in terms of commercial specifications. In the

traditional grade evaluation, the appearance of the skin-type

tablets is required to be thick skin, fine silk and excellent quality.

In conclusion, fingered citron slices are preferable to the heavy ones,

and the external form is mainly concerned with its quality and

thickness. On the other hand, fingered citron slices is preferable to

thick skin and thin silk, and its external form is mainly concerned

with quality and width. Therefore, the fingered citron slices

collected are classified into 4 grades with reference to relevant

industry standards and experts’ experience.

First-grade products are often packaged as selected pieces and

enter the market, with the highest selling price. Second-grade
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and third-grade products are bergamot slices with some defects or

long storage life, usually entering the market as a single piece,

with significant price fluctuations. Bad products include moldy,

blackened bergamot slices, or excessively baked scraps, which are

usually not sold. Therefore, under the guidance of experts, we

classify the bergamot slices based on their color and

morphological characteristics. The classification criteria are

as follows:
• The color of the first-grade products are slightly yellow,

with a regular shape and almost no damage or defects, as

shown in Figure 2A.

• The color of the second-grade products are slightly yellow,

with a relatively regular shape and slight damage or defects,

as shown in Figure 2B.

• The third-grade products have a brown color, irregular

shape, and obvious damage or defects, as shown

in Figure 2C.

• The color of the bad products are black brown, with an

irregular shape and scattered damages or defects, as shown

in Figure 2D.
A B D

E F G

C

FIGURE 2

Four levels of fingered citron slices (A–D) and images before and after data augmentation (E–G).
FIGURE 1

Shooting platform.
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After we manually filtered out some duplicate and similar data

to simulate real application scenarios, we used Gaussian blur and

salt and pepper noise to enhance our dataset to improve the

generalization and robustness of the model. Examples of four

levels of fingered citron and images before and after data

augmentation are shown in Figures 2E–G.

Finally we selected 609 images as our initial dataset. We then

labeled the dataset according to the above criteria using the open

source script LabelImg on GitHub under the guidance of experts, and

divided the dataset into training, validation, and test sets according to

the ratio of 6:2:2. The labeling process produced a total of 4755

labeled frames, including 1911 first-grade labeled frames, 1620

second-grade labeled frames, 663 third-grade labeled frames, and

561 bad labeled frames. The division of the dataset and the

distribution of the number of labeled frames are shown in Table 1.
2.2 Design of fingered citron slices grading
method based on improved YOLOv8n

2.2.1 FasterNet
Past means of lightweighting are mainly based on Deep Separable

Convolution (DWConv) (Howard et al., 2017). DWConv is a

commonly used operation in convolutional neural networks that

reduces the number of parameters (FLOPs) and computational
Frontiers in Plant Science 05
complexity by dividing the convolution into two steps: deep

convolution and point-by-point convolution. Deep convolution

performs the convolution operation independently for each input

channel, capturing features on different channels. While point-by-

point convolution performs inter-channel combination and fusion of

feature maps through a 1×1 convolution kernel. DWConv has the

advantages of reduced number of parameters, reduced computational

complexity and improved feature expression, making it an efficient

convolution operation. However, the nature of its channel-by-channel

convolutional operation results in the need for frequent memory

accesses in practical operation. This makes the floating-point

operation speed (FLOPS) of DWConv become low, which reduces

the actual running speed of this operation. Chen et al (Chen et al.,

2023). further proposed FasterNet in view of the new PConv and the

off-the-shelf PWConv as the main operators.

We found that GhostNet has a certain degree of redundancy in

the convolutional channels (Han et al., 2020). FasterNet uses

standard convolution on this basis, but processes only part of the

channels, and the features of the other part of the channels are

directly mapped as constant. In this way, the high FLOPS advantage

of standard convolution is utilized, while the FLOPs of normal

convolution are reduced due to processing only part of

the channels.

The main structure of FasterNet that The FasterNet Block is

designed with three parts. The feature input first passes through

PConv, which processes only part of the features, followed by 1×1

Conv to expand the number of channels to twice. After going

through BN and ReLU, another 1×1 Conv reduces the number of

channels and finally a residual link is done.

The overall FasterNet architecture is shown in the Figure 3. It

has 4 hierarchical stages, Each level is initiated by either an

embedding layer, which consists of a standard 4×4 convolution

with a stride of 4, or a merging layer, featuring a standard 2×2

convolution with a stride of 2, both of which are utilized to achieve

spatial downsampling and an increase in the channel count. Within

each hierarchical level, a multitude of FasterNet blocks is integrated.
FIGURE 3

The structure of FasterNet.
TABLE 1 Partition of dataset and distribution of labeled boxes.

Data Proportion
Number
of images

Number
of labels

Training
set

60% 365 2832

Validation
set

20% 122 975

Testing set 20% 122 948

sum 100% 609 4755
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Given that the blocks in the penultimate and final stages demand

less memory and are inclined to offer greater floating-point

operations per second (FLOPS), there is an increased deployment

of these blocks, with a corresponding augmentation in

computational resources dedicated to these stages. A typical

FasterNet block commences with a PConv layer, which is then

succeeded by 2 PWConv layers or 1×1 convolutional layers, they

form an inverted residual configuration. In this setup, the

intermediate layer boasts an expanded channel capacity, and a

shortcut connection is implemented to redeploy the features from

the input. FasterNet constitutes a novel breed of neural networks,

renowned for their rapid execution. It excels at a variety of visual

tasks, benefited by its streamlined architecture that is both user-

friendly and compatible with a broad spectrum of hardware.

2.2.2 BiFPN
After replacing the backbone structure with the FasterNet

structure, although it can significantly improve the model mAP,

the inference time and model size have increased. Therefore, we

expect to find a more efficient way of feature fusion as a way to

achieve lightweighting and improve accuracy.

During training, the surface defect targets offingered citron slices

have different shapes and sizes, resulting in features with different

resolution sizes. Inspired by PAnet (Liu et al., 2018), the neck of

YOLOv8 is designed as a PAN-FPN structure. The regular linear

superposition of these features lead to an uneven weighting of features

in the fusion output associated with surface defect targets in different

fingered citron slices. This imbalance lead to the dominance of large-

scale features in the post-fusion output, overwhelming smaller

features to influence the grading judgment of fingered citron slices.

The structure of PAN-FPN is shown in Figure 4.

To address this challenge and bolster the Neck network’s

capacity to manage intricate features, it is imperative to select a

proficient feature fusion network that can effectively process the
Frontiers in Plant Science 06
features extracted by the feature extraction network across

various layers.

The architecture of the BiFPN was initially conceived by Google as

part of the EfficientDet (Tan et al., 2020) object detection algorithm.

We have adopted BiFPN to serve as the neck network in our model,

effectively superseding the previous PAN-FPN framework utilized in

YOLOv8. Figure 5 illustrates the configuration of the BiFPN structure.

The BiFPN framework offers an enhanced capacity for feature

fusion and more efficient inter-scale connectivity when compared

with the PAN-FPN structure. BiFPN streamlines the network by

pruning nodes that possess a single input edge, as these have a

minimal impact on the comprehensive feature network. Moreover,

BiFPN refines the feature integration process by establishing

additional connections between the initial input and the output

nodes, and by iterating the bi-directional pathway across the same

layer multiple times. This approach facilitates robust feature fusion

while maintaining a relatively low increment in computational

expenditure. It should be noted that the fusion module used in this

experiment is a weighted fusion model. In other words, the feature

maps are added directly in the spatial and channel dimensions.

The core idea of BiFPN structure is to utilize the information flow

in both bottom-up and top-down directions to construct the feature

pyramid. Meanwhile, a repetition-weighted fusion method is used at

each pyramid level. By utilizing the information flow from both

directions, the BiFPN structure can fuse features at different levels to

better fit objects of various sizes. By repeating the weighted fusion

process, the BiFPN structure enhances the accuracy and generalization

of the model, which leads to improved target detection performance.

2.2.3 YOLOv8-FCS deep learning
network structure

YOLO (You Only Look Once) is a typical single-stage target

detection algorithm (Redmon et al., 2016; Redmon and Farhadi,

2017, 2018; Bochkovskiy et al., 2020; Wang et al., 2023). YOLOv8 is
FIGURE 4

The structure of PAN-FPN.
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the structure of YOLO family introduced in 2023, which performs

target detection by means of a unique two-path prediction and tightly

connected convolutional network. The algorithm employs a

lightweight network structure while maintaining a high performance

and is therefore efficient. In YOLOv8, the target detection task is

decomposed into two independent subtasks, namely classification and

localization. Each subtask has its own network path, which enables the

algorithm to better handle targets of different sizes. In addition,
Frontiers in Plant Science 07
YOLOv8 adopts the ideas of cascading and pyramiding, which

enables the algorithm to deal with targets of different sizes. The

feature extraction capability of YOLOv8 has been significantly

improved compared to the previous model while maintaining a

lightweight network structure. The main structure of YOLOv8

consists of Backbone, Neck, and Head, as shown in the Figure 6.

The challenge of evaluating and detecting fingered citron slices is

constrained by the availability of computational resources, necessitating
FIGURE 6

The main structure of YOLOv8.
FIGURE 5

The structure of BiFPN.
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models that are structurally straightforward, exhibit minimal delay, and

offer substantial data processing capabilities. Traditional lightweight

networks, such as MobileNet (Howard et al., 2017), ShuffleNet

(Zhang et al., 2018), and GhostNet (Han et al., 2020), leverage deep

convolution or swarm convolution to distill spatial features from visual

data. While the primary objective of these lightweight models is to

diminish the count of floating-point operations (FLOP), there is a

dearth of research that has explored models with a low rate of floating-

point operations per second (FLOPS). It’s important to note

that merely reducing the model’s parameters does not completely

equate to a proportional boost in computational velocity.

Consequently, some studies have attempted to engineer nimble and

rapid neural network components through the use of deep convolution

or group convolution. However, these attempts do not always

accelerate model performance and can sometimes even increase

latency. In light of these considerations, this paper proposes the

substitution of the Darknet-53 backbone network in YOLOv8n with

the FasterNet-T0 network. This change is intended to augment the

model’s parameter count and computational capacity, thereby

enhancing its computational efficiency.

In the YOLOv8 framework, the PAN-FPN structure is utilized,

which represents an enhanced iteration of the classic FPN. This PAN-

FPN configuration is designed to mitigate the issue of partial loss of

localization details by integrating a bottom-up PAN architecture atop

the FPN, thereby replenishing the missing localization data. While

this approach does bolster the semantic and spatial information to an

extent, the PAN-FPN structure is still susceptible to refinements. To

more effectively tackle the limitations of PAN-FPN, particularly its

challenges with handling large-scale feature maps and the loss of

some pristine information in feature maps post-sampling, this study

proposes a restructured feature fusion mechanism for YOLOv8n that

draws inspiration from the BiFPN.
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Themodified network structure is shown in Figure 7, which consists

of the Backbone module with the improved FasterNet structure, the

Neck module reconfigured according to the BiFPN structure, and the

head module of the original model, which named YOLOv8-FCS.

YOLOv8-FCS is able to extract features better and obtain

better recognition accuracy in comparison with the base YOLOv8n

model, as verified in experiments in Section 3. The improved model

effectively improves the overall detection performance of the model

yet becomes complicated to a small extent. From the subsequent

experiments, it can be seen that the model achieves better results in

the task of grading and detecting fingered citron slices.
2.3 Experimental platform
training parameters

In this study, the experiments were run on Windows 10. The

framework image source used is PyTorch 1.8.1, with Python 3.8 as

the training environment and the Compute Unified Device

Architecture (CUDA) 11.1 as the computing architecture. The

GPU for the hardware part is RTX 2080×1 with 8 GB of its video

memory. the CPU is a 4-core, 8-thread 12th Gen Intel(R) Core(TM)

i3–12100F 3.30 GHz with 16 GB of RAM.

The settings of each hyperparameter in this experiment are

shown in Table 2. In order to balance the different shooting devices,

the input shape value of the input model was standardized to

640×640, and all of them were trained for 200 epochs, and the

mosaic enhancement was turned off at the last 10 epochs. The

optimizer was SGD, the batch size was set to 8. The maximum

learning rate was 1e-2, the minimum learning rate was 1e-4. The

momentum is set to 0.937, and the IoU threshold for the mean

Average Precision (mAP) is set to 0.7.
FIGURE 7

The main structure of YOLOv8-FCS.
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3 Results

3.1 Evaluation indicators

To more accurately assess the precision and assurance levels of

the model’s classifications, this study has chosen to employ the loss

function curve (Loss), mean Average Precision (mAP), recall rate,

the Giga Floating Point Operations Per second (GFLOPs), and the

Frames Per Second (FPS) as the key metrics for evaluating the

algorithm’s performance. The calculation of related evaluation

indexes is shown in Equations 1–5.

mAP = o
N
1 AP

N
=
oN

1

Z 1

0
P(R)dR

N
(1)

Precision =
TP

TP+FP
(2)

Recall =
TP

TP+FN
(3)

Mean AveragePrecesion = oAveragePrecesion

n(Class)
(4)

F − score=
2�Precision�Recall
Precision + Recall

(5)

In our experiment, the True Positives (TP) denotes the count of

instances that were accurately identified as positive instances, the

True Negatives (TN) signifies the count of instances that were

correctly classified as negative instances, the False Positives (FP)

represents the instances that were incorrectly categorized as positive

when they were actually negative, and the False Negatives (FN)

corresponds to the instances that were mistakenly labeled as

negative when they were positive. The Average Precision (AP) is

calculated as the area beneath the Precision-Recall curve (P-R

curve), which is a measure of the precision across various recall

levels and represents the average precision. The mean Average

Precision (mAP) is the mean value of the AP across different object
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categories. The n represents the total number of sample categories

that were subjected to testing. The F-score is a statistical measure

that balances the impact of precision and recall, providing a single

score that encompasses both metrics for a more comprehensive

assessment of the model’s performance.
3.2 Impact of data enhancement

To explore the impact of data augmentation on the outcomes of

the experiments, this study employs both a non-augmented dataset

and an augmented dataset to perform tests on the YOLOv8n and

YOLOv8-FCS models respectively. Both datasets are segmented in a

6:2:2 ratio for training, validation, and testing, and the training is

carried out for 200 epochs. The findings from these experiments are

presented in Figure 8.

Observations indicate that, when compared with the results

obtained from the non-augmented dataset, both the YOLOv8n and

YOLOv8-FCS models exhibit an improvement in their correlation

metrics on the augmented dataset, with an enhancement range of

2% to 5%. It is worth mentioning that in around 190 epochs of this

study, the model experienced a significant decrease in loss value.

This is to prevent the training images generated by Mosaic data

augmentation from deviating from the true distribution of natural

images and introducing a large number of inaccurate annotations.

Therefore, Mosaic data augmentation was turned off in the last 10

rounds of training, and the model began to learn real image data.

This transformation significantly reduces label errors, leading to a

rapid decrease in training loss values. These experimental outcomes

confirm that the data augmentation techniques applied in this study

play a significant role in bolstering the accuracy of the model’s

detection capabilities.
3.3 Comparison with YOLOv8
before improvements

Figure 9 show the comparison of the main algorithmic

performance evaluation metrics of the pre-improved YOLOv8n

model and the improved YOLOv8-FCS. During the training

process, the loss function of YOLOv8-FCS shows a faster

convergence trend, as well as a lower training loss. In addition,

the improved YOLOv8-FCS model gets better results in precision,

recall, and mAP metrics. This indicates that the improvement of

this experiment enables the model to learn the feature information

related to the grading of fingered citron slices faster, so that the

convergence speed of the model increases and the training loss

decreases, which leads to better training effect and accuracy.

Figure 10 illustrates the confusion matrix for both the original

and the enhanced models across four categories of fingered citron

slices. In this matrix, each row corresponds to the true class of the

samples, each column corresponds to the class predicted by the

model, and the diagonal elements indicate the count of samples

correctly classified for each class. The data reveals that there is a

high rate of accurate predictions for the first and bad grades of

fingered citron slices, whereas the second and third-grades have a
TABLE 2 Hyperparameter settings.

Parameter Setting

Input Shape (640, 640, 3)

Train Epoch 200

Close Mosaic 10

Batch Size 8

Workers 8

Optimizer SGD

Maximum Learning Rate 1e-2

Minimum Learning Rate 1e-4

Momentum 0.937

IoU 0.7
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comparatively lower accuracy in predictions. The confusion matrix

highlights that there is a tendency for the model to confuse the first

and second class goods. Upon examination of the images that led to

incorrect classifications, it was observed that a significant number of

these instances involved targets with occlusion or adhesion. Such

conditions can result in certain features being obscured, causing

defects and characteristics to be incorrectly identified due to the

masking effect.

By comparing the confusion matrices of the models before and

after the improvement, it can be found that the number of first-

grade products misjudged as second-grade products is greatly

reduced, which directly improves the judgment accuracy of first-

grade products. At the same time, the number of second-grade and

third-grade samples judged correctly are both improved to some

extent. This is because we have redesigned the neck file of the model

using the BiFPN structure to improve feature fusion capability. This

suggests that the improvements in this experiment have a positive

effect on the accurate identification of each class of fingered citron

slices. However, from Figure 10B, it can be seen that the improved

model has a slight decrease in the ability to distinguish between bad

and third-grade products. This is because the weakened expression

ability of the model in the feature extraction process for some subtle

features of bergamot slices, resulting in some fuzzy recognition at

the boundaries of these two categories. Overall, the prediction

accuracy of the four categories of fingered citron slices is
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relatively high, indicating that the model is suitable for the

classification detection task of fingered citron slices from a

fixed perspective.

In order to further observe the effect of the improvement in this

experiment, this study also tries to use HiRes-CAM (Esmaeili et al.,

2021) to visualize the sample regions that are more concerned by the

YOLOv8 and the improved YOLOv8-FCS model respectively, as

shown in Figure 11. Different highlighted regions indicate the degree

of influence of pixel points at different locations on the recognition

results, where red highlighting indicates that the pixel values in the

region have the greatest influence on the recognition results and get

the highest convolutional attention. By comparison, we find that

YOLOv8-FCS pays more attention to the target itself and focuses the

attention constriction on the target. Furthermore, for the adhesion

case, YOLOv8-FCS is able to distinguish the target better, instead of

confusing the adhesion part. In addition, for problems such as

misdetecting the background as the target, which existed in the

YOLOv8n model, YOLOv8-FCS is able to avoid them to a large

extent. In summary, it is further demonstrated that the YOLOv8-FCS

model proposed in this paper can improve the learning ability of

important features for grading samples of fingered citron slices.

In summary, the YOLOv8-FCS model proposed in this paper is

superior to the YOLOv8n model in terms of comprehensive

metrics, and is more suitable for the task of grading fingered

citron slices, which is the focus of this experiment.
FIGURE 8

Loss chart before and after data augmentation.
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3.4 Ablation experiments

In order to validate the feasibility and effectiveness of the

enhanced model, the improved methodology is divided into two
Frontiers in Plant Science 11
key components, namely, replacing the FasterNet module in the

backbone network of YOLOv8n and redesigning the PAN-FPN

structure of YOLOv8n using the BiFPN structure. Four different

ablation experiments were conducted in order to fully assess the
A B

FIGURE 10

Confusion Matrix for YOLOv8n (A) and YOLOv8-FCS (B).
FIGURE 9

Comparison of the Evaluation indicator chart of YOLOv8 and YOLOv8-FCS.
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impact of changes and combinations of individual modules on the

performance of the algorithm. The results of these experiments are

combined and summarized in Table 3.

The purpose of this experiment is to evaluate the effect of

different components on the performance of the YOLOv8n model

by observing the changes in precision, recall, computation volume

(GFLOPs), model size, Frames Per Second (FPS) transmitted on the

screen, and mean Average Precision (mAP). The original YOLOv8n

model achieves 93.3% precision and 90.9% recall, with a mAP of

96.7% and FPS of 194.3, while maintaining a low computational

effort (8.1 GFLOPs) and model volume (5.95 MB). This shows that

YOLOv8n has been designed to be efficient and accurate.

The design goal of FasterNet is to improve the computational

efficiency of the model. After introducing FasterNet as the backbone

network (YOLOv8-FasterNet), the computational volume of the

model increased to 10.7 GFLOPs, the size increased to 8.20 MB, the

precision and recall were improved, the mAP increased to 97.8%,

and the recall reached the highest value of 0.961 for this ablation

experiment. Although FasterNet optimizes the computational

efficiency, this optimization comes at the cost of increasing the

size and complexity of the model. This is due to the fact that

FasterNet introduces more parameters or more complex network
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structures, which increases the model’s representational power. The

increased model complexity allows FasterNet to capture more

features and details, which is directly reflected in improved

precision and recall. Increased precision means that the model

correctly identifies an increased percentage of targets, while

increased recall means that the model is able to identify more real

targets and reduces missed detections. The mAP is increased to

show that the model performs well under a wide range of

conditions. The recall rate reaches the highest value in the

experiment, which further confirms the effectiveness of FasterNet

in the target detection task.

BiFPN as a multi-scale feature fusion technique, is able to

reduce the size and computational effort of the model while

maintaining performance. When BiFPN is added as the neck

structure (YOLOv8-BiFPN), the model volume reaches the lowest

value of 4.15 MB for this ablation experiment, and the amount of

computation is reduced to 7.5 GFLOP. This is due to BiFPN’s ability

to efficiently integrate features at different scales, which reduces the

need for a large number of parameters. Despite the reduction in

model size and computation, the addition of BiFPN still results in a

slightly better performance than the original model. This suggests

that BiFPN does a good job of integrating multi-scale information
A

B

FIGURE 11

Heat maps of YOLOv8n (A) and YOLOv8-FCS (B).
TABLE 3 Results of ablation experiment.

Model Precision Recall mAP FPS GFLOPs ModelSize

YOLOv8n 0.939 0.909 0.967 194.3 8.1 5.95MB

YOLOv8-Fasternet 0.916 0.961 0.978 138.2 10.7 8.20MB

YOLOv8-BiFPN 0.931 0.943 0.973 169.1 7.5 4.15MB

YOLOv8-FCS 0.961 0.949 0.981 130.3 10.1 6.40MB
The bold values represent the most outstanding performance among the evaluation indicators.
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and is able to improve the model’s ability to detect targets of

different sizes. It is mentioned in the paper that the

improvements in BiFPN are useful for a specific task that fingered

citron slice grading detection. This is because the task requires

accurate identification and classification of slices of different sizes

and shapes, and BiFPN is able to provide just this kind of multi-

scale feature fusion.

When the two improved components are used together

(YOLOv8-FCS), the volume of the model is 6.40 MB and the

computational volume increases to 10.1 GFLOPs, which is higher

compared to the original YOLOv8n model but lower than the

model that replaces the FasterNet structure alone. This suggests that

the combination of the two improves computational efficiency while

keeping the computational cost under control. Meanwhile, the

improved precision and recall reached 96.1% and 94.9%,

respectively. mAP was 98.1%, which was the highest among all

models. This result shows that the combination of YOLOv8n,

FasterNet and BiFPN maximizes the performance of the model

and achieves a balance between high efficiency and high precision.

Although the performance of the two improved models is lower

than any of the improved as well as the base model in terms of FPS,

it still reaches a respectable value of 130.3, which is fully adequate

for deployment.

To summarize, the experimental results show that the detection

performance of the YOLOv8n model can be significantly improved

by reasonably increasing the number of parameters and

computational volume of the model. In particular, the FasterNet

module plays a key role in improving precision and recall, and

BiFPN performs well in controlling the model volume and

computation. Meanwhile, FasterNet and BiFPN optimize the

feature extraction and multi-scale feature fusion capabilities of the

model to different degrees. The combined use of these improved

components provides an effective way to achieve more efficient and

accurate target detection.
3.5 Comparison with other models

In order to fully evaluate the performance of the YOLOv8-FCS

model, we compare it with several other popular target detection

models, including RT-DETR (Zhao et al., 2023), YOLOv7-tiny

(Wang et al., 2023), YOLOv5n, YOLOv5s, SSD (Liu et al., 2016)
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and FasterR-CNN (Ren et al., 2016). The experimental results of

these models on the same dataset are shown in Table 4.

As can be seen from Table 4, the mAP value of the YOLOv8-

FCS model proposed in this paper reaches 98.1% with the same

experimental setup. In contrast, RT-DETR-resnet18 (92.4%), the

faster FasterR-CNN (86.3%), SSD (90.7%), YOLOv5n (94.7%),

YOLOv5s (97.9%), and YOLOv7 (97.7%) are not as good as the

YOLOv8-FCS model in terms of mAP. Comparison experiments

show that the real-time detection rate (FPS) of both Faster R-CNN

(18.4) and SSD (26.6) do not meet the real-time requirements.

While YOLOv5n (190.2), YOLOv5s (124.3) and YOLOv7-tiny

(143.8) perform well in this regard. The YOLOv8-FCS model

(130.3) proposed in this paper does not have the highest real-time

detection rate, but it fully meets the practical deployment

requirements. YOLOv7-tiny and YOLOv5s are 1–2 of the size of

this experimental model, but their detection accuracy, recall and

mAP values are not gap with the YOLOv8-FCS model. In contrast,

the size of the improved algorithm model proposed in this paper is

6.4 MB, which is much smaller than Faster R-CNN, RT-DETR-

resnet18 and SSD models, and only slightly larger than the

YOLOv5n model, but it performs much better in the

evaluation metrics.

In summary, the YOLOv8-CFS model proposed in this paper

not only meets the real-time detection requirements, but also

improves the detection accuracy, minimizes the model size, and

exchanges a very small arithmetic cost for a large performance

improvement, which has higher generality and practical value. This

result not only demonstrates the superiority of YOLOv8-CFS in

target detection tasks, but also shows that the detection accuracy of

the model can be significantly improved without significantly

affecting the computational efficiency through our well-designed

network structure improvement.
4 Discussion

4.1 Feasibility analysis

In order to promote the intelligent development of fingered

citron slices industry, this study applied the YOLOv8n model to the

task of grading and detecting fingered citron slices under the fixed

perspective, and improved the YOLOv8n for the limitations, and
TABLE 4 Results of comparison test.

Model Precision Recall mAP FPS ModelSize

SSD 0.836 0.899 0.907 26.6 92.1MB

FasterR-CNN 0.754 0.937 0.863 18.4 108MB

RT-DETR-resnet18 0.936 0.913 0.924 46.7 38.5MB

YOLOv5n 0.945 0.893 0.947 190.2 5.02MB

YOLOv5s 0.938 0.957 0.979 124.3 17.60MB

YOLOv7-tiny 0.955 0.948 0.977 143.8 12.30MB

YOLOv8-FCS 0.961 0.949 0.981 130.3 6.40MB
The bold values represent the most outstanding performance among the evaluation indicators.
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finally obtained the YOLOv8-FCS fingered citron slices grading and

detecting model. The results show that the YOLOv8-FCS model can

accomplish the fingered citron slices grading detection task better.

The size of the YOLOv8-FCS network, as introduced in this

study, is 6.4MB, marking an increment of merely 0.4MB over the

standard YOLOv8 model. The model requires a mere 0.046 seconds

to process a single image within the experimental setup, which

includes a GPU (RTX 2080 with 8GB of video memory). The

evaluation metrics of the refined model significantly surpass those

of other prevalent models typically used for object detection tasks.

The empirical findings indicate that our model aligns well with

hardware deployment requirements, and its processing velocity

satisfies practical demands. Consequently, the model demonstrated

in this research holds a distinct accuracy advantage over existing

models. It is capable of effectively executing the grading detection task

for fingered citron slices from fixed viewpoints and holds promise for

future integration into assembly lines or sorting machinery designed

for fingered citron slices.
4.2 Contribution to the intellectualization
of the fingered citron slices industry

At present, the majority of the fingered citron slices sector relies

on conventional manual methods. These methods are characterized

by low efficiency, substantial labor expenses, and a significant degree

of subjectivity. Consequently, there is a pressing need to explore

intelligent processing solutions within the fingered citron slices

industry to address these shortcomings. Manual sorting of fingered

citron slices is a labor-intensive task that requires a lot of manpower,

and the use of mechanical grading helps to reduce the labor demand

and can improve grading accuracy and avoid the influence of

subjectivity. In this study, a deep learning algorithm is utilized to

achieve the task of grading fingered citron slices detection under fixed

viewpoint. We propose the YOLOv8-FCS model to complete the task

of grading fingered citron slices, which has performed well in testing

and can process 130 images per second (FPS=130.3). This processing

speed not only meets the requirements of industrial applications, but

also has the potential for practical deployment on fingered citron

slices processing flowlines or automatic sorting machinery. The

efficiency of the YOLOv8 FCS model means that it can significantly

improve the automation level and production efficiency of the

classification of fingered citron slices while maintaining high

accuracy. In addition, the design flexibility and scalability of this

model also provide possibilities for its application in different working

environments, thereby providing strong technical support for the

automatic grading of fingered citron slices and the automation of

subsequent packaging, sales, and other processes.

Non-intrusive examination techniques have become extensively

integrated into agricultural practices and are often merged with a

variety of innovative technologies (Kondo, 2010), signaling a trend

towards the automation of post-harvest activities as the next

frontier in agricultural advancement. The utilization of machine

vision technology enables swift and dependable evaluation of

agricultural commodities like fruits and vegetables, with non-

destructive approaches that can minimize financial losses while
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simultaneously boosting productivity and economic gain. In the

context of this research, the multi-input model has been applied to

the task of grading and detecting fingered citron slices, representing

an instance of processed produce in sliced form. As such, the model

exhibits considerable promise for extending its utility to the grading

of other sliced herbs and potentially for the quality assessment of

fruits and vegetables more broadly.
4.3 Limitations and future work

Compared with the original YOLOv8n model, the improved

YOLOv8-FCS model in this paper improves the accuracy of

fingered citron slices grading detection. Nevertheless, a small

number of false detection exist, which may be attributed to the

following factors. The first reason is related to the features of the

images. The difference features between the grades offingered citron

slices are more variable, which increases the detection challenge.

The second reason is the complexity of the datasets, where the

captured images not only have scattered targets of fingered citron

slices, but also partially adhered and overlapped. These factors tend

to mask the differential features of fingered citron slices, leading to

false detection. The third problem is the limitation of the datasets.

The datasets of this experiment were all taken from the same batch

of fingered citron slices, which may not be representative enough.

The above problems indicate that the model has some room for

improvement in dealing with the problem of datasets with complex

features. In the future, we will evaluate the performance of the

datasets under more equipment shots and try to add other batches

and provenances of fingered citron slices to enhance the

representativeness of the datasets.
5 Conclusion

In this study, we apply deep learning techniques to the grading

detection of fingered citron slices, and improve the YOLOv8n model

to get the YOLOv8-FCS model which is more effective in grading

detection of fingered citron slices. Firstly, we enhanced and labeled

the image data of fingered citron slices collected under the fixed

viewing angle to form the fingered citron slices datasets. Then we

replace the YOLOv8n backbone structure with the FasterNet main

module to improve the computational efficiency in the feature

extraction process. The PAN-FPN structure used in the original

model is redesigned with the BiFPN structure in order to balance the

computational volume and model size while making full use of the

high-resolution features to expand the sensory field of the model. In

the end, the detection accuracy is improved significantly at a small

cost of arithmetic power. The main conclusions are as follows:
(1) The mAP value of the YOLOv8-FCS model proposed in

this study reaches 98.1%, which is improved by 1.4%

compared with the YOLOv8n model. It is found that the

YOLOv8-FCS model is able to achieve higher detection

accuracy with a very small model size and computation

enhancement, which alleviates the YOLOv8n model’s
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Fron
misdetection to a certain extent. Therefore, we believe that

the improved method we used is effective and the YOLOv8-

FCS model can effectively provide technical support for

grading fingered citron slices.

(2) Following a comparative evaluation, it has been observed

that the YOLOv8-FCS model outperforms current

mainstream object detection networks in terms of

accuracy for the task of grading detection of fingered

citron slices. The model size of 6.4M is acceptable. The

arithmetic capacity is 10.1GLOPs, which is very low, and

the FPS is 130, which can meet the practical use

requirements. The experimental results show that

YOLOv8-FCS can accurately accomplish the task of

fingered citron slices grading detection and can run on

lightweight devices.

(3) The method proposed in this study can well accomplish the

grading detection of fingered citron slices under the fixed

viewpoint, which effectively reduces the problems of low

efficiency, high cost, and great influence by subjectivity that

exist in the traditional manual detection. Boasting both

high precision and real-time capabilities, this model is well-

suited to fulfill the grading requirements of agricultural

producers and small to medium-sized enterprises. It holds

significant practical value for application within the

industry dedicated to the grading of fingered citron slices,

contributing to the advancement of a standardized and

efficient fingered citron slices market.

(4) Given that the primary focus of this research is on the

grading detection of fingered citron slices, a type of

herbaceous slice, future work may explore the potential of

adapting the methodologies presented in this paper to the

evaluation of other sliced agricultural products. In addition,

we will also consider the use of more informative sensors

such as multispectral cameras for image acquisition in

order to grade fingered citron slices more accurately,

authoritatively, and efficiently by combining the scales of

active ingredient content.
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