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Cooking time is a crucial determinant of culinary quality of cassava roots and

incorporating it into the early stages of breeding selection is vital for breeders. This

study aimed to assess the potential of near-infrared spectroscopy (NIRS) in classifying

cassava genotypes based on their cooking times. Five cooking times (15, 20, 25, 30,

and 40 minutes) were assessed and 888 genotypes evaluated over three crop

seasons (2019/2020, 2020/2021, and 2021/2022). Fifteen roots from five plants per

plot, featuring diameters ranging from 4 to 7 cm, were randomly chosen for cooking

analysis and spectral data collection. Two root samples (15 slices each) per genotype

were collected, with the first set aside for spectral data collection, processed, and

placed in two petri dishes, while the second set was utilized for cooking assessment.

Cooking data were classified into binary and multiclass variables (CT4C and CT6C).

Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex

N-500were used to collect spectral data. Classification of genotypes was carried out

using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models.

The spectral data were split into a training set (80%) and an external validation set

(20%). For binary variables, the classification accuracy for cassava cooking time was

notably high (R2
Cal ranging from0.72 to 0.99). Regardingmulticlass variables, accuracy

remained consistent across classes, models, and NIR instruments (~0.63). However,

the KNNmodel demonstrated slightly superior accuracy in classifying all cooking time

classes, except for the CT4C variable (QST) in the NoCook and 25 min classes.

Despite the increased complexity associated with binary classification, it remained

more efficient, offering higher classification accuracy for samples and facilitating the

selection of the most relevant time or variables, such as cooking time ≤ 30 minutes.

The accuracy of the optimal scenario for classifying samples with a cooking time of

30minutes reached R2
Cal   = 0.86 and R2

Val = 0.84, with a Kappa value of 0.53. Overall,

the models exhibited a robust fit for all cooking times, showcasing the significant

potential of NIRs as a high-throughput phenotyping tool for classifying cassava

genotypes based on cooking time.
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1 Introduction

With the increasing challenges associated with climate change,

cassava (Manihot esculenta Crantz) has gained prominence as a

crop of significant commercial relevance. Simultaneously, it

maintains its high importance in the food security of millions of

farmers, particularly in African countries (Ceballos et al., 2004).

While all parts of the cassava plant are utilized for various purposes,

cassava is primarily cultivated for its starchy roots, which can be

used for human and animal feed, as well as in various industrial

applications (Chiwona-Karltun et al., 2015). The roots are rich in

carbohydrate (40% and 20% higher than rice and maize,

respectively), providing consumers with an affordable source of

calories (Bala et al., 2015).

The leaves and roots of cassava contain cyanogenic chemicals,

which are the precursors to hydrocyanic acid (HCN), which in

certain amounts can be poisonous or even fatal. Cultivars are

categorized as sweet or table when they contain less than 100 mg

kg-1 of cyanogenic compounds (wet basis), bitter cassava had a

higher cyanogenic content (Wheatly et al., 2003). Sweet cassava is

consumed fresh (cooked roots) or processed into various products

such as cakes, snacks, and pies, etc. Boiling and frying cassava to

serve as snacks is popular in Brazil. In Latin American and African

countries, one of the simplest and most widespread methods to

consume cassava roots is to boil them. For increased acceptance

among end consumers, characteristics such as tenderness, mealy

texture, or friability (ability to disintegrate between fingers and in

the mouth) and short boiling time are essential (Hongbété et al.,

2011; Bechoff et al., 2017).

Cooking time is a crucial determinant of the culinary quality of

cassava roots. It holds high priority in cassava breeding programs

due to its impact on energy and time savings during food

preparat ion (Moreto and Neubert , 2014) . Numerous

environmental and genetic factors can influence cassava cooking

time (Hongbété et al., 2011; Pedri et al., 2018; Iragaba et al., 2019;

Silveira et al., 2021). A maximum acceptable time of thirty minutes

has been established to optimize the commercialization and

acceptance of cassava roots for culinary purposes in Brazil

(Fukuda et al., 2002; Beleia et al., 2006; Vieira et al., 2018).

Routine evaluation of root quality, including cooking time, is

essential in the improvement of varieties targeted for the sweet

cassava market (Iragaba et al., 2019).

Owing to their high starch content (20–35%), cassava roots

culinary quality is greatly impacted by the physical and structural

changes in starch that occur during cooking (Charoenkul et al.,

2011). As starch undergoes gelatinization during cooking,

absorbing water and leading to an increase in starch granule

volume, these modifications result in a product with specific

characteristics that are essential for consumer acceptance

(Butarelo et al., 2004). In addition to starch structural properties,

the maturity of the roots also impacts cooking time, which tends to

be shorter in plants harvested at younger developmental stages

(Santos et al., 2022). Therefore, these aforementioned factors should

be taken into account by breeding programs when assessing

cooking times.
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Presently, the most widely method for assessing cassava cooking

time is the softness test, which entail determining root tenderness

using a fork after a specific time. An evolution in this process is the

Mattson cooker, routinely used for determining the cooking time of

peas, beans, and soybeans (Mattson, 1946; Jackson and Varriano-

Marston, 1981). More recently, it has been adapted for cassava use

(Miranda et al., 2008). This technique relies on metal rods with

standardized weights exerting pressure as they pierce through

cassava root pieces while they cook in boiling water. A more

recent approach for assessing cassava cooking time is the water

absorption method, which is faster, less subjective, and more

reproducible than the softness test, which can take up to 60

minutes for some genotypes (Tran et al., 2021). The percentage of

water absorption during boiling, calculated by the ratio of the initial

root weight to the weight during boiling, correlates with cooking

time and mealy texture, two crucial indicators of cooking quality

(Beleia et al., 2004; Kouadio et al., 2011; Tran et al., 2021). All these

methods are labor-intensive and time-consuming, taking over an

hour to evaluate just one genotype. This contrasts with the realities

of breeding programs that need to assess hundreds of samples daily

in a quick and precise manner to proceed with the selection process.

Thus, in order to improve the efficiency of cassava cooking

assessment and analyze more samples in a shorter timeframe, it is

imperative to develop and implement more effective methods.

The application of Near-Infrared Spectroscopy (NIRS)

technologies has emerged as a game-changer in the term

precision in phenotyping, revolutionizing selection stages within

breeding programs. NIRS exhibits performance on par with

conventional analytical chemistry methods, offering distinct

advantages such as reduced analysis times, early assessment

capabilities, the capacity to handle large sample volumes daily,

and the non-destructive nature of sampling (Ikeogu et al., 2017).

This sophisticated tool operates through the correlation of spectra

information with reference data acquired through conventional

methods to develop calibration models for predicting traits of

interest (Pasquini, 2018; Saeys et al., 2019). The electromagnetic

radiation in the NIRS region (700–2500 nm) is selectively absorbed

by components like water and various organic compounds,

including crucial elements such as carbohydrates, proteins, lipids,

and alcohols (Agelet and Hurburgh, 2014). Consequently, NIRS

stands out as a significant predictor of these compounds in

organic substances.

NIRS spectroscopy has demonstrated remarkable efficacy in

predicting cooking times across various species, including

common beans (Cichy et al., 2015; Mendoza et al., 2018; Wafula

et al., 2020, 2021) and rice (Thanathornvarakul et al., 2016). NIRS-

based models have demonstrated strong predictive abilities, with

validation R2 values greater than 0.87 and calibration R2

values greater than 0.81 (Thanathornvarakul et al., 2016).

Critical properties of rice, including minimum cooking time,

adhesiveness, pasting temperature, viscosity peak, and breakdown

have been accurately predicted using NIRS-based model

(Thanathornvarakul et al., 2016). In common beans, the NIRS-

based prediction models for cooking time have exhibited

exceptional precision, revealing an average prediction error of 8
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minutes, underscoring the potential of NIRS in forecasting

cooking times in bean varieties (Wafula et al., 2020). The NIRS

technique has demonstrate efficacy in quantifying non-structural

carbohydrates and was a suitable tool for analyzing the

physiological responses of plants to diverse environmental stresses

(Rosado et al., 2019).

Few cases of used of NIRS spectroscopy to predict cassava

cooking have been recorded. A novel approach based on

hyperspectral imaging for large-scale phenotyping has been

recently developed (Meghar et al., 2023). This innovative

approach meticulously process images for spectral data

extraction and multivariate statistics are used to identified

distinct regions of interest (Meghar et al., 2023). However,

despite its potential, the results fail to accurately predict

parameters linked to cooking ability. This limitation could stem

from the relatively small sample size and the spectral data

collection method, which involved fresh intact slices.

Additionally, NIR hyperspectral imaging presents several

drawbacks, including its high cost, the necessity for sensitive

detectors for data collection, fast computers for analysis, and

substantial data storage capacity requirements (Manley, 2014).

Given this scenario, the present study proposes a new approach

for classifying cassava genotypes based on cooking time through

the development and validation of models using NIR

spectroscopy. The result of this study will serve as a foundation

for establishing a user-friendly protocol for NIR-based

phenotyping of cooking time, which will facilitate the

identification of genotypes that cook in predefined times that

are more acceptable to end consumers.
2 Materials and methods

2.1 Plant material

A total of 888 cassava genotypes, which are part of the breeding

program at Embrapa Mandioca e Fruticultura located in Cruz das

Almas, Bahia, Brazil (12°39′25″ S, 39°07′27″W, 226 m altitude), were

assessed. Seventeen trials (Table 1) were conducted during the crops

seasons of 2019/2020, 2020/2021, and 2021/2022, in areas situated in

the municipalities of Cruz das Almas, Laje (13°10’56”S, 39°25’30”W,

190 m altitude), Alagoinhas (12°7’13’’S, 38°24’35’’W, 151 m altitude),

and Sátiro Dias (11°35’56’’S, 38°35’24’’W, 244 m altitude), all within

the state of Bahia. The experiments were arranged using a complete

randomized block design (with two or three replications) and an

augmented block design (including 10 standard checks per block).

The trials were conducted under rainfed conditions. Planting was

performed using stakes that were 16–20 cm long and contained 5–7

buds each. Each plot consisted of two to six rows with 8–10 plants per

row, spaced at 0.90 m between rows and 0.80 m between plants.

All cultivation practices followed the guidelines outlined by

Souza et al. (2006). The climate conditions in the regions are

predominantly warm, humid, and tropical (Aw/Am, according to

the Köppen classification), with an approximately 12-hour

photoperiod throughout the year (Souza et al., 2020).
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2.2 Sample preparation and cooking
time analysis

The trials were harvested between the eleventh and the

twelfth month after planting. Fifteen roots from three

competitive plants per experimental plot (five healthy roots

were selected from each harvested plant) with diameters

ranging from 4 to 7 cm, were randomly selected for cooking

analysis and spectral data collection. After classification, the roots

were washed in running water and peeled. Two pieces from the

central region of each root were collected. The first piece, which

had a longitudinal length of around 10 cm with a variable

diameter depending on the genotype, was used for the cooking

analysis. The other portion, which was the same size, was put in

Petri dishes after being cooked in a food processor and used to

collect spectral data.

For the cooking time evaluation, five cooking times (CT): 15

(CT15m), 20 (CT20m), 25 (CT25m), 30 (CT30m), and 40 (CT40m)

minutes after the onset of cooking were analyzed. Root samples were

divided into three repetitions offive to nine pieces each and placed in

a pot of boiling water (98°C), with a mass ratio of 1:10 (cassava:

water). Cassava was considered cooked when little resistance to fork

penetration perpendicular to their length was observed.

Cooking data were organized into binary and multiclass

variables. For each cooking time, binary variables indicating

cooked or uncooked were considered. Additionally, these same

variables were used for multiclass classification based on 4 classes

(CT4C) and 6 classes (CT6C) associated with cooking time. Classes

that were taken into consideration for CT4C were, cooked at 20

min, 30 min, 40 min, or uncooked, while the following classes were

considered for CT6C including cooked at 15 min, 20 min, 25 min,

30 min, 40 min, or uncooked.

To address the imbalance in class representation in binary

variables, we employed the oversampling technique. This involved

randomly duplicating readings from the underrepresented class

(cooked). As a result, for spectral data classification analyses, an

equal distribution of classes was ensured for each cooking time, with

50% of readings from roots that cook and 50% from roots that do

not cook.
2.3 Data spectral collection and analysis

The spectral data were acquired from processed root samples

housed in two Petri dishes. This procedure utilized a benchtop

NIRFlex N-500 spectrometer (Büchi, Flawil, Switzerland) (NIR

NIRFlex) and a portable device, QualitySpe® Trek, model S-

10016 (NIRS QST). Every Petri dish was scanned twice, for a

total of four repetitions for each experimental plot.

The NIRFlex N-500 spans a wavelength range of 1000–2500 nm

(10000–4000 cm-1) and operates in diffuse reflectance mode,

featuring a spectral resolution of 8 cm-1, interpolated at 4 cm-1,

resulting in 1501 data points per spectrum. Employing a

polarization interferometer with TeO2 wedges, a Tungsten

Halogen lamp as the NIRS light source, and an InGaAs detector,
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this instrument delivers accurate spectral data. On the other hand,

measurements was made using the portable QST device in diffuse

reflectance over a wavelength range of 350–2500 nm, with a spectral

resolution of 9.8 nm at 1400 nm. The QST device incorporates three

detectors: 350–1000 nm (512-element silicon array), 1001–1785 nm

(InGaAs photodiode), and 1786–2500 nm (InGaAs photodiode).

This device is equipped with an internal light source and an internal

gray scale reference for optimization and wavelength calibration,

featuring a Quartz Tungsten Halogen bulb with a color temperature

of 2870 K ±33 K. The window of the QST device, approximately 1

cm in diameter, is illuminated by the internal light source, and the

internal design minimizes specular reflections.

Principal component analysis (PCA) was performed using the

prcomp package (Kassambara and Mundt, 2020) on the centered

and standardized (i.e., each wavelength was centered by subtracting

the overall mean and standardized by dividing by the sample

standard deviation) spectra data in order to assess the population

structure of genotypes based on their individual cooking times. A

symmetric biplot was generated using the Biplot function to

graphically display the genotypes grouping.
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The heritability of each wavelength from the spectral data was

assessed for each trial. Variance components were estimated using a

linear mixed model and the R package lme4 (Bates et al., 2015). The

model used for data analysis can be expressed as: y = Xb + Zg + e,

where y represents the wavelength reflectance data, b represents

fixed block effects, and g and e denote random effects of genotype

and error, respectively. Matrices X and Z symbolize the incidence

matrices for the respective b and g effects within the mixed model.

All random effects were assumed to conform to a normal

distribution, where g ∼N(0,s 2
g ) and e∼N(0,s 2

e ). Broad-sense

heritability (H2) was then calculated using the formula: H2 =

s2
g =(s 2

g + s 2
e ). All statistical analyses were executed using R

software version 4.2.3 (R Core Team, 2023).
2.4 Data pre-processing and classification
model adjustment

Several pre-processing techniques were evaluated to ensure the

reliability of spectral data, being used to enhance the signals of
TABLE 1 Trials information with location and crop seasons where spectral data collection was conducted on cassava roots.

Trial name Site Year Type of trial Design
N° block/N°

checks

Sampling NIR analysis*

# Genotypes # Reads

BR.CETBAG.19.UFRB
Cruz das
Almas, BA

2019/2020 CET AB 9/10 424 2132

BR.PYTGS.19.PP1
Cruz das
Almas, BA

2019/2020 PYT RCB 2/6 110 688

BR.PYTGS.19NH2 Laje, BA 2019/2020 PYT RCB 2/6 110 684

BR.PYTGS.19.RA1 Laje, BA 2019/2020 PYT RCB 2/6 121 904

BR.CET.20.CNPMF
Cruz das
Almas, BA

2020/2021 CET AB 22/10 127 608

BR.CET.20.PP1
Cruz das
Almas, BA

2020/2021 CET AB 16/10 46 200

BR.AYTGS.20.NH1 Laje, BA 2020/2021 AYT RCB 3/5 17 140

BR.AYTGS.20.PP1
Cruz das
Almas, BA

2020/2021 AYT RCB
3/5

30 364

BR.AYTGS.20.RA1 Laje, BA 2020/2021 AYT RCB 3/5 30 356

BR.PTE.BAG.21.Candeal
Cruz das
Almas, BA

2021/2022 PTE AB 15/10 266 1343

BR.PYT.21.PP1
Cruz das
Almas, BA

2021/2022 PYT RCB
2/6

29 144

BR.PYT.21.SJ Laje, BA 2021/2022 PYT RCB 2/6 31 164

BR.PYTGS-C2.21.Emb
Cruz das
Almas, BA

2021/2022 PYT RCB
2/6

67 354

BR.PYTGS-C2.21.NH1 Laje, BA 2021/2022 PYT RCB 2/6 41 188

BR.UYTGS.21.AlaBoaUniao Alagoinhas, BA 2021/2022 UYT RCB 3/5 9 108

BR.UYTGS.21.SDAP Sátiro Dias, BA 2021/2022 UYT RCB 3/5 11 124

BR.UYT.21.NH Laje, BA 2021/2022 UYT RCB 3/5 10 120
fr
AB, Augmented block design; RCB, Randomized complete block design; PTE, Phenotypic evaluation trial; CET, Clonal evaluation trial; PYT, Preliminary yield trial; AYT, Advanced yield trial;
UYT, Uniform yield trial; * Number of genotypes that were phenotyped for cooking time and collected spectral data.
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interest and at the same time remove or attenuate noise. The

techniques including first-order derivative (1st), detrend (DT),

multiplicative scatter correction (MSC), and combined methods

such as first-order derivative-detrend (1st-DT), first-order

derivative-multiplicative scatter correction (1st-MSC), detrend-

multiplicative scatter correction (DT-MSC), and first-order

derivative with Savitzky–Golay-detrend (1st-SG-DT). The first-

order derivative was used to subtract the background and baseline

drift, DT was employed to eliminate baseline drift in the spectra,

and the MSC method was applied to eliminate multiplicative

interference of scattering in the spectral signal.

Following pre-processing, the spectra were smoothed using an

N=11 filter at each end of the spectral set for noise reduction

(Savitzky and Golay, 1964). Data preprocessing was performed

using prospectr package (Stevens and Ramirez-Lopez, 2022)

implemented in R software version 4.2.3 (R Core Team, 2023).

After pre-processing, the spectral data were organized into a

matrix X (predictors), and the cooking data were allocated in a

vector Y (response). Two classification models were assessed for

their potential in predicting cassava clones’ cooking times. The k-

nearest neighbor algorithm (KNN) method (Mucherino et al., 2009)

is based on determining distances (usually Euclidean) between an

unknown object and each object in the training set. It is one of the

most widely used non-parametric algorithms in machine learning

due to its simplicity. The KNN method selects the smallest distance

for assigning members of a particular class. The k-nearest objects

(where k is the number of neighbors) of the unknown sample are

chosen, and a majority rule is applied: the unknown sample is

classified into the class to which the majority of the k objects belong.

The choice of k is optimized by calculating the prediction capacity

with different k values. The other method employed in the analyses,

partial least squares (PLS), also known as projection to latent

structures, models matrices X and Y simultaneously to find latent

variables in X that will best predict latent variables in Y. These PLS

components are similar to principal components. The models are

implemented in the caret package (Kuhn, 2008).
2.5 Cross-validation and external validation

The data were split into a cross-validation set (80% of the data)

and an external validation set (remaining data used to test

classification models), both with an even distribution of

genotypes between the two classes (cooked or uncooked) for

binary variables and among the four or six cooking times (for

multiclass variables).

The models’ performance was assessed through 10-repetition 5-

fold cross-validation conducted on the training set. The overall

effectiveness of binary classification models was evaluated based on

specificity, sensitivity, and receiver-operating characteristic (ROC)

analyses. Sensitivity measures the probability of the classifier

achieving true positives tp
tp+fn

� �
, while specificity measures the

probability of achieving true negatives tn
tn+fn

� �
, where tp

corresponds to the number of correctly recognized examples of

the class (true positives), tn the number of correctly recognized

examples that do not belong to the class (true negatives); fp
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examples that were incorrectly assigned to the class (false

positives), and fn examples not recognized as class examples (false

negatives). ROC analyses were developed to assess the classification

accuracy of a statistical model that classifies objects into two

categories. An ROC curve is a graph of sensitivity on the y-axis

against (1 - specificity) on the x-axis for various threshold values t.

The diagonal 45° line connecting (0,0) to (1,1) is the ROC curve

corresponding to random chance. The ROC curve for the gold

standard is the line connecting (0,0) to (0,1) and (0,1) to (1,1).

Generally, ROC curves fall between these two extremes. The area

under the ROC curve is a summary measure that essentially gauges

accuracy across the entire dataset.

For multiclass variables, the average values of accuracy, Cohen’s

Kappa statistic (unweighted) (Cohen, 1960), specificity, sensitivity,

and area under the ROC curve (AUC) obtained in each cross-

validation repetition were considered. Accuracy was calculated as
tp+t

tp+fn+fp+tn, and the Kappa index is based on the number of

concordant responses defined by po+pe
1−pe

where po is the proportion

of units that agreed, and pe   is the proportion of units for which

agreement is expected by chance.

The external validation sample set comprised 20% of the

spectral data. Prediction performance was evaluated with

parameters generated from a confusion matrix. The parameters

for assessing model quality included accuracy, Kappa index,

sensitivity, and specificity.
3 Results

3.1 Initial cooking analyses of field trial
samples and spectral heritability

In this study, 36% (N=319) of the evaluated genotypes displayed

the ability to be cooked within 30 minutes in at least one

environment. Notably, 85 genotypes, comprising 65 traditional

cultivars, 53 local varieties, and 26 newly developed genotypes

from the breeding program, exhibited significant cooking

potential within 15 minutes. Among these, five traditional sweet

cultivars (BRS Jari, BRS Gema de Ovo, BRS Dourada, and BRS 396)

distinguished themselves for their elevated beta-carotene content, a

precursor of provitamin A, coupled with low hydrogen cyanide

(HCN) levels. Moreover, there exists a cultivar initially designed for

industrial purposes (BRS Kiriris) due to its notable fresh root and

starch yield, yet it also finds consumption in various regions owing

to its intermediate cyanogenic compound levels. Beyond these

cultivars, 53 local varieties and 26 newly developed genotypes

from the breeding program exhibited promising cooking potential

within the 15-minute timeframe.

For most trials, the proportion of uncooked samples within 40

minutes was higher (> 50%) than those that cooked, except for the

clonal trial BR.CET.20.PP1 (Figure 1).

The heritability of reflectance values was investigated for each

trial. There were difference in the heritability of NIRS spectra across

trials and spectral regions (Figure 2). Notably, trials BR.PYT.21.PP1

and BR.PYTGS-C2.21.NH1 which demonstrated higher heritabilities

with values ≥ 0.70 for NIRS QST (Supplementary Table S1).
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For NIRFlex, trials BR.PYT.21.PP1 and BR.PYT.21.SJ displayed

heritabilities exceeding 0.81. Trial BR.AYTGS.20.PP1 on the other

hand had the lowest average heritabilities (H2 = 18 for NIRS QST,

H2 = 0.32 for NIRFlex) (Supplementary Table S1). Heritability was

often significantly higher for NIRFlex, especially in the 1000 -1250

nm spectral range (Figure 2).
3.2 Principal component analysis of
spectral data

A total of 2150 and 1500 wavelengths from NIRS QST and

NIRFlex, respectively, were used in principal component analysis

(PCA) (Supplementary Figure S1). There was variation among

evaluated cassava genotypes, with minor differences between

different cooking times (Supplementary Figures S1, S2).

Overlapping classes were also observed for cooking times in

different spectral ranges for the two NIR devices. The first

principal component (PC) accounted for a variation of 79.65%

(350 to 700 nm) to 98.60% (701 to 1000 nm) for NIRS QST

(Supplementary Figure S1) and over 94.65% in both spectral

ranges (1001–1750 nm and 1751–2500 nm) for NIRFlex

(Supplementary Figure S2).
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3.3 Efficiency of pre-processing methods
and classification models

The accuracy, sensitivity, and specificity of the KNN

classification method were used to assess the efficiency of pre-

processing techniques (Supplementary Figure S3). When compared

to using raw spectral data, the performance of the classification

model was enhanced by the application of pre-processing

techniques, as indicated by cross-validation results. The 1st +

MSC methods were selected because they provided better

accuracy, sensitivity, and specificity among binary and multi-class

variables (Supplementary Figure S3).

Overall, the KNN and PLS models’ classification accuracy for

binary variables was comparable. According to cross-validation,

QST, accuracy ranged from 0.72 (KNN, T40min) to 1.00 (PLS,

T15min) (Figure 3). The accuracy for NIRFlex were higher,

ranging from 0.83 (PLS, T30min and T40min) to 0.99

(PLS, T15min).

Regarding the classification of cooking as multi-class variables,

there was a more pronounced difference between classification

models, where KNN outperformed PLS (variation from 0.96 to

0.87) except for CT4C with NIRS QST spectra, where both models

were similar (variation from 0.67 to 0.81) (Figure 3).
FIGURE 1

Percentage distribution of genotypes with roots cooked at various time intervals (15, 20, 25, 30, and 40 minutes) and genotypes with uncooked
roots (NC) for each trial.
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With the exception of CT4C with QST spectra, for which both

models performed similarly (variation from 0.67 to 0.81), there was a

more pronounced difference between the classification models when it

came to the classification of cooking as multi-class variables. KNN

outperformed PLS in this regard (variation from 0.96 to 0.87) (Figure 3).

The results consistently showed stable probabilities of

classifying samples into their respective categories across 50

repetitions of cross-validation (folds vs repetitions), as depicted in

Supplementary Figures S3 to S10. This stability held true for both

binary and multiclass variables related to cooking time.

Sensitivity displayed a pattern that was comparable to accuracy,

with similarities between the PLS and KNN models for binary

variables and significant differences for multi-class variables

(Figure 4). For binary variables, sensitivity was approximately

0.90 for both instruments, indicating a high ability to classify the

positive class (samples that are not cooked). For the multiclass

variables CT4C and CT6C, uncooked samples were also considered

as the positive class. Sensitivity values obtained by QST were 0.62

(KNN) and 0.69 (PLS) for CT4C and 0.49 (KNN) and 0.22 (PLS) on

average for CT6C (Figure 4). For NIRFlex, the models showed

comparable performance between the two multi-class variables,

however the KNN model (~0.76) demonstrated a higher ability to

classify the positive class compared to PLS (0.32) (Figure 4).
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Specificity measures the ability of a model to predict true

negatives for each available class. As this class (samples that are

cooked) was underrepresented, the tendency is for specificity to be

lower than sensitivity. Thus, specificity varied among the cooking

times of binary variables, ranging from 0.31 (PLS, CT40m) to 1.00

(PLS and KNN, CT15m) (Figure 4). Therefore, the longer the

cooking time, the lower the specificity values. For multiclass

variables, specificity was close to 0.90 for QST and ranged from

0.80 to 0.95 for NIRFlex (Figure 4). Thus, for this type of variable,

there was a greater balance in predicting true positives

and negatives.
3.4 External validation of
classification models

External validation was conducted and assessed through the

utilization of a confusion matrix, with a focus on quality parameters

such as accuracy, Kappa index, sensitivity, and specificity across all

variables (refer to Figures 5–7). The external validation population

was formed by selecting 20% of the dataset. Both NIRS devices

demonstrated a moderate to high magnitude accuracy, exceeding

0.57 for QST and 0.67 for NIRFlex (Figure 5). Looking more closely
A

B

FIGURE 2

Broad-sense heritability for each wavelength of near-infrared spectra (NIRS) from cassava roots assessed for cooking ability using NIRS
QualitySpec® Trek (QST) (A) and NIRFlex N-500 (NIRFlex) (B).
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at the specifics, the PLS model consistently exhibited slightly higher

accuracy values, ranging from 0.67 (QST, CT4C) to 0.93 (QST,

CT15m) than the KNN model, which ranged from 0.57 (QST,

CT6C) to 0.90 (NIRFlex, CT20m) (Figure 5). For Kappa index, it

becomes evident that QST displayed inferior performance, with

values ranging from 0.08 to 0.32, NIRFlex performance was more

robust, with values spanning from 0.15 to 0.56. Overall, the KNN

model consistently demonstrated higher Kappa values when

compared with the PLS model.

For the binary variables, sensitivity was high for both

instruments, with values ranging between 0.76 and 0.95
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(Figure 6), while specificity values were lower, especially for the

PLS model. Specificity varied from 0.25 to 0.69 (QST) and from 0.43

to 0.92 (NIRFlex) (Figure 6).

For multiclass variables, accuracy (balanced), sensitivity, and

specificity parameters were obtained for each individual cooking

time category (Figure 7). Overall, accuracy was similar across

classes, models, and instruments (~0.63), although the KNN

model showed slightly higher accuracy in the classification of all

cooking time classes, except for the CT4C variable (QST), in the

NoCook and 25 min classes (Figure 7). On the other hand,

sensitivity varied among classes, with the KNN model performing
FIGURE 4

Sensitivity and specificity of cross-validation for cassava root classification models considering the cooking classification into binary variables
(T15min, T20min, T25min, T30min, and T40min) and multiclass variables (CT4C and CT6C) based on near-infrared spectroscopy (NIR) spectra
collected using NIRFlex N-500 (NIRFlex) and QualitySpec® Trek (QST) instruments.
FIGURE 3

Cross-validation accuracy of cassava root classification models considering the cooking classification into binary variables (T15min, T20min, T25min,
T30min, and T40min) and multiclass (CT4C and CT6C) based on near-infrared spectroscopy (NIR) spectra collected on NIRFlex N-500 (NIRFlex) and
QualitySpec® Trek (QST) instruments.
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better in the classification of multi-class variables (> 0.50, NIRFlex,

and > 0.20 QST). For the PLS model, values close to zero were found

for cooking times from 20 to 40 min for the CT6C variable (QST).

This result indicates a lack of correct classification of true positives

(samples that are cooking). For both instruments, specificity was

higher than sensitivity (> 0.75), except for the category of samples

that did not cook (Figure 7).

Based on the analysis of the confusion matrix, the outcomes of

classification by various models in the external validation set revealed

a notable efficiency in categorizing clones that were not cooked, with

accuracy percentages ranging from 77 to 95% (Figures 8–11) for both

NIRS devices. However, divergences surfaced when it came to

predicting which class of clones actually underwent cooking. In the

case of QST, the KNN model displayed the highest accuracy

percentages, ranging from 34% (CT40m) to 69% (CT20m), while
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the PLS model exhibited a narrower range, ranging from 25%

(CT15m) to 36% (CT20m) (Figure 8). The accuracy percentages

for NIRFlex were comparatively higher, ranging from 57% (CT30m)

to 92% (CT15m) for the KNN model. The PLS model showed

comparable values, hovering around 46% for all binary variables

(Figure 9). Overall, the KNN model consistently outperformed the

PLS model for the binary variables.

The multiclass variables CT4C and CT6C have comparable

accuracy for identifying clones that do not undergo cooking for

both NIR instruments. However, notable distinctions emerged

among the models (Figures 11, 9). The PLS model showed greater

accuracy, ranging from 83% (CT4C, QST) to 96% (CT6C, QST)

compared to the KNNmodel, which exhibited a range between 67%

(CT6C, QST) and 73% (CT6C, NIRFlex) for clones that do not

undergo cooking (Figures 10, 11).
FIGURE 6

Sensitivity and specificity of cassava root classification models in the external validation population, considering binary variables of cooking time
(CT15m, CT20m, CT25m, CT30m, and CT40m) based on near-infrared spectroscopy (NIR) spectra collected using NIRFlex N-500 (NIRFlex) and
QualitySpec® Trek (QST) instruments.
FIGURE 5

Accuracy of cassava root classification models in the external validation population, considering binary variables of cooking time (CT15m, CT20m,
CT25m, CT30m, and CT40m) and multiclass variables (CT4C and CT6C) based on near-infrared spectroscopy (NIR) spectra collected using NIRFlex
N-500 (NIRFlex) and QualitySpec® Trek (QST) instruments.
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For clones cooked within 15 to 40-minute range, the KNN

model (accuracy ranging from 15 to 73% in QST and 50 to 73% in

NIRFlex) outperforming the PLS model (accuracy ranging from 0 to

27% in QST and 5 to 31% in NIRFlex) regardless of the number of

multiclasses (Figures 10, 11). When evaluating the performance of

NIR instruments for the KNN model, the overall accuracy for

classifying clones cooking up to 15 minutes was similar, with

substantial differences between variables. The accuracy was higher

when the data was divided into four classes (CT4C, 71%) compared

to six classes (CT6C, 57%). The CT4C and CT6C classifications

perform similarly for the KNN model for cooking times ranging

from 20 to 40 minutes, with a noticeable differences between

instruments. NIRFlex demonstrated higher accuracy ranging from

50% (25 minutes) to 73% (40 minutes), compared to QST, which
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ranged from 15% (20 minutes) to 36% (40 minutes). Overall, the

most effective classification scenario was observed using NIRFlex,

especially when the KNNmodel was applied on variables with fewer

classes, like CT4C.
4 Discussion

5.1 Cooking time as a key characteristic for
the selection of new sweet cultivars

In many countries in Latin America and the Caribbean, the

most common form of consuming cassava is in the boiled root

form. Characteristics such as root cooking time, associated with
FIGURE 7

Parameters associated with the efficiency of cassava root classification models (accuracy, sensitivity, and specificity per class) in the external
validation population, considering multiclass variables CT4C and CT6C based on near-infrared spectroscopy (NIR) spectra collected using NIRFlex
N-500 (NIRFlex) and QualitySpec® Trek (QST) instruments.
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culinary quality and low cyanogenic potential (HCN), are crucial

for end-user consumer acceptance (Bechoff et al., 2017; Ceballos

et al., 2017) and attributes such as short cooking time become a

priority over other agronomic and even nutritional characteristics.

In recent years, cassava biofortification programs have prioritized

boosting nutrient content, relegating cooking quality as a secondary

trait (Ceballos et al., 2017). As a result, only a few clones with high

carotenoid content, low HCN levels, and acceptable cooking quality

have been obtained. This underscores the ongoing need for

sustained efforts in crossbreeding to increase the number of

segregating materials that align with consumer preferences in

Latin America and the Caribbean (Ceballos et al., 2017).

Cooking time is difficult to measure. Conventional methods

such as simple fork test or the use of penetrometers to measure root
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texture are time-consuming (around 60 minutes per sample) and

labor-intensive, limiting the number of samples evaluated daily.

Additionally, direct measurement of cooking time or texture

requires a well-trained team with standardized protocols. Cassava

breeding programs are actively exploring more efficient methods for

assessing the cooking quality of cassava roots (Tran et al., 2021).

One such method is the percentage of water absorption (WAB)

during boiling, calculated by the ratio of initial root weight to the

weight after boiling. WAB correlates indirectly with cooking ability,

where a higher WAB percentage associates with shorter cooking

times (Beleia et al., 2004; Kouadio et al., 2011; Tran et al., 2021).

Using this method, Tran et al. (2021) evaluated 36 cassava

genotypes and proposed two promising protocols for predicting

cooking time based on water absorption and changes in relative
FIGURE 8

Confusion matrix of the external validation set considering classification models based on near-infrared spectroscopy by the QualitySpec® Trek
(QST) instrument, evaluated on cassava roots considering binary variables of cooking time CT15m, CT20m, CT25m, CT30m, and CT40m.
KNN, k-nearest neighbor algorithm; PLS, partial least squares.
FIGURE 9

Confusion matrix of the external validation set, showcasing classification models based on near-infrared spectroscopy using the NIRFlex N-500
(NIRFlex) instrument, evaluated for cassava roots with binary variables of cooking time (CT15m, CT20m, CT25m, CT30m, and CT40m). KNN, k-
nearest neighbor algorithm; PLS, partial least squares.
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density. These protocols are simple, objective, and up to 100

samples can be processed daily per operator. However, further

tests are necessary to compare these methods and confirm their

reliability across a broader range of genotypes.

NIRS is gaining popularity as a tool for evaluating food quality.

In potatoes, image analysis was successfully in differentiating

between cooked and uncooked parts, and spectral data has

enabled development of a model for predicting ideal cooking

times with less than 10% relative error (Trong et al., 2011). This

methodology was recently applied to predict the water absorption

percentage (WAB) and texture (area) of fresh root samples in

cassava. However, the obtained R2 values (coefficient of

determination) were low, ranging from 0.51 to 0.53, respectively

(Meghar et al., 2023). Therefore, a standardized model based on

spectral and hyperspectral imaging (HSI) for predicting WAB and,

consequently, cooking time in cassava data is yet to be established.

Regardless of the methodology used, the maximum cooking

time for cassava roots needs to be no more than 30 minutes to

enhance the likelihood of new sweet cultivars being adopted in

Brazil (Fukuda et al., 2002). In this study, 36% (N=319) of the

evaluated genotypes could be cooked in at least one environment

within 30 minutes. However, 85 genotypes (six five traditional

cultivars, 53 local varieties, and 26 new genotypes from the

breeding program) exhibited notable cooking potential within 15
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minutes. Indeed, previous studies had already demonstrated the

short cooking time of the cultivars BRS Gema de Ovo (13 minutes)

and BRS Dourada (15 minutes) (Gerino-Teixeira et al., 2017).

Many factors, including environmental conditions at harvest,

precipitation, soil fertility, and cultural practices could influence

cooking time of cassava roots and lead to changes in the root’s

chemical composition. Roots from the same plant, plants of the

same variety, and different genotypes can all have different effects

(Oliveira and Moraes, 2009; Reis et al., 2021; Silveira et al., 2021;

Santos et al., 2022). Other factors such as the procedures and

utensils used for root cooking could also affect the cooking time

of clones. Talma et al. (2013) reported average cooking times of 19

and 26 minutes for the BRS Gema de Ovo and Eucalipto clones,

respectively, while in the study by Santos et al. (2022), this average

cooking time was 26 and 23 minutes, respectively. According to

Silveira et al. (2021), different phosphorus doses (between 120 and

240 kg ha-1 de P2O5) increased starch content and reduced cooking

time for sweet cassava roots. Besides these external factors, harvest

age could also influences cooking time, with earlier-harvested plants

showing better cooking ability (Oliveira and Moraes, 2009).

In our study, we examined how environmental factors

influenced the performance of different genotypes across various

trials (Supplementary Table S2). We focused on a group of 20

genotypes evaluated in 3 to 13 trials, each genotype showing
FIGURE 10

Confusion matrix of the external validation set, illustrating classification models based on near-infrared spectroscopy by the NIRFlex N-500 (NIRFlex)
and QualitySpec® Trek (QST) instruments, evaluated for cassava roots considering multiclass variables of cooking time with 4 classes (CT4C). KNN,
k-nearest neighbor algorithm; PLS, partial least squares.
FIGURE 11

Confusion matrix of the external validation set, illustrating classification models based on near-infrared spectroscopy by the NIRFlex N-500 (NIRFlex)
and QualitySpec® Trek (QST) instruments, evaluated for cassava roots considering multiclass variables of cooking time with 6 classes (CT6C). KNN,
k-nearest neighbor algorithm; PLS, partial least squares.
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cooking capability in at least one trial. In most trials, these

genotypes consistently cooked within an average time of 30

minutes or less. However, there were instances where certain

genotypes did not cook within the expected time frame in at least

one trial. Typically, the harvest and evaluation period span

approximately three months (June to August), encompassing the

winter and spring seasons when average precipitation tends to be

higher. The trials were conducted across four different cities with

varying altitudes. Supplementary Table S2 illustrates that trials

where genotypes did not cook as expected were predominantly

located in Laje-BA and Sátiro Dias-BA. These locations experienced

environmental conditions during the harvest period that did not

facilitate the cooking of roots within 40 minutes.
5.2 Efficiency of NIR spectroscopy for
cooking time classification

The application of NIR spectroscopy to address food classification

and plant species has been reported in the literature (Cozzolino et al.,

2012; Jadhav et al., 2019; Sousa et al., 2023). In cassava, spectral data

collected from root samples, processed dry leaves, and seeds have been

used to develop models with high accuracy for the indirect and early

classification of genotypes based on starch type (waxy and non-waxy)

(Carmo et al., 2019; Sousa et al., 2023). In this study, the classification

accuracy for cassava cooking time for binary variables was notably

high (R2
Cal ranging from 0.72 to 0.99), showcasing the potential of NIR

spectroscopy for classifying cassava clones based on their cooking

time. A number of studies have been carried out to predict cooking

time in various food crops (Nie et al., 2012; Cichy et al., 2015;

Thanathornvarakul et al., 2016; Wafula et al., 2020, 2021). Predictive

models based on NIR spectroscopy were developed to forecast

cooking time in rice (calibration R2≥ 0.81 and validation R2≥ 0.87)

(Thanathornvarakul et al., 2016). With an R2 value of 0.73, the

prediction accuracy for cooking time in bean was deemed moderate

(Wafula et al., 2021). To the best of our knowledge, this study stands as

a pioneering attempt to classify cassava genotypes based on their root

cooking time using NIRS spectroscopy. A noteworthy challenge in our

dataset lies in its significant class imbalance, where the number of

samples varies considerably across different classes. This imbalance

can profoundly influence the classification outcomes. To mitigate this

issue, we applied the random oversampling technique to the class with

the smaller number of samples (those that cook) to achieve a balanced

distribution between classes (Johnson and Khoshgoftaar, 2019). This

technique is commonly employed in classification problems (Haixiang

et al., 2017).

The random oversampling technique has proven effective in

addressing imbalances in classification problems involving machine

learning and deep learning algorithms, especially in datasets with

genotoxicity information and class imbalance (Bae et al., 2021).

Random oversampling is comparable to other methods such as

synthetic minority oversampling technique (SMOTE), random

undersampling, and sample weighting (Chawla et al., 2002; Bae

et al., 2021). Hence, the thoughtful combination of machine

learning algorithms and data balancing methods is crucial for

developing accurate classification models.
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The PLS and KNN algorithms have been widely and

successfully used for classification analysis (Wafula et al., 2020,

2021; Ye et al., 2022; Meghar et al., 2023; Sousa et al., 2023). In this

study, the KNN model demonstrated the most robust classification

performance, with accuracies ranging from 0.72 to 0.99 for binary

variables and 0.86 to 0.99 for multiclass variables. The extensive

dataset under evaluation, combined with the discriminative ability

between classes using Euclidean distance, might have contributed to

the efficiency of the KNN algorithm. Literature provides ample

evidence of KNN effectiveness for multiclass classification (Jadhav

et al., 2019). The KNN model showed an accuracy of 83.6% in

differentiating between rust, brown spot, frog eye leaf spot, and

healthy samples in a study classifying four foliar diseases in

soybeans (Jadhav et al., 2019).

The possibility of using NIRS to determine the cooking quality

of cassavas roots has been studied (Meghar et al., 2023; Namakula

et al., 2023). Namakula et al. (2023) assessed root softness using a

penetrometer, a trait significantly influencing cooking time.

However, predictions via NIRS were rated as low to moderate,

indicating that softness, a force-measured physical parameter, did

not correlate well with NIRS spectra (Namakula et al., 2023). A

recent study evaluated the potential of near-infrared hyperspectral

imaging, which combines NIRS spectroscopy with digital images, in

a panel of 31 cassava genotypes to predict cooking quality

parameters, dry matter content, water absorption, and texture

(Meghar et al., 2023). However, hyperspectral imaging was

effective only in predicting dry matter content, indicating a need

for protocol improvements and a larger dataset for root texture and

water absorption characteristics. In the current study, spectral data

were collected from processed fresh root samples, ensuring sample

homogenization and avoiding potential spatial distribution

variations of organic compounds in the samples of interest. This

enabled efficient, high-throughput phenotyping via NIRS for

measuring one of the most critical traits in improving sweet cassava.
5.3 Binary vs. multiclass classification for
cooking time

The classification of genotypes based on cooking time was

carried out by considering the variables as both binary and

multiclass. Binarization techniques are often developed to address

multiclass situations by breaking down the original problem into a

binary classification system, simplifying its resolution (Galar et al.,

2011). In addition to analyzing the cooking capacity for all (CTC6)

or part (CT4C) of the cooking times, we divided the original dataset

into subsets of two classes (cooked and uncooked samples) and we

calibrate a binary model for each cooking time.

One challenge in multiclass classification is that some

algorithms such as logistic regression or support vector machines

are only intended for binary classification. To overcome this issue,

the KNN and PLS models implemented in the R package Caret

(Kuhn et al., 2008), which employ the “one-vs-all” strategy was

used. In this strategy, a binary classifier is trained for each class,

where the positive class is the target class, and the negative class

comprises the rest of the classes. In other words, the multiclass
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variable is treated as a binary variable (Allwein et al., 2000).

However, this strategy introduces a higher imbalance between the

class being evaluated and the “rest” class, which includes all samples

from the other classes.

The findings of this study underscore the benefits and

effectiveness of using binary variables to classify cassava

genotypes based on cooking time. When considering accuracy

between cooking classes, even with the same model and NIR

equipment, multiclass variables showed lower variation (50% to

71% for CT4C and 57% to 73% for CT6C) compared to binary

variables. In terms of the accuracy of samples that did not cook, the

values were 70% and 73%, respectively, for CT4C and CT6C.

Despite the increased number of variables, requiring the

evaluation of each binary variable individually, binary

classification remains more efficient, offering higher classification

accuracy for samples and enabling the selection of the most relevant

characteristics or variables, such as cooking time ≤ 30 minutes.

The accuracy of the optimal scenario for classifying samples

with a cooking time of 30 minutes reached. and R2
Val = 0:84, with a

Kappa value of 0.53. Consequently, it is advised to segregate

samples using the NIRS-based classification model for cooking

capacity within 30 minutes. This approach enables the assessment

of a larger pool of genotypes concerning attributes associated with

root quality. Consequently, it facilitates the identification of new

sweet cassava varieties possessing pivotal agronomic traits,

including high fresh root yield, compatibility with mechanized or

semi-mechanized cultivation methods, and resilience against pests

and diseases prevalent in the crop.
5 Conclusions

This study has demonstrated the potential of using NIRS in

conjunction with machine learning techniques to phenotype and

classify cassava genotypes based on cooking time. Overall, accuracies

ranging from 86% to 99% were achieved for cooking times not greater

than thirty minutes. The optimal conditions for developing accurate

classification models were given by the K-nearest neighbors (KNN)

algorithm analysis of the spectra from the benchtop NIRS equipment

NIRFlex, especially when associated with the classification of cooking

capacity in binary variables. These findings underscore the potential of

NIRS-based phenotyping in enhancing the efficiency of cassava

breeding programs, offering a rapid and reliable method for assessing

an essential quality trait like cooking time. NIRS phenotyping could be

a cost-effective, less labor-intensive, and high-throughput option, that

could not only enable processing hundreds of samples per day, but also

help reduce phenotyping errors that are commonly associated with

conventional methodologies, especially in scenarios where a well-

trained team may be lacking, as observed in the “fork test”.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Frontiers in Plant Science 14
Author contributions

MB: Conceptualization, Data curation, Formal Analysis,

Writing – original draft. CM: Data curation, Methodology,

Writing – review & editing. EM: Writing – review & editing. CE:

Funding acquisition, Project administration, Writing – review &

editing. EO: Conceptualization, Funding acquisition, Project

administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. MS:

Empresa Brasileira de Pesquisa Agropecuária, Grant number:
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tecidos de raıźes de mandioca (Manihot esculenta Crantz.) e gelatinização do amido
durante a cocção. Food Sci. Technol. 24, 311–315. doi: 10.1590/S0101-
20612004000300001

Carmo, C. D., Sousa, M. B., dos Santos Pereira, J. C. H., and de Oliveira, E. J. (2019).
Identification of waxy cassava genotypes using Fourier-transform NearInfrared
spectroscopy. Crop Sci. 60, 883–895. doi: 10.1002/csc2.20102

Ceballos, H., Davrieux, F., Talsma, E. F., Belalcazar, J., Chavarriaga, P., and
Andersson, M. S. (2017). “Carotenoids in cassava roots,” in Carotenoids (London:
InTech). doi: 10.5772/intechopen.68279
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