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Improved YOLO-FastestV2
wheat spike detection model
based on a multi-stage attention
mechanism with a LightFPN
detection head
Shunhao Qing1, Zhaomei Qiu1*, Weili Wang1, Fei Wang1,
Xin Jin1,2*, Jiangtao Ji1, Long Zhao1 and Yi Shi1

1College of Agricultural Equipment Engineering, Henan University of Science and Technology,
Luoyang, Henan, China, 2Science and Technology Innovation Center for Completed Set Equipment,
Longmen Laboratory, Luoyang, China
The number of wheat spikes has an important influence on wheat yield, and the

rapid and accurate detection of wheat spike numbers is of great significance for

wheat yield estimation and food security. Computer vision and machine learning

have been widely studied as potential alternatives to human detection. However,

models with high accuracy are computationally intensive and time consuming,

and lightweight models tend to have lower precision. To address these concerns,

YOLO-FastestV2 was selected as the base model for the comprehensive study

and analysis of wheat sheaf detection. In this study, we constructed a wheat

target detection dataset comprising 11,451 images and 496,974 bounding boxes.

The dataset for this study was constructed based on the Global Wheat Detection

Dataset and the Wheat Sheaf Detection Dataset, which was published by PP

Flying Paddle. We selected three attention mechanisms, Large Separable Kernel

Attention (LSKA), Efficient Channel Attention (ECA), and Efficient Multi-Scale

Attention (EMA), to enhance the feature extraction capability of the backbone

network and improve the accuracy of the underlying model. First, the attention

mechanism was added after the base and output phases of the backbone

network. Second, the attention mechanism that further improved the model

accuracy after the base and output phases was selected to construct the model

with a two-phase added attention mechanism. On the other hand, we

constructed SimLightFPN to improve the model accuracy by introducing

SimConv to improve the LightFPN module. The results of the study showed

that the YOLO-FastestV2-SimLightFPN-ECA-EMA hybrid model, which

incorporates the ECA attention mechanism in the base stage and introduces

the EMA attention mechanism and the combination of SimLightFPN modules in

the output stage, has the best overall performance. The accuracy of the model

was P=83.91%, R=78.35%, AP= 81.52%, and F1 = 81.03%, and it ranked first in the
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GPI (0.84) in the overall evaluation. The research examines the deployment of

wheat ear detection and counting models on devices with constrained

resources, delivering novel solutions for the evolution of agricultural

automation and precision agriculture.
KEYWORDS

YOLO-FastestV2, wheat spike, efficient channel attention, Efficient Multi-Scale
Attention, SimLightFPN
1 Introduction

The yield and quality of wheat, one of the most important food

crops in the world, are directly related to the sustainable

development of agriculture as well as the guarantee of global food

security (Misra et al., 2021). The number of wheat spikes is a key

determinant of the number of wheat grains per unit area and the

yield. Therefore, the number of wheat spikes is an important

indicator of wheat yield (Slafer et al., 2014; Ferrante et al., 2017;

Jin et al., 2017). The Measurement of the number of wheat spikes is

important for fine-tuning the management of agricultural

production, allocation of agricultural resources, and prediction of

wheat yield (Pask, 2012; Zhou et al., 2021).

Currently, the methods used for the detection and counting of

wheat spikes are categorized into manual counting, traditional

machine learning detection and counting, and deep learning-

based detection and counting methods. The manual counting

method is cumbersome, labor-intensive, and subjective (Xiong

et al., 2019). In traditional machine learning approaches, the

detection and counting of wheat spikes usually relies on the

selection of features, such as the shape, texture, and color of the

ears, which are subsequently used to construct classification models

for automated recognition and counting of wheat spikes (Zhao

et al., 2014; Grillo et al., 2017; Ganeva et al., 2022). However, the

method of manually extracting wheat features has the disadvantages

of complex design, weak migration, and cumbersome manual

design, which are less effective for applications in scenes with

dense wheat spikes (Kamilaris and Prenafeta-Boldú, 2018; Zhang

et al., 2020). Deep learning techniques have demonstrated excellent

capabilities in the field of computer vision, particularly in the tasks

of detecting and counting intensive objects, such as wheat spikes

(Ye et al., 2023). These methods can automatically learn and extract

key features from massive amounts of image data, thus effectively

solving the complexity of manual feature extraction and the

mobility problem in different scenarios using traditional methods

(Sermanet et al., 2013). Therefore, deep learning provides a solution

for the wheat spike counting task that is both efficient and accurate.

Many researchers have used deep-learning-based detection

counting for detection and counting in agricultural-intensive

scenarios (Aich et al., 2018; Wosner et al., 2021; Alkhudaydi and

De La Iglesia, 2022). Common algorithms used for target detection
02
in agriculture fall into two main categories: algorithms for single-

and two-stage detection. One-stage algorithms, exemplified by

Single Shot MultiBox Detector (SSD) (Liu et al., 2016),

EfficientDet (Tan et al., 2020), and the YOLO family of

algorithms (Redmon et al., 2016), directly classify and localize

targets. Conversely, two-stage algorithms, such as SPP-Net (He

et al., 2015), Mask R-CNN (He et al., 2017), and Faster R-CNN (Ren

et al., 2015), first propose regions using RPN before refining

classification and localization. Li et al. (2021) used the R-CNN

method to detect, count, and analyze wheat spikes. The findings

indicated that although the method demonstrated high recognition

accuracy, it exhibited a slow detection speed and was unsuitable for

deployment in a real-time detection device. Zhao et al. (2021)

improved YOLOv5 by cleaning and enhancing data, adding a

microscale detection layer, and adjusting the confidence loss

function. They achieved an average accuracy of 94.1% in

detecting wheat spikes in UAV images, surpassing the standard

YOLOv5 by 10.8%. Li et al. (2022) used the Faster R-CNN model

for image-based detection and metrology of the number of wheat

spikes per unit area, demonstrating its practical application. Zang

et al. (2022) introduced an efficient channel attention module

(ECA) into the C3 module of the backbone structure of the

YOLOv5s network model and simultaneously inserted a global

attention mechanism module (GAM) between the neck and head

structures. The results showed that the improved YOLOv5s method

improved its applicability in complex field environments with better

results. Wang et al. (2021) enhanced the wheat spike counting target

detection model using Convolutional Block Attention Module

(CBAM) in EfficientDet-D0, and the results of the study showed

that the improved EfficientDet-D0 model achieves a counting

accuracy of 94%, which is approximately 2% higher than that of

the original model, and has a greater improvement in the occlusion

problem. Wen et al. (2022) developed SpikeRetinaNet, a model

consisting of a bi-directional feature pyramid network and a feature

pyramid network, for detecting and counting the number of wheat

spikes in field datasets for global wheat spike detection (GWHD). In

general, among the various detection algorithms, single-stage

algorithms have the advantages of higher speed and easier

deployment in mobile segments, whereas two-stage algorithms,

although they have higher accuracy and achieve better results,

require large floating-point operations, and cannot achieve real-
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time recognition in edge devices with limited computational and

storage resources (He et al., 2017; Ge et al., 2021). However, in

practice, even single-stage algorithms often need to run on mobile

devices that are more capable to ensure detection speed, which may

not be sufficiently fast to meet real-time requirements on average

mobile devices.

To achieve effective deployment and application of the model to

mobile devices, researchers have developed a series of lightweight

network architectures that can efficiently perform target detection

tasks on mobile devices with limited resources (Zhang et al., 2021;

Wang et al., 2022; Ma et al., 2023). Xu et al. (2020) introduced a

hybrid YOLO V3-Lite lightweight model by incorporating residual

blocks into YOLO-Lite. Using the Jetson AGX Xavier device, 43 FPS

can be achieved for recognizing a 224 × 224 video image. Despite

this, the number of parameters was still large at 20.5 MB. Tang et al.

(2020) introduced a lightweight grape disease classification model

using ShuffleNet as the backbone of the model and optimized it with

the channel attention mechanism. The model achieved a

recognition accuracy of 99.14% with only 1.1 M parameters. Yun

et al. (2022) constructed a depthwise separable residual module by

combining depthwise separable convolution and non-bottleneck

residual modules. They replaced the VGG backbone network in the

SSD network with this module and a depthwise separable

convolutional structure to reduce the parameter count of the

object detection model and enhance detection speed. Dong et al.

(2024) improved the YOLOv5 algorithm by introducing Involution

modules, Multi-Level Spatial Pyramid Pooling, Efficient Channel

Attention (ECA) mechanism, and Content-Aware ReAssembly of

Features upsampling method. As a result, the model’s parameter

count decreased from 7.03 million to 6.09 million without

sacrificing performance. Gao et al. (2021) designed a lightweight

network backbone based on a novel spatial attention mechanism

and migration learning to categorize garbage images and achieved

good results in the garbage categorization task on the Huawei cloud

platform with an accuracy rate of 96.17% and several floating-point

operations of approximately 450M FLOPs. Dog-qiuqiu (2021)

introduced the YOLO-FastestV2 model for real-time detection on

mobile devices. The model aimed to substitute the YOLOV5

backbone with ShuffleNetV2 while mitigating the Feature

Pyramid Network (LightFPN) structure. The parameter size of

the model was only 237.55 kB. Good real-time detection can be

achieved, even on embedded devices with limited computational

resources. YOLO-FastestV2 has the advantages of having a small

number of network parameters and low equipment requirements.

Therefore, we selected YOLO-FastestV2 as the primary network for

wheat spike detection.

When faced with the challenges of high density, severe

occlusion, and overlap in wheat spike image detection, traditional

detection methods are often difficult to accurately recognize,

resulting in significant errors and missed detection problems. To

solve these problems, an improved YOLO-FastestV2 target

detection method was proposed in this study. In this study, three

attention mechanism modules, Large Separable Kernel Attention

(LSKA), Efficient Channel Attention (ECA), and Efficient Multi-

Scale Attention (EMA), are introduced to enhance the feature

extraction capability of the backbone network, effectively filter out
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irrelevant information, and improve the accuracy of wheat spike

detection. For the LightFPN module of the detection head in

YOLO-FastestV2, SimConv was used to replace the traditional

Conv layer to further improve the accuracy of the model.

Subsequently, a hybrid-enhanced wheat spike detection model

was constructed by combining the improvements in the backbone

network with the detection head. In addition, this article provides a

comprehensive evaluation of the accuracy, size, and computational

complexity of the model, with the aim offinding a model that strikes

a balance between performance and resource usage.
2 Materials and methods

2.1 Dataset construction

The wheat spike detection dataset utilized in this study is sourced

from a variety of datasets, including the Global Wheat Detection 2020

dataset available at Kaggle, the Global Wheat Detection 2021 dataset

found at Global Wheat, and a custom dataset provided by PP Flying

Paddle, accessible at Baidu AI Studio. The Global Wheat Detection

dataset came from 11 countries/regions and covered 44 unique

measurement sessions (David et al., 2021). A measurement session is

a set of images acquired using a specific sensor at the same location

within a coherent timestamp (typically a few hours). This study

reorganized three datasets, deleted blank and duplicate images, and

retained 11,451 images. We reorganized all wheat spike categories and

named all categories “wheat-spike”. We retained only one unique

category label, wheat spikes, to enhance the generalization performance

of the training model, capture the common specific points of each type

of wheat spike, and accommodate the features of the different

categories of wheat spikes. In this study, the dataset was divided into

a training set, validation set, and test set in the ratio of 8:1:1. The

number of images in the training set was 9160 and the number of

detection frames was 397411. The number of images in the validation

set was 1145 and the number of detection frames was 50137. The

number of images in the test set was 1146 and the number of detection

frames was 49426. We selected several pictures of wheat spikes of

different maturities and under different light conditions, as shown

in Figure 1.
2.2 YOLO-FastestV2 network architecture

YOLO-FastestV2 consists of three parts: input layer, backbone

network, and detection header. The main structure of the system is

shown in Figure 2. The input layer consisted of a 24 × 24 convolutional

module and a pooling layer. The backbone network uses the

ShuffleNetV2 (Chen et al., 2022) network as the model for backbone

feature extraction, which reduces the memory access cost, improves

speed, and reduces model weight. The detection header part is used by

the LightFPN module and Yolov5 anchor-matching mechanism to

predict the actual detection frame. The structure of the LightFPN

module is shown in Figure 3. Using 1 × 1 convolution and Depth

Separable Convolution (DWConv) techniques, the LightFPN

effectively reduces the computation and number of parameters of the
frontiersin.org
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model, making it more efficient to run on resource-constrained devices.

LightFPN integrates the feature maps of different layers through up-

sampling and down-sampling operations to capture the information of

the image at different scales. LightFPN uses up-sampling and down-

sampling techniques to effectively fuse feature maps of different

resolutions to capture image information at different scales.

Furthermore, using DWConv modules and hopping connections,

LightFPN significantly improves the representation of the features.

The feature map of Yolo-Fastest V2 can be decoupled into three

different feature maps. The foreground context classification and

detection classes use the same network branches and share the

parameters to enable lightweight target detection.
2.3 Attention mechanism module

The attention mechanism plays a key role in the field of deep

learning by weighting the input feature maps, reinforcing important

features, and suppressing unimportant ones, allowing the network to
Frontiers in Plant Science 04
focus better on the target region and improve the representation of

features (Qiu et al., 2020). In this study, we used three different

attentional mechanisms (ECA, LSKA, and EMA) to improve the

YOLO-FastestV2 model to improve the detection accuracy of

the model.

2.3.1 ECA attention module
The ECA attention mechanism is an attention model designed

to enhance the capacity of neural networks to model image features

(Wang et al., 2020). At first, ECA abandons the dimensionality

reduction operation in the SE module and maintains the direct

correlation of the channels by maintaining the integrity of the

information through 1 × 1 convolution. Secondly, ECA employs

one-dimensional convolution to enhance local interactions between

channels, which not only reduces information loss due to

dimensionality reduction, but also allows the network to more

fully utilize spatio-temporal information. In addition, the

convolutional kernel size of ECA can be adaptively adjusted

according to the number of channels and the depth of the
FIGURE 1

Example of the wheat spike dataset.
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FIGURE 3

LightFPN module structure.
FIGURE 2

Diagram of YOLO-FastestV2 network structure.
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network, providing flexibility to capture different ranges of channel

dependencies. These features work together to enhance the

performance of the model. The main structure of the ECA

attention mechanism is illustrated in Figure 4. ECA first performs

global average pooling (GAP) on the acquired feature maps,

followed by application of a one-dimensional convolution

operation with kernel size k. In this process, the weights of each

channel are computed using a sigmoid activation function, the

expression of which is shown in Equation 1.

w = s (C1Dk(y)) (1)

where 1Dk denotes a one-dimensional convolution with a

convolution kernel size k. Kernel size k determines the range of

the channel interaction and is related to the channel dimension,

which denotes the visible channel function. In general, it is believed

that the larger the channel size, the stronger are the long-term

interactions, whereas the smaller the channel size, the stronger are

the short-term interactions. In ECA, an adaptive approach is used

to determine the size of the nucleus. Finally, the weights are

multiplied by the corresponding elements of the original input

feature map to obtain the final output feature map.

2.3.2 LSKA attention mechanisms
The principle of the LSKA is an attention mechanism proposed

in response to the problems faced by traditional Large Kernel

Attention (LKA) when dealing with large convolutional kernels,

such as high computational and memory requirements (Lau et al.,

2024). The LSKA attention mechanism decomposes the two-

dimensional convolutional kernels of the deep convolutional layer

into cascading horizontal and vertical one-dimensional kernels,

s ignificantly reducing the number of parameters and
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computational complexity of the model. The LSKA maintains

similar performance to the original LKA, effectively capturing key

features of the image such as edges, texture and shape. In addition,

the design of LSKA allows the use of large convolutional kernels

directly in the attention module without the need for additional

blocks, enhancing the model’s ability to model long distance

dependencies of the input image. While reducing computational

and memory requirements, LSKA improves the performance of

vision tasks and enhances the robustness of the model to image

perturbations. The LSKA attention structure is shown in Figure 5.

The core of LSKA involves decomposing a conventional 2D

convolutional kernel into two 1D convolutional kernels. First, it

decomposes a large 2D kernel, horizontally and vertically, into two

1D kernels. This decomposition drastically reduces the number of

parameters and computational complexity. Despite the

decomposition and concatenation strategies, the performance of

LSKA is similar to that of the original LKA. This means that the

LSKA is effective in capturing important information when dealing

with the key features of an image, such as edges, textures,

and shapes.

2.3.3 EMA attention mechanism
EMA is an efficient multi-scale attention module based on

cross-spatial learning designed to enhance the performance of

deep learning models in computer vision tasks (Ouyang et al.,

2023). The EMA attention mechanism captures multi-scale features

through parallel 1x1 and 3x3 convolutional branches, where the 1x1

branch encodes channel attention using one-dimensional global

average pooling, while the 3x3 branch is used to capture more

detailed multi-scale spatial features. To enhance the feature

representation through cross-spatial information aggregation
FIGURE 4

Structure of the ECA Attention Mechanism Module.
FIGURE 5

Structure of the LSKA attention mechanism.
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while avoiding information loss through dimensionality reduction

operations, EMA maintains direct correlation between channels. In

addition, EMA reduces computational overhead by reshaping some

of the channels into bulk dimensions, while enhancing the capacity

of the model to perceive the global context of the image by encoding

global spatial information. The main structure is illustrated in

Figure 6. The EMA module divides the input feature map into

subfunctions for each channel dimension. The EMA module uses

three parallel routes to extract attention weight descriptors: two in

the 1 × 1 branch and one in the 3 × 3 branch. The 1 × 1 branch uses

one-dimensional global average pooling to encode channel

attention in both spatial directions. The 3 × 3 branch uses a

single 3 × 3 kernel to capture the multi-scale feature

representations. The EMA module also passes the original input

elements through a 3 × 3 branch to expand the feature space. The

EMA module uses cross-spatial information aggregation to enrich

the feature aggregation. The EMA module encodes global spatial

information using two-dimensional global average pooling in 1 × 1

and 3 × 3 branches. The EMA module encodes global spatial

information by applying two-dimensional global average pooling

in 1 × 1 and 3 × 3 branches, generates spatial attention maps using

matrix dot product operations, and then aggregates the output

feature maps within each group to compute spat ia l

attention weights.

2.3.4 SimConv
SimConv, an innovative module within the architecture of

Convolutional Neural Networks (CNNs), leverages the concept of

similarity among image blocks to steer the convolution process.

This strategic approach is designed to elevate the caliber of feature

representation while concurrently boosting the network’s

operational efficiency. The module’s underlying philosophy hinges

on the discernment of representative and uncertain areas within the
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input feature map, followed by the application of a tailored

processing strategy. This not only preserves the integrity of the

feature set but also leads to a pronounced reduction in

computational demands and a streamlined parameter count. The

computational procedure of SimConv can be succinctly outlined as

follows:

y = Re LU(BN(x · w)) (2)

In Equation 2, x denotes the input feature map, www symbolizes

the convolution kernel, BN refers to Batch Normalization, and

ReLU is indicative of the Rectified Linear Unit activation function.

The forward_fuse technique optimizes the process by integrating

Batch Normalization and the ReLU activation function directly into

the convolution operation, thus achieving a decrease in both

computational overhead and memory usage:

y = Re LU(x · w) (3)
2.4 Evaluation of indicators

In this study, Precision (P), Recall (R), Average Precision (AP),

and Mean Average Precision (mAP) were used as evaluation

metrics to compare the effectiveness of different wheat spike

detection models. where P is the probability of correctly detecting

the target among all the detected targets, R is the probability of

correctly recognizing the target among all the positive samples, and

AP is the average value of the detector for each R case, which

corresponds to the area under the PR curve. The mAP is the average

of the averages computed for the APs of various categories, which

summarizes the APs in terms of the category dimension to measure

the performance of the multi-category target detection task. They

are formulated as shown in Equations 3–7.
FIGURE 6

Structure of EMA attention mechanism.
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P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP = oPri

or
(6)

mAP =
AP

num _ classes
(7)

Where TP denotes that the predicted value is a positive sample

as well as the true value. FP denotes that the predicted value is a

positive sample and the true value is a negative sample. FN denotes

that the predicted value is a negative sample, the true value is a

positive sample, and num_classes denotes the number of classes.

The Pri denotes the P-value corresponding to r - i on the PR curve,

or = 1.

In this study, a suite of evaluation metrics was used to assess the

accuracy of the model. Although these enhancement strategies have

generally improved the precision of the model, they have also led to

an increase in Giga Floating Point Operations per Second

(GFLOPs) and Params, which may elevate the hardware

requirements for the model. To comprehensively assess the

performance of the improved model, we introduced the global

evaluation index (GPI) as a comprehensive evaluation index, as

shown in Equation 8.

GPI =o
4

j=1
aj(gj � yj) (8)

where gj are MAP@0.5, MAP@0.5:0.95, GFLOPs, and Params,

yj are the medians of the corresponding parameters. When gj is

MAP@0.5, aj takes the value 0.7 and when gj is MAP@0.5:0.95, aj is

0.2; otherwise aj is -0.05. MAP@0.5 is the result of calculating the

AP of all images in each category when IoU is set to 0.5, and then

averaged across all categories. mAP@.5:.95 indicates mean mAP at

different IoU thresholds (from 0.5 to 0.95 in steps of 0.05) (0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95). At the same time,

because the network we selected was lightweight, we gave GFLOPs

and Params a smaller share in the overall evaluation. The higher the

GPI value or the higher the ranking, the better is the performance of

the model in terms of accuracy and the combined requirements of

the device.
3 Results and discussion

3.1 Experimental platforms

In this study, the experimental platform we used was a desktop

computer configured with a 10th generation Intel Core i5 processor

with 16 GB of memory (RAM) and an NVIDIA GeForce RTX 2060

graphics card with 6 GB of video memory. The operating system

was Windows 10 Professional and CUDA version 11.8. For

programming, we used two tools, Python 3.10 and PyTorch 2.1.1.
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3.2 Impact of inclusion of a single-stage
attention mechanism on the model

In the YOLO-FastestV2 model, the backbone network uses

ShuffleNetV2 architecture, which is divided into three main

phases: foundation, transition, and output (Zhang et al., 2023).

The outputs of the transition and output phases were fed into the

subsequent LightFPN modules. Considering that different attention

mechanisms have different focuses on feature extraction and

selection, this study introduced an attention mechanism module

after the base and output phases to enhance the feature extraction

capability of the backbone network. We denoted the attention

mechanism added after the foundation stage as 1 and the

attention mechanism added after the output stage as 2. The

modeling accuracy of the Attention Mechanism module, which

was added separately after the different stages, is presented in

Figures 7 and 8.

As shown in Figure 7, the accuracy of the YOLO-FastestV2

model is P=80.81%, R=75.34%, AP=77.70%, and F1 = 77.98%.

Among the models with the three attention modules added in the

base stage, YOLO-FastestV2-ECA1, with the addition of the ECA

attention mechanism, exhibited the highest accuracy improvement

with models with P=82.64%, R=77.29%, AP=79.96%, and F1 =

79.88%. YOLO-FastestV2-LSKA1 with the addition of the LSKA

attention mechanism exhibited a higher accuracy improvement

(P=81.83%, R=76.22%, AP=79.31%, and F1 = 78.93%). The Yolo

fastestV2_LSKA1 model showed higher accuracy gains (P=81.83%,

R=76.22%, AP=78.31%, and F1 = 78.93%). The YOLO-FastestV2-

EMA1 model, with the addition of attention to the EMA attentional

mechanism, had smaller accuracy gains (P=81.67%, R=76.03%,

AP= 78.76%, and F1 = 78.75%). As shown in Figure 8, among the

models with the three attention modules added after the output

stage, the YOLO-FastestV2-LSKA2 model with the addition of the
FIGURE 7

Model accuracy added by base stage attention mechanism.
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LSKA attention mechanism module achieved the highest accuracy

with a model accuracy of P=82.95%, R=77.01%, AP=80.06%, and F1

= 79.87%. This was followed by the YOLO-FastestV2-EMA2 model,

which exhibited a greater increase in accuracy with the addition of

the EMA attention mechanism module (P=82.58%, R=77.09%,

AP=79.87%, and 79.74%). Lastly, the YOLO-FastestV2-ECA2

model, with the addition of the ECA attention mechanism

module, exhibited the lowest accuracy improvement with

P=81.56%, R=75.70%, AP=78.55%, and F1 = 78.52%.

The ECA attention mechanism improves the performance of

the network by adaptively selecting a one-dimensional

convolutional kernel size to adjust the coverage of local cross-

channel interactions to avoid losing the target feature information

during the dimensionality reduction process (Guo et al., 2021). The

LSKA attention mechanism combines local self-attention with a

large convolutional kernel to enable the model to focus on specific

regions in the image, thereby improving its ability to recognize key

features and local structures in the image (Lau et al., 2024). The

EMA attention mechanism enhances the feature recognition

capability of the model by reshaping some of the channel

dimensions into batch dimensions and constructing local cross-

channel interactions in each parallel sub-network, as well as

increasing the interaction of the channel information by fusing

the output feature maps of the two parallel sub-networks through a

cross-space learning approach (Sun et al., 2024). The model with

the ECA attention mechanism added at the base stage (YOLO-

FastestV2-ECA1) showed the highest accuracy improvement,

suggesting that ECA is effective in enhancing the model’s

recognition of the target features in the image, especially in the

early stages of the model. LSKA showed a high accuracy

improvement both in the base stage (YOLO-FastestV2-LSKA1)

and after the output stage (YOLO-FastestV2-LSKA2). This

indicated that LSKA is effective in enhancing the performance of

the model at different stages, particularly in recognizing local
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features in the image. The model with the EMA attention

mechanism added after the output stage (YOLO-FastestV2-

EMA2) exhibited the higher accuracy, whereas the model with

the EMA added at the base stage (YOLO-FastestV2-EMA1)

exhibited a smaller accuracy gain. This suggests that EMA is

more effective in the later stages of the model because it may

require more contextual information to optimize feature fusion.

Although the three attentional mechanisms improved the accuracy

of the model to different degrees, the same attentional mechanism

had different effects on the accuracy of the model at different stages

of the network.
3.3 Impact of inclusion of two-stage
attention mechanism on modeling

To further enhance the extraction performance of target

features of the backbone network, the attention mechanisms that

have higher performance enhancement of the model at different

stages were selected in this study to be used in the construction of

the backbone network with hybrid attention mechanisms to

enhance the performance of the model. Among the results of the

model enhancement by the single-stage attention mechanism

modules, ECA and LSKA added after the base stage improved the

accuracy of the model, and the addition of LSKA and EMA

attention mechanism modules after the output stage improved

the accuracy of the model. The accuracy results of the two-stage

addition of the attention mechanism model are listed in Figure 9.

As can be observed from Figures 7, 8, the experimental results of

combining the attention mechanisms showed that the combination

of different attention mechanisms improved the accuracy of the

model. From Figure 9, it can be observed that among the four

models with combined attention mechanisms, the YOLO-

FastestV2-ECA-EMA model with the combination of ECA and

EMA attention mechanisms had the highest overall accuracy

improvement (P=83.84%, R=78.11%, AP=81.42%, and F1 =

80.88%), and the LSKA and EMA attention mechanisms with the

combination of YOLO-FastestV2-LSKA-EMA model had a higher

accuracy improvement with a model accuracy of P=84.01%,

R=77.94%, AP=81.21%, and F1 = 80.87%. Third, we used the

YOLO-FastestV2-LSKA-LSKA model with the addition of the

LSKA attentional mechanism in both the stages (P=83.34%,

R=77.65%, AP=80.61%, and F1 = 80.39%). Finally, the YOLO-

FastestV2-ECA-LSKA model with a combination of the two

attentional mechanisms, ECA and LSKA, exhibited the lowest

accuracy improvements of P=83.31%, R=77.40%, AP=80.53%,

and F1 = 80.24%.

The YOLO-FastestV2-ECA-EMA model performed the best in

terms of overall accuracy, which may be because ECA optimized the

feature representation in the early stage, whereas EMA further

refined the multi-scale information of the features in the later stage.

The combination of both may have formed a complementary

approach, which makes the model effective in extracting and

utilizing features in different stages. The higher accuracy

improvement of the YOLO-FastestV2-LSKA-EMA model may be

because LSKA performed effective local and global structure
FIGURE 8

Model accuracy added by output stage attention mechanism.
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extraction of the features in the early stages, whereas EMA further

refined these features in the later stages, and the combination of the

two may similarly form a complementary effect. The YOLO-

FastestV2-LSKA-LSKA model ranked third in terms of

improvement in accuracy. This suggests that using LSKA in both

phases may offer an advantage in the depth of feature extraction, but

may not have the benefit of ECA or EMA in multi-scale feature

capture. The YOLO-FastestV2-ECA-LSKA model showed the

smallest improvement in accuracy, possibly owing to some

overlap between the mechanisms. This overlap may cause the

network focus to overly prioritize localized information, leading

to limited improvement in model accuracy.
3.4 Impact of improved LightFPN
on modeling

In the YOLO-FastestV2 algorithm, the LightFPN module was

used in the detection head section to process the output results of

the backbone network. Despite its lightweight design, the LightFPN

encounters challenges in wheat spike detection, particularly in

scenarios with uniform backgrounds and complex scene

dynamics. To enhance detection accuracy in these conditions, we

integrated the SimConv module to replace the traditional Conv

module within the LightFPN architecture, resulting in the

SimLightFPN. The SimConv module primarily consists of Conv,

BatchNorm, and ReLU to accelerate the convergence of the model,

which allows the direct application of convolution and activation

functions without batch normalization by providing the

forward_fuse method (Hu and Zhu, 2023). The accuracy of the

improved model is shown in Table 1.
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As can be observed from Table 1, the accuracy of the improved

model was P=83.65%, R=77.54%, AP=80.51%, and F1 = 80.48%,

which is an increase of 2.84% for P, 2.19% for R, 2.81% for AP, and

2.5% for F1, compared with the original model. SimLightFPN, while

retaining the core advantages of LightFPN, optimized the forward

propagation process of the feature fusion network through the

introduction of SimConv, thereby significantly enhancing the

performance of the algorithm in handling the feature fusion task

(Yue et al., 2023). The results suggest that SimConv may be more

efficient for feature extraction and fusion, particularly when dealing

with similar backgrounds and complex scenes in whelk detection.
3.5 Multi-stage improved hybrid models

To further enhance the performance of the model, two models,

YOLO-FastestV2-ECA-EMA and YOLO-FastestV2-LSKA-EMA,

which have higher accuracy for the two-stage addition of the

attention mechanism, were selected in this study and combined

with the improved SimLightFPN module to construct a multi-stage

improved hybrid model. The accuracies of the improved hybrid

models are listed in Table 2.

As can be observed in Table 2, in the multi-stage improved

hybrid model, the YOLO-FastestV2-SimLightFPN-LSKA-EMA

model showed the highest accuracy improvement (P=84.28%,

R=78.37%, AP=81.85%, and F1 = 81.22%) and the YOLO-

FastestV2-SimLightFPN- ECA-EMA showed a higher accuracy

improvement with models with P=83.91%, R=78.35%,

AP=81.52%, and F1 = 81.03%. The YOLO-FastestV2-

SimLightFPN-LSKA-EMA model performed the best in terms of

accuracy improvement, which may be attributed to the advantages

of the combination of the LSKA and EMA attention mechanisms in

terms of an in-depth understanding of features and multi-scale

information extraction. Combined with the feature fusion capability

of SimLightFPN, this enabled the model to capture and analyze

features at different depths better in the wheat spike detection task.
FIGURE 9

Modeling accuracy of two-stage increasing attention mechanism.
TABLE 2 Accuracy of the multi-stage improved hybrid model.

Model
P
(%)

R
(%)

AP
(%)

F1
(%)

YOLO-FastestV2 80.81 75.35 77.70 77.98

YOLO-FastestV2-SimLightFPN-
LSKA-EMA

84.28 78.37 81.85 81.22

YOLO-FastestV2-SimLightFPN-
ECA-EMA

83.91 78.35 81.52 81.03
fronti
TABLE 1 Improved SimLightFPN model with original model accuracy.

Model P (%) R (%) AP (%) F1 (%)

YOLO-FastestV2 80.81 75.35 77.70 77.98

YOLO-FastestV2-SimLightFPN 83.65 77.54 80.51 80.48
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Although the accuracy improvement of the YOLO-FastestV2-

SimLightFPN-ECA-EMA model was slightly lower than that of

the YOLO-FastestV2-SimLightFPN-LSKA-EMA model, it still

exhibited high-performance improvement. The results show that

the combination of SimLightFPN and the two-stage add-attention

mechanism can effectively fuse and analyze the features of different

depths to improve the accuracy of the model.
3.6 Comprehensive evaluation

The ranked results of the GPI for all models are listed in Table 3.

As can be observed from Table 3, among the various improved

models, the YOLO-FastestV2-SimLightFPN-ECA-EMA model had the

highest GPI of 0.84, the second-ranked model was the YOLO-

FastestV2-SimLightFPN-ECA-EMA model with a GPI of 0.84, and

the third-ranked model was the YOLO-FastestV2-ECA-EMA model

with a GPI of 0.81. The highest accuracy of the YOLO-FastestV2-

SimLightFPN-ECA-EMA model may be because it combines both the

ECA and EMA attention mechanisms as well as the SimLightFPN

module, which may have made the model more efficient in feature

extraction and fusion. Although the GPI values of YOLO-FastestV2-

SimLightFPN-LSKA-EMA and YOLO-FastestV2-SimLightFPN-ECA-

EMA are close to each other, YOLO-FastestV2-SimLightFPN-LSKA-

EMA performed better in other performance metrics (e.g., mAP@0.5,

and mAP@.5:.95) is better, which suggests that it has an advantage in

terms of accuracy. Compared with the YOLO-FastestV2-SimLightFPN-
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ECA-EMA model, the YOLO-FastestV2-SimLightFPN-LSKA-EMA

model has a higher computational complexity and number of

parameters, which may lead to limitations in its deployment

performance on mobile platforms. The YOLO-FastestV2-ECA-EMA

model had a slightly lower GPI than the other two models, but it also

performed well in terms of accuracy. The most efficient model, YOLO-

FastestV2-SimLightFPN-ECA-EMA, achieved a high level of accuracy

while maintaining low computational requirements.
4 Conclusion

Accurate detection and measurement of the number of wheat

spikes are important for the rapid prognosis of wheat yield and national

food security. This study is based on fusing images of wheat spikes

from multiple datasets to construct a model for wheat spike detection

that can be used for preliminary estimation of wheat yield on mobile

devices. The accuracy and reliability of the model were assessed by

analyzing the differences between the model detection results and

actual labeling results. In this study, the YOLO-FastestV2 model was

used as the basis for constructing a wheat spike detection model. To

improve wheat spike detection the accuracy, three attention

mechanisms (ECA, EMA, and LSKA) were introduced and

combined with YOLO-FastestV2 to construct a new model. In this

study, the attention mechanism was added after the base and output

phases of the backbone network. The YOLO-FastestV2-ECA1 model

with ECA attention added after the base phase demonstrated the
TABLE 3 Value of GPI for all models.

Model mAP@0.5 (%) mAP@.5:.95
(%)

GFLOPs Params GPI Rank

YOLO-FastestV2 67.57 55.10 0.38 0.24 0.00 14

YOLO-FastestV2-ECA1 70.41 60.00 0.38 0.24 0.60 6

YOLO-FastestV2-ECA2 67.78 55.12 0.38 0.24 0.03 13

YOLO-FastestV2-LSKA1 67.97 57.03 0.4 0.24 0.09 12

YOLO-FastestV2-LSKA2 69.93 58.90 0.39 0.28 0.42 10

YOLO-FastestV2-EMA1 68.58 56.63 0.4 0.24 0.17 11

YOLO-FastestV2-EMA2 69.77 58.76 0.39 0.24 0.44 9

YOLO-FastestV2-
ECA-LSKA

70.23 59.26 0.39 0.28 0.48 8

YOLO-FastestV2-
ECA-EMA

71.58 61.41 0.39 0.24 0.81 3

YOLO-FastestV2-
LSKA-LSKA

70.59 59.85 0.41 0.28 0.52 7

YOLO-FastestV2-
LSKA-EMA

71.07 60.68 0.41 0.25 0.66 5

YOLO-
FastestV2-SimLightFPN

70.75 60.66 0.38 0.24 0.67 4

YOLO-FastestV2-
SimLightFPN-LSKA-EMA

72.00 61.71 0.41 0.25 0.84 2

YOLO-FastestV2-
SimLightFPN-ECA-EMA

71.76 61.46 0.39 0.24 0.84 1
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highest improvement in accuracy (P=82.64%, R=77.29%, AP=79.96%,

and F1 = 79.88%). Conversely, the YOLO-FastestV2-LSKA2 model

with the LSKA attention mechanism added after the output phase

exhibited the highest accuracy gains (P=82.95%, R=77.01%,

AP=80.06%, and F1 = 79.87%). To further enhance the extraction

performance of target features in the backbone network, this study

selected the ECA and LSKA attention mechanisms to improve the

accuracy of the model after the base phase and the LSKA and EMA

attention mechanisms that improved the accuracy of the model after

the output phase to construct a model with a two-stage increase in the

attention mechanism. The YOLO-FastestV2-ECA-EMA model

demonstrated the highest accuracy (P=83.84%, R=78.11%,

AP=81.42%, and F1 = 80.88%) among the two-stage models for

increasing the attentional mechanisms. In this study, SimLightFPN

was proposed by introducing SimConv to simplify and improve the

feature fusion capability of the LightFPN module compared with the

unimproved YOLO-FastestV2 model. This resulted in an increase of

2.84% in P, 2.19 in R, 2.81% in AP, and 2.5% in F1, compared with the

original model. We then constructed a hybrid wheat spike detection

model by combining a two-stage model with simultaneous addition of

attention mechanisms and SimLightFPN. Among the hybrid models,

the YOLO-FastestV2-SimLightFPN-LSKA-EMA model exhibited the

highest accuracy (P=84.28%, R=78.37%, AP=81.85%, and F1 =

81.22%). In the comprehensive evaluation of the models, the GPI

value of YOLO-FastestV2-SimLightFPN-ECA-EMA was ranked No. 1

(0.84), which is the optimal model under the combined consideration

of model accuracy andmodel complexity. Currently, we have only used

one lightweight machine-learning model for improvement and

evaluation, and we will explore more machine-learning models in

our future research and combine different network structures and

techniques to achieve a wider range of applications on diverse datasets.
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