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Introduction:Mechanical damage significantly reduces themarket value of fruits,

making the early detection of such damage a critical aspect of agricultural

management. This study focuses on the early detection of mechanical damage

in blueberries (variety: Sapphire) through a non-destructive method.

Methods: The proposedmethod integrates hyperspectral image fusionwith amulti-

strategy improved support vector machine (SVM) model. Initially, spectral features

and image features were extracted from the hyperspectral information using the

successive projections algorithm (SPA) and Grey Level Co-occurrence Matrix

(GLCM), respectively. Different models including SVM, RF (Random Forest), and

PLS-DA (Partial Least Squares Discriminant Analysis) were developed based on the

extracted features. To refine the SVM model, its hyperparameters were optimized

using a multi-strategy improved Beluga Whale Optimization (BWO) algorithm.

Results: The SVM model, upon optimization with the multi-strategy improved

BWO algorithm, demonstrated superior performance, achieving the highest

classification accuracy among the models tested. The optimized SVM model

achieved a classification accuracy of 95.00% on the test set.

Discussion: The integration of hyperspectral image information through feature

fusion proved highly efficient for the early detection of bruising in blueberries.

However, the effectiveness of this technology is contingent upon specific

conditions in the detection environment, such as light intensity and

temperature. The high accuracy of the optimized SVM model underscores its

potential utility in post-harvest assessment of blueberries for early detection of

bruising. Despite these promising results, further studies are needed to validate

the model under varying environmental conditions and to explore its applicability

to other fruit varieties.
KEYWORDS

information fusion, feature extraction, multi-strategy, model optimization, beluga
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1 Introduction
Blueberries are delicious and rich in nutrients such as

anthocyanins, making them popular among consumers (Yang

et al., 2022). The Food and Agriculture Organization of the

United Nations lists blueberries as one of the “five major health

foods for humans,” while the World Health Organization considers

them one of the “best fruits in terms of nutritional value.” However,

blueberries are prone to mechanical damage during picking,

packaging, and transportation, which can result from collisions,

compression, and vibration. This mechanical damage not only

affects the texture and quality of blueberries but also increases the

risk of microbial contamination, shortens shelf life, and seriously

impacts both the quality and economic benefits of blueberries

(Zheng et al., 2022; Hou et al., 2024). Moreover, damaged tissue

provides a breeding ground for pathogens, which can spread to

surrounding sound fruits, further exacerbating economic losses and

food safety hazards (Zheng et al., 2023). Therefore, early detection

of mechanical damage in blueberries is of great significance for

improving fruit quality, storage and transportation capabilities, and

reducing losses in commercial value.

Hyperspectral imaging (HSI) technology combines

spectroscopy and imaging techniques, capturing both spectral and

spatial information simultaneously, resulting in a three-

dimensional data cube comprising one spectral (wavelength)

dimension and two spatial dimensions (Lu et al., 2020). Each

pixel in the image contains the spectrum of the specific location.

Differences in spectral reflectance enable the detection of changes in

physical and chemical information before and after bruising of

fruits. Spatial information enhances the accurate detection of

bruised areas and sound regions in fruits. Methods integrating

spectral and spatial information in HSI have been applied in the

non-destructive testing of fruit quality (Gaci et al., 2023; Rajaei et al.,

2024). Gao and Xu (2022) employed spectral and image analysis to

predict the soluble solids content of red grapes. They employed

primary and combined dimension reduction algorithms to extract

the original spectral information. They also extracted image texture

information using the gray-level co-occurrence matrix (GLCM).

They developed a Partial Least Squares Regression (PLSR) model

using spectral, image, and fused data. The findings demonstrated

that the PLSR model incorporating fused information yielded

superior prediction results, with correlation coefficients of 0.9775

and 0.9762 for the calibration and prediction sets, respectively.

Huang et al. (2018) classified and detected varieties of deseeded

cotton using HSI technology combined with image feature

information. They extracted twelve morphological features such

as length, width, area, and roundness from the spectral information

of samples. Eleven feature bands were selected using the successive

projections algorithm (SPA) as inputs combined with partial least

squares discriminant analysis (PLS-DA), soft independent

modeling of class analogy, k-nearest neighbor algorithm (KNN),

principal component analysis combined with linear discriminant

analysis, and quadratic discriminant analysis for modeling analysis.

Modeling analysis using image information revealed that the overall

recognition rate of the models was not high, indicating poor
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classification performance when relying solely on morphological

features of hyperspectral images. As inputs, the spectral and

morphological feature information of feature bands were fused to

establish a spectrum fusion model. The results showed that the PLS-

DA model with spectrum fusion had the best classification

performance, with overall recognition rates of 98% and 97% for

the modeling and prediction sets, respectively. Wang et al. (2023)

combined HSI technology with germination tests to conduct feature

correlation analysis and predict germination performance of sugar

beet seeds. They extracted fourteen feature wavelengths as spectral

features of sugar beet seeds using Kullback-Leibler divergence. Six

image features of individual seed hyperspectral images were

obtained using GLCM. PLS-DA, CatBoost, and support vector

machine (SVM) with radial basis function kernel (RBF) models

were established for germination prediction using spectral features,

image features, and fusion features. The results demonstrated that

the prediction effect of fusion features was better than that obtained

using spectral features and image features. Compared with other

models, the accuracy of the CatBoost model was 93.52%. The above

studies all indicate that spectrum fusion models have higher

detection accuracy than single-information (image or spectrum)

models. However, the parameters in the models are set to default

values. Sun et al. (2021) developed a spectrum feature fusion model

and then optimized the model using the artificial fish swarm

algorithm. The results showed that the optimized SVM model

improved the detection accuracy by 2.22%, reaching 99.44%.

However, meta-heuristic algorithms cannot guarantee obtaining

the global optimal solution and often fall into local optimal

solutions in some problems.

For the detection of mechanical damage in blueberries, Fan et al.

(2017) explored the potential of hyperspectral reflectance imaging

(950-1650 nm) to detect internal damage in blueberries within 30

minutes to 12 hours after mechanical impact. They developed a

least squares support vector machine (LS-SVM) classification

model. The results showed that the LS-SVM model established

using characteristic wavelengths extracted by competitive adaptive

reweighted sampling achieved overall accuracies of 93.3% and

98.0% for sound and bruised blueberries, respectively. Huang

et al. (2020) investigated the potential of hyperspectral imaging in

the 400-1000 nm spectral range to discriminate early diseases in

blueberries. By combining the extraction of effective spectral ranges

with self-scaling preprocessing methods, they developed a PLS-DA

model, which achieved recognition rates of 100% and 99% for

sound and early diseased blueberries, respectively. However, these

studies focused on damage detection based on single (spectral)

information. Relevant research on the detection of early mechanical

damage in blueberries based on the fusion of spectral and image

information has not been reported. Therefore, this study

investigated the non-destructive detection of early mechanical

damage in blueberries based on hyperspectral image

information fusion.

Compared to PLS, KNN, RBF, decision tree, and random forest

(RF), the SVM still achieves high classification accuracy when

dealing with high-dimensional nonlinearly separable data in the

presence of noise interference (Chandra and Bedi, 2021). Therefore,

this study chooses SVM as the classifier for detecting blueberry
frontiersin.org
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bruising, optimizing the penalty coefficient C and kernel parameter

radius g of SVM to improve the model’s classification accuracy. The

Beluga Whale Optimization (BWO) algorithm is a novel

evolutionary algorithm that simulates the foraging behavior of

white whales. In the process of searching for optimal

hyperparameters, the BWO utilizes cooperation and competition

among individuals in the population to find the optimal solution.

One of its advantages is its strong global search capability. However,

compared to other evolutionary algorithms, the BWO may exhibit

shortcomings in terms of convergence speed and local search

capability. Based on this, this study proposes a multi-strategy

improved the BWO to optimize the hyperparameters C and g

of SVM.

The aim of this study is to identify bruising on blueberries using

HSI technology. The specific objectives are to:
Fron
(1) Identify the optimal spectral and image feature

extraction algorithms;

(2) Compare the classification accuracy of spectral fusion

models with single-source (spectral or image) models to

determine the best classification model;

(3) Optimize SVM using a multi-strategy improved BWO

algorithm to enhance model classification accuracy;
2 Materials and methods

2.1 Sample preparation

In May 2023, a total of 800 blueberries (with diameters ranging

from 12-15mm, of the variety Sapphire) were harvested from a rural

area in Honghe Hani and Yi Autonomous Prefecture, Yunnan

Province. They were subsequently transported to the Bioinformatics

Testing Station at Northeast Forestry University. After 24 hours,

400 blueberries were randomly selected for the preparation of
tiers in Plant Science 03
collision damage. The specific preparation method involved

placing the samples horizontally on a test bench, with a soft

rubber baffle placed on one side of the sample. A fine line directly

above the sample was connected to a steel ball with a diameter of

9mm and a weight of 10g. The steel ball was raised to a 45-degree

angle to the vertical plane and then immediately released to impact

the sample, while recording the location of the damage. Sun et al.

(2024) provided a detailed description of the preparation scheme

for blueberry collision damage. Randomly split the blueberries,

considering both sound and bruised specimens, into training and

test sets in a ratio of 7:3.
2.2 HSI acquisition and correction

The HSI system (Figure 1), covering a spectral range of 935nm

to1720nm, involved in a spectrograph (Specim FX10, Spectral

Imaging Ltd., Finland), a CCD camera (Hamamatsu, Japan) was

equipped with a 34mm stationary focal lens, two illumination lamps

(3900 Illuminator, Illumination Technologies, Inc. U.S.), a laptop,

and a mobile platform. In order to provide a crisp image without

distortion, the camera exposures period of 22 ms, and user-defined

speed determined by the acquisition system was 1.6 mm/s.

During the process of hyperspectral imaging, the observed

uneven illumination and noise primarily stem from the following

reasons: (1) Uneven Illumination: This may occur due to unstable

light source positions, variations in ambient lighting, or inherent

optical irregularities in the imaging equipment. This results in

varying intensities of light received across different areas of the

image, leading to uneven illumination. (2) Noise: Noise can

originate from electronic components within the imaging device,

environmental interference, or digitization errors during signal

processing. These factors introduce unwanted random signals that

can degrade image quality and affect the accuracy of data analysis.

Flat Field Correction (Black-White Correction) is a commonly

used technique to effectively mitigate these issues: (1) Technical
FIGURE 1

The HSI acquisition system.
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Explanation: Flat Field Correction utilizes two specialized images to

correct uneven illumination and noise. The “Dark Field Image”

records signals produced by the imaging device under conditions of

complete darkness, primarily reflecting the sensor’s inherent noise

level. The “Flat Field Image” is captured under uniform

illumination conditions, reflecting both the lighting and sensor

response. (2) Process: During Flat Field Correction, the noise

model is first extracted from the Dark Field Image and subtracted

from the original image to eliminate noise effects. Then, the Flat

Field Image is used to correct uneven illumination by dividing each

pixel value in the original image by the corresponding pixel value in

the Flat Field Image, thereby standardizing the overall

image intensity.

By employing this method, Flat Field Correction significantly

improves the quality of hyperspectral imaging, reducing the impact

of uneven illumination and noise on data analysis, thereby

enhancing the reliability and accuracy of the data.

Using the HSI system, we conducted data acquisition on samples

of both sound and bruised tissues for 30 minutes (bruised area was

facing the lens). We encountered uneven illumination and dark

current noise during the acquisition process. Therefore, correction

in black and white is required before further processing and analysis

of the data. To obtain a typical white reference image, we utilized a

white diffuse reflectance board with a 99% reflection efficiency.

Additionally, we acquired a dark current image, known as a dark

reference, to mitigate the dark current effect of the CCD detectors, as

the signal of the camera chip was not zero when no light struck the

detectors. The corrected image Ic was obtained using Equation 1 as

follow (Shicheng et al., 2021).

Ic =
IR − ID
IW − ID

(1)

Where IR is the captured image, IW is reference image in white

and ID is reference image in dark.

When collecting samples, factors such as noise, strong light,

weak light, and shadows were likely present. Therefore,

hyperspectral images needed to be preprocessed to eliminate their

impact on subsequent modeling efforts. The specific steps were as

follows: First, the average spectral curves of sound and bruised fruit

tissues from 935nm to 1720nm were analyzed, revealing significant

noise in the ranges of 935nm-950nm and 1650nm-1720nm.

Consequently, the 224 bands corresponding to 935nm-1720nm

were reduced to 200 bands (950nm-1650nm) for analysis. Then,

the spectral differences between sound and bruised tissues were

compared, and the maximal difference was observed at a

wavelength of 1081nm. For mask handling, the grayscale image at

1081nm was chosen. To obtain a binary image of the blueberries, a

threshold segmentation algorithm was applied to the grayscale

histogram to separate the blueberry image from the background.

Hyperspectral imaging was then applied to mask the binarized

blueberry image, thereby removing background and noise. Finally,

the individual samples were cropped into images of 80 × 70 pixels.
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2.3 Feature extraction algorithm

2.3.1 Spectrum feature extraction algorithm
The SPA was a technique primarily used in chemometrics for

feature selection and data compression (Soares et al., 2013). It was

introduced by Haaland and Thomas in 1988. SPA aimed to extract

relevant information from high-dimensional datasets by iteratively

projecting the data onto lower-dimensional subspaces while

preserving the variance of interest. The algorithm proceeded by

identifying the variable (or feature) that contributed the least to the

information of interest and removing it through successive

orthogonal projections. This process was repeated until the

desired dimensionality reduction was achieved or a stopping

criterion was met. SPA was particularly useful in situations where

the dimensionality of the dataset was high relative to the number of

observations, as it helped to reduce computational complexity and

improve interpretability without significant loss of relevant

information. It found applications in various fields such as

spectroscopy, chemometrics, and pattern recognition, where

extracting meaningful features from complex datasets was crucial

for analysis and interpretation.

2.3.2 Image feature extraction algorithm
The GLCM served as the basis for the most widely used texture

measurements (Zulpe and Pawar, 2012). According to their texture

content regarding contrast, energy, entropy and homogeneity,

regions in an image were characterized using texture analysis. A

square matrix comprised of entries representing the relative

frequency (Pi,j) of occurrence of pairs of pixels with the same grey

level that were separated from one another by a specific amount (D)

in a specific direction (0°, 45°, 90°, or 135°) was used. The amount of

emergence of the pair of grey levels i and j, which were spaced away

in the image by a distance D, was represented by each item (i,j) in

the GLCM. To represent texture, the following GLCM parameters

were determined using a MATLAB program, as shown in Equations

2–5 (Benco et al., 2014):

Contrast = o
N−1

i,j=0
Pi,j(i − j)2 (2)

Energy = o
N−1

i,j=0
Pi,j

2 (3)

Entropy = o
N−1

i,j=0
Pi,j( − InPi,j) (4)

Homogoneity = o
N−1

i,j=0

Pi,j
1 + (i − j)2

(5)

Where the average value and standard deviations of the total of

the rows and columns in the GLCM matrix are denoted by ax, ay,

bx, and by respectively.
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2.4 Classification model

The SVM, a method based on kernels, mapped input variables

to high-dimensional feature space using kernel functions and

extracted linear hyperplanes from feature space as decision

functions to solve classification problems (Neumann et al., 2005).

Considering its strong performance in many classification studies,

the SVM was utilized in this study to model blueberry damage

classification, and Gaussian radial basis functions were employed as

the kernel functions.

The RF, as an ensemble learning algorithm based on decision

trees, is widely used for classification and regression tasks (Rigatti,

2017). In this study, the classification models were developed by

constructing multiple decision trees and intergrating their

prediction outcomes.

The PLS-DA is a statistical method used primarily in classification

tasks to analyze data and identify patterns or relationships between

predictors (independent variables) and a categorical outcome

(dependent variables) (Huang et al., 2018). It aims to maximize the

separation between classes or categories in the data.
2.5 Optimization parameter algorithm

The BWO was a population-based metaheuristic algorithm that

optimized model parameters through beluga whales swimming,

foraging, and bubble-net feeding behaviors (Zhong et al., 2022).

Due to its simple algorithmic structure and its excellent global

search capabilities, it also demonstrated outstanding performance

in various fields such as machine learning, economic load dispatch

in power systems, and workshop scheduling. Since BWO was based

on a population mechanism and utilized beluga whales as search

agents, each beluga whale served as a candidate solution that was

continuously updated during the optimization process. The

position matrix modeling of the search agents was represented by

Equation 6 as shown below:

X =

x1,1 x1,2 ⋯ x1,d

x2,1 x2,2 ⋯ x2,d

⋮ ⋮ ⋮ ⋮

xn,1 xn,2 ⋯ xn,d

2
666664

3
777775

(6)

Where n represents the population size of beluga whales, d is

the dimension of design variables. For all beluga whales, the

corresponding fitness values are stored as Equation 7.

Fx =

f (x1,1, x1,2,…, x1,d)

f (x2,1, x2,2,…, x2,d)

⋮

f (xn,1, xn,2,…, xn,d)

2
666664

3
777775

(7)

Additionally, the beluga whales transitioned from the exploration

phase to the development phase through the balancing factor Bf, as

depicted in Equation 8 for initialization modeling.
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Bf = B0(1 − T=2Tmax) (8)

Where B0 is a random number between (0,1), T represents the

current iteration number, and Tmax denotes the maximum iteration

number. When Bf > 0:5, the beluga whales are in the exploration

phase, exhibiting mirrored swimming; when Bf ≤ 0:5, they are in

the development phase, engaging in prey behavior.

2.5.1 Exploration phase - swimming
During the exploration phase of BWO, they mimicked the

paired swimming behavior of beluga whales, moving randomly in

mirrored or synchronized fashion, as described in Equation 9.

XT+1
i,j = XT

i,pj + (XT
r,p1 − XT

i,pj )(1 + r1) sin (2pr2)    , j = even

XT+1
i,j = XT

i,pj + (XT
r,p1 − XT

i,pj )(1 + r1) cos (2pr2)    , j = odd

8<
: (9)

Where Pj is a random integer for dimension d, Xi,pj represents

the value of the i-th whale in dimension Pj, while Xr,p1 represents

the position of a random whale, r1 and r2 are both random numbers,

sin() and cos() denote the orientation of mirrored whales’ fins

towards the water surface, and even and odd are even and odd

numbers, respectively.

2.5.2 Exploitation phase – predation
The development phase of BWO emulated the foraging

behavior of beluga whales. Within the beluga whale population,

there was mutual communication and sharing of location

information. Additionally, to enhance the algorithm ’s

convergence capability, the Lévy flight strategy was employed.

This strategy can be represented as Equation 10.

XT+1
i = r3X

T
best − r4X

T
i + C1 · LF · (X

T
r − XT

i )

C1 = 2r4(1 − T=Tmax)
(10)

Where r3 and r4 are random numbers, Xr and Xbest represent the

positions of random whales and the best whale, respectively, and LFis

the Lévy flight function, which can be represented as Equation 11.

LF = 0:05� m�n
vj j1=b

v = G(1+b)�sin(pb=2)
G((1+b)=2)�b�2(b−1)=2

� �1=b (11)

Where m and n are normally distributed random numbers, b is

the default constant equal to 1.5.
2.5.3 Whale fall phase
If the equilibrium factor Bf ≤ Wf (the probability of an

individual whale experiencing a whale fall), then the whale fall

phase was entered. Whale fall occurred because whales were prone

to predation by killer whales and human activities during migration

and foraging. Dead whales sank to the seabed, pseudo-sustaining

the population number thereafter. Using the individual’s position,

random individual positions, and whale fall step length, new

individual positions were established. This process could be

represented as Equation 12.
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XT+1
i = r5X

T
i − r6X

T
r + r7Xstep (12)

Where r5, r6 and r7 are random numbers, and Xstep is the whale

fall step length, defined as follows, as shown in Equation 13:

Xstep = (mb − lb) exp( − C2T=Tmax)

C2 = 2Wf � N

Wf = 0:1 − 0:05T=Tmax

(13)

Where mb and lb are upper and lower boundary of

variables, respectively.

The algorithm details of the BWO are shown in Table 1.
2.6 Multiple-strategy improvement method

Regarding the BWO algorithm, there are issues such as slow

convergence speed and susceptibility to local optima that arise when

optimizing SVM model hyperparameters. This study aims to

improve the following four aspects: (1) diversifying the initial

population using the good point set; (2) updating the positions of

the beluga whales using the elite pool strategy; (3) updating the

positions of the beluga whales using a fusion of adaptive Lévy flight

and spiral search strategies; (4) updating the beluga whale

population using a golden sine algorithm (Golden-SA) strategy.

Ultimately, a BWO algorithm with multiple-strategy improvements

is developed.

The good point set represents a method for selecting points that

is both uniform and efficient (Zhang and Zhang, 2001). Points

acquired through the good point set exhibit a more even

distribution throughout the search space in comparison to

randomly selected points. In contrast to random initialization, the

algorithm’s initial positions demonstrate greater uniformity, leading

to accelerated convergence. The principle as shown in Equations 14

and 15, is: Let Gs be a unit cube in s–dimensional euclidean space. If

r ∈ Gs, it take the form:

Pn(k) = r(n)1 · k
n o

, r(n)2 · k
n o

,⋯, r(n)s · k
n o� �

, 1 ≤ k ≤ n
n o

(14)

The deviation j(n) satisfies j(n) = C(r, e)n−1+e , where C(r, e)
n−1+e is a constant related only to r and e (where e is any positive

number). Then, Pn(k) is termed a good point set, and r was a good

point. r(n)s · k
� �

represents taking the decimal part, n representes the

number of points, and r = 2 cos(2p  k =p, 1 ≤ k ≤ sf g (where p is

the minimum prime satisfying (p − 3)=2 ≥ s). It is mapped onto the

search space as follows.

xi(j) = (ubj − lbj) · r(i)j · k
n o

+ lbj (15)

where ubj and lbj represent the upper and lower bounds of

dimension j, respectively.

To augment population diversity, the grey wolf optimization

(GWO) algorithm introduced a ranking system that employed the

arithmetic average of the three top-ranked wolves as the optimal

position, thereby circumventing the limitations associated with

relying solely on a single best individual for guidance. Inspired by

GWO, this study introduced an elite pool strategy that considered
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the top three individuals and their weighted average as candidate

elites in the elite pool (Mirjalili et al., 2014). During position

updates, a random individual from the elite pool was selected as a

guide, aimed at enhancing the algorithm’s capacity to escape local

optima. The process can be expressed as Equations 16–18:
TABLE 1 Detailed steps of the BWO algorithm.

The BWO algorithm

Input: Parameters (population size, maximum iterations)

Output: Optimal solution

1. Initialize the population and compute fitness values, identify the best
solution (P*)

2. While T ≤ Tmax Do

3. Calculate whale fall probability Wf using Equation 10 and balance factor
Bf using Equation 8

4. For each beluga whale (Xi) Do

5. If Bf(i) > 0.5

6. //Exploration phase

7. Randomly generate pj (j = 1, 2,…, d) for dimensions

8. Randomly select a beluga whale Xr

9. Update the position of the i-th beluga whale using Equation 9

10. Else If Bf(i) ≤ 0.5

11. //Exploitation phase

12. Update the random jump strength C1 and compute the Levy
flight function

13. Update the position of the i-th beluga whale using Equation 10

14. End If

15. Validate new positions and evaluate fitness values

16. End For

17. For each beluga whale (Xi) Do

18. //Whale fall phase

19. If Bf(i) ≤ Wf

20. Update the step factor C2

21. Compute the step size Xstep

22. Update the position of the i-th beluga whale using Equation 12

23. validate new positions and compute fitness values

24. End If

25. End For

26. Identify the current best solution P*

27. T=T+1

28. End While

29. Out the optimal solution
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= X
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!

3 · (D
!
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X
!
(t + 1) =

X
!

1 + X
!

2 +X
�!

3

3
(18)

Where a , b , and d represent the first three optimal solutions, t

indicates the current iteration, A
!

and C
!

are coefficient vectors, and

X
!

is the position vector of the grey wolf.

The vectors A
!

and C
!

are calculated as Equations 19 and 20:

A
!

= 2 a! · r!1 − a! (19)

C
!

= 2 · r!2 (20)

where components of a! are linearly decreased from 2 to 0 over

the course of iterations, and r!1, r!2 are random vectors in ½0, 1�.
To enhance the algorithm’s exploration ability in the solution

space and enhance its convergence accuracy, this study employed

an adaptive Lévy flight step size strategy (Peng and Zhang, 2022).

During the early iterations, the Lévy flight had larger step sizes,

allowing for comprehensive exploration of the solution space. In

subsequent iterations, the Lévy flight step sizes decreased

progressively, shifting towards more refined exploration.

Assuming the current iteration number is t, the maximum

iteration number is T , and the position of the individual is xi.

The update of the new position x(new)i can be represented by

Equation 21:

where    

x(new)i = xi + a(t) · m·sm

υj j1=b

a(t) = a0 · (1 −
t
T )

g

m :N(0,s 2
m)

υ :N(0,s 2
υ )

sm = G(1+b) sin (pb=2)
G((1+b)=2)·b ·2(b−1)=2

� �1=b

sυ = 1

(21)

where a0 is the initial scaling factor, g is the parameter

controlling the step size reduction speed, set to 1 or 2, and b is

the exponent parameter of the Lévy distribution, ranging (1, 3�.
The spiral strategy was proposed based on the adjustment of

movement distance for each position update, following a spiral

shape, between the target position (optimal position) and the

individual’s position when whales search for prey in the whale

optimization algorithm (Mirjalili and Lewis, 2016). This strategy

greatly utilized regional information, thereby improving search

capability, and consequently enhancing the algorithm’s rigor and

accuracy in local space development. The process can be expressed

as Equations 22 and 23:
Frontiers in Plant Science 07
D
!∗

= C
!∗

· X
!∗

(t) − X
!
(t)

���
��� (22)

X
!
(t + 1) = X

!∗
(t) − A

!∗
· D
!∗

(23)

where t indicates the current iteration, A
!∗

and C
!∗

are

coefficient vectors, and X
!∗

is the position vector of the best

solution obtained so far, X
!

is the position vector. It is worth

mentioning here that X
!∗

should be updated in each iteration if

there is a better solution.

The vectors A
!∗

and C
!∗

are calculated as Equations 24 and 25:

A
!∗

= 2 a!∗ · r!∗ − a!∗ (24)

C
!∗

= 2 · r!∗ (25)

where components of a!∗ are linearly decreased from 2 to 0

over the course of iterations, and r!∗ are random vectors in ½0, 1�.
The Golden-SA algorithm was based on the relationship between

the sine function and the unit circle, allowing it to traverse all points

on the sine function and thus all points on the unit circle (Tanyildizi

and Demir, 2017). The algorithm possessed strong global search

capabilities. Therefore, this study employed Golden-SA to update the

white whale population, improving BWO’s global search capability,

and accelerating the convergence speed of the algorithm. The process

can be expressed as Equation 26:

V(i,j) = V(i,j) · sin (r1)j j − r2 · sin (r1) · x1 · D(j) − x2 · V(i,j)

�� �� (26)

where V(i,j) is the value of current solution in i-th dimension.

D is the determined target value. r1 is a random number in the range

½0, 2p �. r2 is a random number in the range ½0, p �. x1 and x2 are the

coefficients obtained by the golden section method.

The algorithm details of the multi-strategy improved BWO are

shown in Table 2.
TABLE 2 Detailed steps of the multi-strategy improved BWO algorithm.

The multi-strategy improved BWO algorithm

Input: Parameters (population size, maximum iterations)

Output: Optimal solution

1. Initialize the population using a good point set for diversification and
compute fitness values, identify the best solution (P*)

2. Create and update the elite pool based on the initial population

3. While T ≤ Tmax Do

4. Calculate whale fall probability Wf using Equation 10 and balance factor
Bf using Equation 8

5. For each beluga whale (Xi) Do

6. If Bf(i) > 0.5

7. //Exploration phase

8. Randomly generate pj (j = 1, 2,…, d) for dimensions

9. Randomly select a beluga whale Xr

(Continued)
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2.7 Graphic abstract

The graphic abstract of this study was presented as shown

in Figure 2.
3 Results

3.1 Region of interest analysis

Figure 3 depicted the average relative reflectance spectral curves

of sound and bruised blueberries. The HSI technique provided

accurate and reliable spectra for the same biological traits, resulting

in similar spectral curve trends of sound and bruised blueberries.

The relative intensity of sound samples was higher than that of

bruised samples. This difference may be attributed to ruptures in the

cell walls and membranes of the bruised samples, which triggered

oxidation and enzyme catalysis reactions, subsequently leading to a
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decrease in light reflection intensity due to the loss of intracellular

water. Observations of absorption peaks and absorption valleys

were made at 980nm, 1081nm, 1206nm, and 1280nm. The

absorption peaks at 980nm and 1206nm might be related to the

absorption of specific energy by hydrogen bonds in water

molecules, inducing vibrational and combination vibrations (Gao

et al., 2019). The absorption valleys at 1081nm and 1280nm might

be related to changes in the levels of anthocyanins and carotenoids

in the fruit (Amanah et al., 2021).

To visually illustrate the significant differences in reflectance

spectra between sound and bruised tissues, the 200-dimensional

spectral features were projected into a two-dimensional space using

the t-distribution stochastic neighbor embedding (t-SNE)

algorithm. The visualization results are depicted in Figure 4. The

results in Figure 4 demonstrate that effectively classifying sound and

bruised fruits remained challenging.
3.2 Spectral feature analysis

Using SPA for feature extraction on the full spectrum, Figure 5A

displayed the RMSE plot of the spectral feature extraction by SPA,

where empty squares indicated the final number of selected variables.

It can be observed that as the number of selected variables increases

from 1 to 20, the RMSE curve shows a rapid decline. With a further

increase in the number of selected variables, the trend of the RMSE

curve becomes relatively stable. When the number of selected variables

reached 33, the RMSE reached its optimal value for classification.

Improvements in RMSE tend to decrease when the number of features

exceeds 33, suggesting that adding more features may not significantly

enhance classification performance. Therefore, choosing 33 features

balances accuracy while minimizing the feature count. Additionally,

fewer features typically imply a simpler model that is easier to interpret

and understand. Figure 5B depicted the distribution of the selected

variables (empty squares) corresponding to the full spectrum. The

wavelengths corresponding to the 33 selected features were 953nm,

956nm, 960nm, 963nm, 967nm, 970nm, 974nm, 977nm, 981nm,

998nm, 1001nm, 1008nm, 1019nm, 1022nm, 1026nm, 1029nm,

1040nm, 1060nm, 1071nm, 1074nm, 1081nm, 1088nm, 1102nm,

1120nm, 1123nm, 1141nm, 1266nm, 1358nm, 1368nm, 1411nm,

1638nm, 1645nm and 1648nm.
3.3 Image feature analysis

According to the texture characteristics of the blueberry image,

the GLCM was generated using four directions (0°, 45°, 90°, or

135°). Four statistical measures (contrast, energy, entropy, and

homogeneity) were applied in each direction to extract features,

resulting in 16 feature values. Subsequently, the mean value,

standard deviation, and variance of these four statistical measures

were calculated to generate 12 feature values, totaling 28 feature

values describing a blueberry image.
TABLE 2 Continued

The multi-strategy improved BWO algorithm

10. Update the position of the i-th beluga whale using Equation 9

11. Else If Bf(i) ≤ 0.5

12. //Exploitation phase

13. Update the random jump strength C1 and compute the adaptive
Lévy flight and spiral search strategies

14. Update the position of the i-th beluga whale using Equation 10

15. End If

16. Validate new positions and evaluate fitness values

17. End For

18. For each beluga whale (Xi) Do

19. //Whale fall phase

20. If Bf(i) ≤ Wf

21. Update the step factor C2

22. Compute the step size Xstep

23. Update the position of the i-th beluga whale using Equation 12

24. validate new positions and compute fitness values

25. End If

26. End For

27. Identify the current best solution P* and update the elite pool

28. If in whale fall stage then

29. Update whale population using the golden sine algorithm

30. End If

31. T=T+1

32. End While

33. Out the optimal solution
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3.4 Models results analysis

Based on full spectrum, feature-extracted spectra, image

features, and incorporating feature fusion (normalization of

spectral and image information), the evaluation metrics of the

SVM models, the RF models and the PLS-DA models (accuracy,

precision, recall, and F1-score) were shown in Tables 3–

5, respectively.

The settings for SVMmodel hyperparameters c and g were both

default values.

The results in Table 3 indicated that, for spectral features, the

model achieved an accuracy of 88.75%, a precision of 90.83%, a

recall of 87.20%, and an F1-score of 88.98% when using the full

spectrum. When using the SPA method, the accuracy improved

slightly to 89.58%, and the other metrics also increased accordingly.

For image features, the performance was relatively poor when using

the GLCM method, showing an accuracy of only 56.25%, a

precision of 75.00%, a recall of 54.55%, and an F1-score of

63.16%. For fusion features, the use of Full-spectrum & GLCM

demonstrated good performance across all metrics, with an F1-

score reaching 90.99%. The best performance was achieved with the
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SPA & GLCM method, with an accuracy of 92.50% and the highest

F1-score at 92.56%.

The results of Tables 4 and 5 exhibited similar conclusions to

those of Table 3. Combining the results from Tables 3–5, it was

evident that spectral features performed well across all models,

particularly when using the SPA method, which further enhanced

model performance. Image features performed poorly across all

models, suggesting that GLCM features may contribute limitedly to

classification tasks. Fusion features, combining spectral and image

characteristics, generally improved overall model performance,

especially when using the SPA & GLCM method, achieving

optimal results. When comparing the performance of different

models using the same feature selection methods, the SVM model

slightly outperformed RF and PLS-DA. The SVMmodel that utilized

SPA & GLCM information fusion achieved the highest recognition

accuracy, reaching 92.50% in the test set. However, an accuracy of

92.50% falls short of meeting the requirements of early detection of

post-harvest blueberry damage. Therefore, this study attempted

multiple strategies to enhance and optimize the hyperparameters c

and g of the SVM model, with the aim of further enhancing the

recognition accuracy of the spectral and image fusion model.
FIGURE 2

The graphic abstract of this study.
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3.5 Multiple strategies for improving the
BWO parameter analysis

To validate the effectiveness of the proposed method in this

study, before optimization, after optimization, and after multiple

strategy improvements, the recognition results of the SVM models

based on spectral and image fusion were shown in Table 6.

During the optimization process, the number of iterations was

set to 100, and the initial population size was 50. The final

hyperparameters were the averages of 30 independent runs of the

two optimization algorithms.

The results depicted in Table 6 highlight the beneficial impact of

the BWO algorithm on fine-tuning the hyperparameters of the

SVMmodel. Notably, the BWO algorithm demonstrated significant

improvement through multiple strategy enhancements, achieving

the highest classification accuracies of 95.00% in the test sets. This
Frontiers in Plant Science 10
increase amounts to 2.50% compared to the baseline performance.

Compared to the classic BWO algorithm, this increase was only

0.83%. The possible reasons for such a minor difference might be

that the classic BWO algorithm introduced a balancing factor and

Lévy flight strategy, which enhanced the algorithm’s performance

during the optimization process. These findings indicate that the

multi-strategy improved BWO algorithm holds significant promise

for parameter optimization in the SVM model.
4 Discussion

In light of the above results, this study made the following

three discussions:

(1) The classification accuracy of models established based on

spectral features extracted using SPA exceeded that of using the full

spectrum. One possible reason could be the utilization of SPA to

extract the most discriminative features from the spectral

information. Such features could assist researchers in

comprehending the meaning and underlying patterns of the data,

thereby facilitating a better understanding of the attributes and

states of the detected objects. Through feature extraction, the data

dimensionality was reduced, redundant information was

minimized, and the classification accuracy was improved.

The classification model established based on image features

extracted from GLCM had a low accuracy. Possible reasons were

that early collision damage had a less pronounced effect on the color

change of fruit skin, especially for fruits with darker skin color, such

as blueberries. The extracted image features of sound and damaged

blueberries were quite similar, resulting in the model’s classification

accuracy being diminished.

The classification accuracy was improved through the

integration of spectral and image information, outperforming the

utilization of singular information (either spectral or image).

Possible reasons were that high spectral images and spectral

information had different feature representations, and their

features complemented each other in some aspects. By integrating

these two types of information, a better understanding of the spatial

and spectral distribution characteristics of the samples could be

achieved, leveraging their advantages to enhance the accuracy of the

model’s classification.

(2) The possible reasons why SVM outperformed RF and PLS-

DA included that SVM classified data by identifying an optimal

hyperplane to maximize inter-class separation. It was especially

proficient in managing high-dimensional feature spaces and

linearly inseparable situations by using kernel methods (such as

the RBF kernel) to map data into higher-dimensional spaces,

thereby identifying superior classification boundaries. RF, as an

ensemble method based on multiple decision trees, was adept at

managing high-dimensional features and diverse data. However, the

splitting rules of decision trees might encounter difficulties when

dealing with highly correlated or redundant features, potentially

affecting overall performance. PLS-DA, maximizing the covariance

between predictors and response variables through linear

combinations, was well-suited for data with linear relationships.
FIGURE 3

Average relative reflectance spectral curves.
FIGURE 4

The visualization results of the t-SNE algorithm.
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In cases of significant nonlinear relationships, its performance

might not have been comparable to that of SVM.

Additionally, SVM combined SPA and GLCM feature selection

methods, which likely reduced feature redundancy, thereby

enhancing the robustness and classification capability of the

model. Notably, the SPA method demonstrated excellence in

spectral feature selection, effectively extracting key features that

contributed to classification.

(3) Based on the multi-strategy enhanced BWO optimization

SVM model, compared to the baseline and BWO-optimized SVM

models, it attained a higher classification accuracy. One possible

explanation is that BWO employed the method of randomly

generating the initial population, resulting in an uneven
Frontiers in Plant Science 11
distribution of the population, thereby impacting the convergence

speed of the algorithm. The good point set provided an effective

approach for selecting points uniformly. It facilitated a more

uniform distribution of points in the search space, thereby

enhancing global search efficiency. Based on genetic algorithms,

Yuan et al. (2022) introduced a good point set to globally optimize

the path coverage of unmanned aerial vehicles. They pointed out

that the good point set generated a higher quality initial population

compared to the randomly distributed algorithm. These high-

quality populations were more likely to obtain the global optimal

solution. Introducing the elite pool strategy enhanced population

diversity, thereby mitigating the drawbacks associated with relying

solely on a single best individual for guidance. Liu et al. (2024)
A

B

FIGURE 5

(A) The RMSE curve for selecting the number of spectral features using the SPA algorithm. (B) Distribution diagram of spectral features selected
using the SPA algorithm.
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proposed an improved arithmetic optimization algorithm

combined with a hybrid elite pool strategy. They pointed out that

integrating the elite pool strategy into the metaheuristic algorithm

enhanced the diversity of the search process and improved the

performance of the algorithm across various datasets. As a result,

the algorithm’s capability to escape local optima was strengthened.
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Introducing the adaptive Lévy step size strategy addressed the

fluctuating need for expected Lévy step sizes at different

algorithmic stages, thereby enhancing the algorithm’s ability to

explore the solution space. Additionally, the introduction of the

spiral search strategy extensively utilized regional information,

thereby enhancing the algorithm’s capability for local search.
TABLE 6 The recognition results before and after optimizing the SVM model based on spectral and image fusion.

SVM
Model hyperparameters

Accuracy (%) Precision (%) Recall (%) F1-score (%)
c g

Unoptimized (Baseline) Default Default 92.50 93.33 91.80 92.56

BWO 20.1626 0.2387 94.17 95.83 92.74 94.26

Multi-strategy
improved BWO

18.4812 0.2198 95.00 96.67 93.55 95.08
The bold text indicates the best classification results.
TABLE 3 Comparison of the SVM models based on different category of features.

Feature
category

Feature
selection
method

Number
of features

Accuracy (%) Precision (%) Recall (%) F1-score (%)

Spectral
Full spectrum 200 88.75 90.83 87.20 88.98

SPA 33 89.58 92.50 87.40 89.88

Image GLCM 28 56.25 75.00 54.55 63.16

Fusion

Full spectrum
& GLCM

228 90.83 92.50 89.52 90.99

SPA & GLCM 61 92.50 93.33 91.80 92.56
TABLE 4 Comparison of the RF models based on different category of features.

Feature
category

Feature
selection
method

Number
of features

Accuracy (%) Precision (%) Recall (%) F1-score (%)

Spectral
Full spectrum 200 87.50 88.33 86.89 87.60

SPA 33 88.33 89.16 87.70 88.42

Image GLCM 28 56.67 77.50 54.71 64.14

Fusion

Full spectrum
& GLCM

228 88.75 90.83 87.20 88.98

SPA & GLCM 61 90.00 91.67 88.71 90.17
TABLE 5 Comparison of the PLS-DA models based on different category of features.

Feature
category

Feature
selection
method

Number
of features

Accuracy (%) Precision (%) Recall (%) F1-score (%)

Spectral
Full spectrum 200 85.83 90.00 90.00 90.00

SPA 33 87.92 91.67 92.44 92.05

Image GLCM 28 54.58 74.17 53.29 62.02

Fusion

Full spectrum
& GLCM

228 89.17 92.50 86.72 89.52

SPA & GLCM 61 90.83 95.00 87.69 91.20
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Golden-SA incorporated the golden ratio coefficient into its

position updating process, enabling the algorithm to thoroughly

explore areas capable of generating excellent solutions in each

iteration. This acceleration improved the algorithm’s convergence

speed, enabling it to avoid local optima.

Compared to the baseline model and the classic BWO

algorithm-optimized model, the accuracy improved by 2.5% and

0.83%, respectively. The slight improvement suggests that the initial

performance of the SVM model is already close to optimal, and

further enhancements require more sophisticated optimization

techniques. This also implies that while the BWO and its multi-

strategy improvements have enhanced model performance, the base

model was already well-tuned. Although the increments are minor,

these improvements can still be significant in practical applications.

In quality control processes, a 1-2% increase in accuracy can

substantially reduce the defect rate.
5 Conclusions

The study explored the feasibility of detecting early mechanical

collision damage in blueberries using a multi-strategy improved

BWO optimization SVM model. Specifically, we analyzed the

average relative reflectance curves of sound and damaged samples

within the range of 950nm to 1650nm. Spectral features were

extracted using SPA, while image features were extracted using

GLCM. The results indicated that the classification accuracy of the

model based on feature fusion was higher than that of single

features, whether spectral or image. Then, based on the feature

fusion model, attempts were made to utilize a multi-strategy

improved BWO algorithm that integrates good point set, elite

pool strategy, adaptive Lévy strategy, spiral search strategy, and

Golden-SA to optimize the hyperparameters of the SVM model.

The results demonstrated that the improved BWO algorithm

significantly enhanced the performance of the SVM model. The

classification accuracies of the test set was 95.00%. Overall, the

combination of spectral and image fusion models with improved

optimization techniques provides a powerful approach for

enhancing early damage detection in blueberries. Due to the dark

color of blueberries, it is difficult to visually identify early

mechanical damage. The method proposed in this study has

yielded satisfactory results; therefore, we have reason to believe

that this method is applicable for detecting mechanical damage in

other dark-colored fruits such as blackberries, black grapes, plums,

and blackcurrants. This method has significant potential

applications in advancing fruit quality assessment and ensuring

food safety across the supply chain.

HSI is influenced by varying environmental conditions (such as

light intensity and temperature), which can cause inconsistencies in

image quality and subsequently affect the model’s detection

performance. Therefore, strict control of environmental factors is

necessary in practical production applications to ensure detection
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accuracy. In future research, more diverse blueberry samples will be

collected, encompassing different growth stages and environmental

conditions, to improve the model’s generalization capability.
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