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Photosystem I (PSI) light-harvesting antenna complexes LHCI contain spectral

forms that absorb and emit photons of lower energy than that of its primary

electron donor, P700. The most red-shifted fluorescence is associated with the

Lhca4 complex. It has been suggested that this red emission is related to the

inter-chlorophyll charge transfer (CT) states. In this work we present a systematic

quantum-chemical study of the CT states in Lhca4, accounting for the influence

of the protein environment by estimating the electrostatic interactions. We show

that significant energy shifts result from these interactions and propose that the

emission of the Lhca4 complex is related not only to the previously proposed

a603+–a608− state, but also to the a602+–a603− state. We also investigate how

different protonation patterns of protein amino acids affect the energetics of the

CT states.
KEYWORDS

LHCI, chlorophyll, amino acid, atomic partial charge, quantum chemistry, charge

transfer states
1 Introduction

In oxygenic photosynthesis, the storage of the light energy in the form of chemical bonds

requires two photosystems: photosystem II (PSII), which extracts electrons from water, and

photosystem I (PSI), which produces the low redox potential electrons that ultimately reduce

NADP into NADPH. In all organisms, PSI is constituted of a huge multi-protein architecture

that binds a large number of chlorophylls and ensures a photo-induced electron transfer

reactions across the photosynthetic membrane. In higher plants and green algae, the core of PSI

is associated with an ensemble of light-harvesting chlorophyll–protein complexes, termed LHCI

antennae (Haworth et al., 1983). In the early 80’s, it was shown that PSI in Chlamydomonas

binds two types of LHCI proteins: one fluorescing at 686 nm and the other around 715 nm (Ish-
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Shalom and Ohad, 1983). Later, a similar situation was observed in

higher plants as well, with even longer-wavelength (around 730 nm)

emission of the redder spectral species (Lam et al., 1984). These two

observed complexes with distinct fluorescence spectra are actually

composed of four polypeptides, Lhca1–4, belonging to the LHC

superfamily, which all bind chlorophylls a and b. Electron

microscopy studies showed that LHCI complexes bind on one side

of the PSI core (Boekema et al., 2001), and later X-ray crystallographic

studies allowed a precise description of the LHCI–PSI core interactions

(Ben-Shem et al., 2003).

Initially, the heterodimer comprised of the Lhca1 and Lhca4

complexes was shown to be responsible for the observed red

emission (Knoetzel et al., 1992). More recent work, however,

actually revealed that the native heterodimer formed by other two

complexes, Lhca2/3, also displays a red-shifted emission (Wientjes

and Croce, 2011). Because of distinct spectroscopic differences from

the major light-harvesting complexes of PSII, LHCII, the LHCI

antennae in general and its constituents Lhca1 and Lhca4 in

particular attracted intense attention. Particularly, it was noted

that the excited state energies of some of LHCI Chls are lower

than that of the PSI primary electron donor, which, albeit extending

the PSI absorption toward the red spectral region, also slows down

the excited energy trapping by the reaction center. The mechanisms

underlying this spectral red shift had to be clarified.

The study of these red forms largely benefited from approaches

using LHC reconstitution (Plumley and Schmidt, 1987).

Reconstituted complexes indeed led to the conclusion that the

Chl molecules displaying highly red-shifted fluorescence

exclusively belong to the Lhca4 complex (Croce et al., 2002).

Moreover, reconstitution of the pertinently mutated Lhca4

showed that the red fluorescence of these complexes disappears

when the asparagine ligand of Chl a603 (using the Qin et al. (2015)

notation) is replaced by the histidine (Morosinotto et al., 2003).

This was taken as a straightforward indication that this Chl a603

(together with the neighboring Chl b609 it interacts with) was

responsible for the nearly 50-nm fluorescence redshift. Recently,

genetic engineering of Lhca4 in Arabidopsis fully supported the

results obtained from the reconstituted complexes (Li et al., 2023).

Detailed spectroscopic characterization of Lhca4 reconstituted

from wild type and mutated polypeptides showed that the low-

energy electronic transitions display a large bandwidth, which were

proposed to arise from the mixing of an excitonic state, involving

Chl a603 and Chl b609 molecules, with an inter-pigment charge

transfer (CT) state (Croce et al., 2007). The determination of the PSI

structure from higher plants at high resolution (Ben-Shem et al.,

2003; Mazor et al., 2015; Qin et al., 2015, 2017) opened the way to

model the electronic structure of LHCI complexes and Lhca4 in

particular. By performing molecular dynamics simulations using

the Quantum mechanics/Molecular mechanics (QM/MM)

approach, the influence of a possible CT state in the Chl a603/

b609 exciton manifold was investigated (Sláma et al., 2023). It was

showed that such a state is highly sensitive to the precise relative

geometry of the Chl pair, also explaining its disappearance in the

asparagine mutant. Using an exciton model including a CT state,

Novoderezhkin and Croce (2023) were able to simulate the
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ensemble of Lhca4 electronic properties on the basis of an

exciton-type mixing of a CT state with the excited state manifold.

In this paper, we also aim to characterize the CT states present in

Lhca4 complex using quantum mechanical calculations. The CT

states are considered only energetically, and possible mixing with

the excitonic states of the pigments is not included. However, we do

not focus solely on the Chl a603/b609 pair but rather try to pinpoint

the ensemble of possible CT states present in this complex. Indeed,

the asparagine-to-histidine (N98H, based on the notation of Qin et al.

(2015)) mutation is likely to eventually perturb not only this pair,

and, as underlined by Sláma et al. (2023), even minimal structural

changes may result in dramatic changes in CT states manifold.

Moreover, a second red form of Lhca4 exhibiting emission at ~705

nm exists, which is also present in the N98H mutant. Although the

atomic structure of this complex is known, there are still some

parameter values that should be specified in order to obtain a

unique model of this system. Among these parameters, the exact

protonation state of the protonable aminoacids in Lhca4 remains

relatively poorly investigated. Accordingly, we tested the influence of

several possible protonation states on the energetics of the CT states

in this complex. Our results show that the a602+–a603− state should

also be related to the far-red fluorescence. Moreover, (de)protonation

of a few amino acids could significantly alter the CT state energetics.
2 Methods

2.1 Quantum chemical calculations

The structure of Lhca4 was obtained as the 4th chain of the pea

PSI–LHCI supercomplex structure (Qin et al., 2015) (PDB ID:

4XK8) from the PDB database (see Figure 1). In this work, we seek

to investigate the energetics of the inter-chlorophyll charge transfer

states that are expected to be present in this complex. Short distance

between the pigments in the pigment–protein complex is a

prerequisite for a CT state formation. In order to find possible

locations of the CT states in Lhca4, we first determined which

chlorophyll dimers have the shortest (up to 12 Å) Mg–Mg distance

and found 12 dimers that satisfy this condition.

For all single chlorophylls that form these dimers, geometry

optimization in vacuo was performed. The phytyl tail of these

chlorophylls was truncated by replacing the phytyl group with the

methyl group, similarly to the previous works (Jornet-Somoza et al.,

2015; Sirohiwal et al., 2020a; Mikalčiūtė et al., 2022), in order to

reduce the calculation time and prevent extreme structural changes

of the tail during the geometry optimization. Missing hydrogen

atoms were added using GaussView software (Dennington et al.,

2019). Ground state geometry optimization was performed using

Gaussian 16 (Frisch et al., 2016). Density Functional Theory (DFT)

calculations were performed using CAM-B3LYP functional (Yanai

et al., 2004) and 6–31G(d) basis set. The DFT level of theory with

the aforementioned functional has been commonly used for

chlorophyll systems (Yin et al., 2007; Higashi et al., 2014;

Frankcombe, 2015; Bold et al., 2020).
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We formed 12 selected dimers by mapping individual

chlorophylls with optimized geometry onto the Lhca4 structure

using UCSF Chimera software (Pettersen et al., 2004). TD-DFT

calculations were conducted for the lowest eight excited states of

these dimers, treating them as a single supermolecule, employing

the CAM-B3LYP functional and a 6–31G(d) basis set. Our

examination included various parameters, such as energy, static

dipole moment, transition dipole moment, and the sum of the

Mulliken partial charges for each molecule in the dimer. These

findings unveiled the presence of 19 potential inter-chlorophyll

charge transfer states within the Lhca4 pigment–protein complex.
2.2 Modelling of pigment–protein
complex environment

In order to account for the environment that surrounds the

dimers of interest and calculate its impact on energy values of the

CT states, we chose to follow the methodology developed by Renger

and co-workers, which was previously applied for local excitations

(Adolphs et al., 2007; Renger and Müh, 2013). The environment

(protein, other single chlorophyll molecules, and carotenoids) is

divided into the environmental blocks. These blocks are coupled

through the Coulomb interactions. The dimer of interest m is

described by the wavefunction jA(m)
a 〉, where a indicates the

electronic state of the dimer. The dimer is surrounded by N −  1

environmental blocks with the wavefunctions jB(h)
b 〉, where h =  1,

…, N − 1 is the number of the block and b is the electronic state of

this block. These wavefunctions satisfy the following Schrödinger

equations:

H(m)
A jA(m)

a 〉 = E(m)
a jA(m)

a 〉,

H(h)
B jB(h)

b 〉 = F(h)
b jB(h)

b 〉 :
(1)

Here in Equation 1 H(m)
A and H(h)

B are the Hamiltonians of the

environmental blocks of the system in vacuo, E(m)
a is the energy of

the ath electronic state of the dimer, F(h)
b —the energy of the bth
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electronic state of the environmental block h. The total

Hamiltonian of the system is given by

H =  H(m)
A +  o

h
H(h)

B +o
h
V (m,h)
AB +

1
2 oh≠hV

(h,h 0 )
BB : (2)

Here V (m,h)
AB describes the Coulomb coupling between the dimer and

h block and V (h,h0)
BB describes the interaction between two

environmental blocks h and h0. The last two terms define the

interaction Hamiltonian V. We assume that the blocks do not

undergo electron exchange, thus the wavefunctions of the system

can be combined using the Hartree product:

jy (m)
ab 〉 = jA(m)

a 〉
Y
h
jB(h)

bh
〉, (3)

where jy (m)
ab 〉 is the eigenfunction of the Schrödinger equation

H(m)
A +o

h
H(h)

B

 !
jy (m)

ab 〉 = E(m)
a + Fb

� �
jy (m)

ab 〉, (4)

b = b1,  b2,  …, bh,…
� �

enumerates the electronic states of the

environment, and Fb =ohF
(h)
bh

. Equations 3 and 4 can be used to

determine the energy shift DE(m)
a that the ath state of the dimer

acquires after experiencing the electrostatic interaction with the

environmental blocks, given by the two last terms in Equation 2.

Within the first order perturbation theory (the charge density

coupling (CDC) method), the energy shift is given as:

DE(m)
a = 〈y (m)

a0 jV jy (m)
a0 〉, (5)

here index 0 =   0, 0,: : :f g denotes the electronic ground state of all

the environmental blocks.

The energy of the transition between the ground and the sth

excited state is given by:

E(m)
s = E(m)

0 + DE(m)
s − DE(m)

0 : (6)

Here E(m)
0 is the transition energy between the ground and the sth

excited state in vacuo, DE(m)
s and DE(m)

0 are the energy shifts for the

excited and the ground state, respectively. Energy shifts of electronic
FIGURE 1

Left: PSI–LHCI supercomplex (PDB ID: 4XK8) (Qin et al., 2015). Right: Lhca4 light-harvesting complex. Chlorophylls a are depicted in green and
Chlorophylls b are depicted in magenta. Carotenoids (BCR, XAT and LUT) are depicted in orange.
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state a of dimer m are determined by calculating the values of the

Coulomb matrix elements given in Equation 5:

DE(m)
a =o

h
〈A(m)

a B(h)
0 j V (m,h)

AB jA(m)
a B(h)

0 〉+
1
2 oh≠h0

〈 B(h0)
0 B(h)

0 j V (h,h0)
BB jB(h0)

0 B(h)
0 〉 : (7)

Here, in Equation 7, the first term on the right hand side denotes

the Coulomb interaction between the charge densities of the dimer

m of state a and the environmental block h in its ground state, and

the second one denotes the Coulomb interaction between the

charge densities of environmental blocks h and h0 in the ground

state. The elements of the Coulomb matrix can be approximated as

the interaction between the atomic partial charges (Adolphs et al.,

2007; Renger and Müh, 2013):

〈A(m)
a B(h)

0 jV (m,h)
AB jA(m)

a B(h)
0 〉 =

1
4p e0oI,J

q(m)
I (a, a)q(h)JJ (0, 0)

R(m)
I − R(h)

J

��� ��� , (8)

where in Equation 8 e0 denotes the permittivity of vacuum, q(m)
I (a, a)

and q(h)J (0, 0) are the atomic partial charges of the I-th atom of the

dimer and J-th atom of the environment, respectively. The positions of

these charges are R(m)
I and R(h)

J .

The possible errors in the values of the atomic partial charges

can be compensated by introducing the effective dielectric constant

eeff to scale the Coulomb interaction. Its adjustment can thus

approximately account for the higher order terms not included in

the CDC approximation. Then, following Equation 6, the energy of

the transition between the ground and the s-th excited state of the

dimer m is given as:

E(m)
s = E(m)

0 + 1
eeff oh 〈A(m)

s B(h)
0 jV (h)

AB jA(m)
s B(h)

0 〉− 〈A(m)
0 B(h)

0 jV (h)
AB jA(m)

0 B(h)
0 〉

� �

= E(m)
0 + 1

4p e0 eeff o
I
o
h,J

q(m)
I (s, s) − q(m)

I (0, 0)
� �

q(h)J (0, 0)

R(m)
I − R(h)

J

��� ��� :

(9)

Here, in Equation 9, q(m)
I (s, s) and q(m)

I (0, 0) are the atomic partial

charges of the dimer m in its excited and ground state, respectively. The

values of these charges were obtained by fitting the electrostatic potential

of the dimers in vacuo. q(h)J (0, 0) are the atomic partial charges of the

environmental blocks. The partial charges of single chlorophylls and

carotenoids in their ground state were determined by fitting the

electrostatic potential as well. The calculation of the partial charges was

performed using Gaussian 16 package (Frisch et al., 2016) at the TD-

DFT/CAM-B3LYP level of theory with 6–31G(d) basis set and the

Multiwfn software (Lu and Chen, 2011; Zhang and Lu, 2021). After

assuming that single tailless chlorophylls of optimized geometry have

very similar spatial structure, we chose two reference chlorophylls (a602

and b605) for the calculation of atomic partial charges. The values of

partial charges of reference chlorophylls were used for all single

chlorophylls (when chlorophylls were considered to be part of the

environment) present in the pigment–protein complex (see

Supplementary Table S-I in Supplementary Material). The calculation

of the atomic partial charges of carotenoids was based on the original

geometry of the molecules (see Supplementary Table S-II in

Supplementary Material). While choosing non-optimized geometry

might induce some error in the calculated partial charges, this was
Frontiers in Plant Science 04
done to avoid possible geometry changes that would be hindered in the

protein environment. Partial charges of the chlorophyll monomers (used

for calculating energy shifts for monomers) are given in Supplementary

Tables S4–S33 in Supplementary Material. Partial charges for the

chlorophyll dimers are given in Supplementary Tables S34–S74 in

Supplementary Material. The charges of hydrogen atoms for all the

molecules (except amino acids) were set to 0. The atomic partial charges

of amino acid molecules were taken from the CHARMM (Brooks et al.,

2009) force field, including the charges of the hydrogen atoms [they were

added using AMBER 2020 software (Case et al., 2020)].
2.3 Determining the protonation pattern of
the protein

The largest part of the Lhca4 complex is the protein, consisting

of 196 amino acid molecules. In order to simulate the environment

properly, it is necessary to determine the protonation pattern of the

protein. Besides the N-terminus and C-terminus of the protein

chain, Lhca4 protein contains 6 types of titratable amino acids:

asparatic acid (ASP), glutamatic acid (GLU), tyrosine (TYR),

histidine (HIS), lysine (LYS) and arginine (ARG). The first three

types are acidic titratable groups that are prone to releasing a proton

to the environment and the latter three types are basic titratable

groups that are likely to accept a proton from the environment. The

corresponding Henderson–Hasselbalch equation for the acids is:

pH = pKa + lg
½A−�
½HA� , (10)

and for bases:

pH = pKb � lg
½BH+�
½B� , (11)

where the brackets denote the concentrations of the corresponding

species at equilibrium. pKb = −lg  Kb and pKa = −lg  Ka are the

logarithms of the equilibrium constants for the reaction of basic and

acidic amino acids, respectively. If the equilibrium constant for the

dissociation and association reactions as well as the pH of the

environment are known, the most probable protonation pattern for

every titratable group of the protein can be determined. In most

cases, acidic titratable group is considered fully protonated if the

difference between pH and the equilibrium constant is ≲ −2, and

fully deprotonated if this difference is≳ 2 (for basic titratable groups

the rule is inverse).
3 Results

3.1 Estimating the protonation pattern and
modelling the protein

The termini of the protein chain were modelled as follows: N-

terminus was capped with a positively charged acetyl group and C-

terminus was modelled with negatively charged COO− group. For

every titratable group present in the protein, the values of the
frontiersin.org
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equilibrium constant in neutral pH were estimated using PROPKA

3 tool (Olsson et al., 2011; Søndergaard et al., 2011) (see

Supplementary Table S-III in Supplementary Material). There

were 9 amino acids that had the absolute value of the difference

between pKa and pH values less or equal to 2. These residues are

ASP159, GLU95, GLU113, GLU145, GLU153, GLU202, HIS222,

HIS236, and HIS242. Note that throughout the paper we use the

numbering and the nomenclature of the PDB file 4XK8 (Qin et al.,

2015) for the amino acids and chlorophylls, contrary to some of the

literature, where often the nomenclature of the LHCII crystal

structure (Liu et al., 2004) is used instead. Using the Henderson–

Hasselbalch Equations 10 and 11 we determined that there are three

amino acids that are in their non-standard protonation state (in

neutral pH): GLU145, GLU153 and HIS242. These residues are

considered protonated and their total charge is neutral for

glutamatic acids and positive for histidine. The rest of the

histidines were considered to be e-tautomers. After setting the

non-standard charges for the titratable groups mentioned above

and the termini, the total charge of the Lhca4 protein chain is –5

(for full descriprion of the protein chain see Supplementary Table

S1 in Supplementary Material).
3.2 Energy shifts of chlorophyll monomers

Lhca4 complex contains 15 chlorophyll monomers (11

chlorophylls a and 4 chlorophylls b). We calculated Qy energies

for these tailless monomers in vacuo as well as their Qy energy shifts

determined by the environmental blocks (other chlorophyll
Frontiers in Plant Science 05
monomers, carotenoids, and the protein chain) using CDC

method. The values are given in Table 1. The energy shifts are

also depicted in Figure 2. The energy shifts are of the similar

magnitude as was previously estimated for the PSI core using the

same approach (Adolphs et al., 2010). The lowest –energy Chl a is

a602, according to our calculations. Interestingly, in the previous

modeling work on Lhca, where site energies were obtained by the

fits of the linear optical spectra using the modified Redfield theory

(Novoderezhkin et al., 2016), this was not the case. The current

results indirectly supports the earlier assessment by some of us that

the site energies obtained by fitting the optical lineshapes using the

modified Redfield theory needs to be reevaluated (Gelzinis et al.,

2015). It is also of note that the energy shifts for Chl bmolecules are

somewhat smaller than for Chl a, which should be related to the

smaller difference values between the static dipole moments of the

ground and the Qy states. Interestingly, our calculations slightly

overestimate the energy gap between the Chl a and Chl b pigments

(at ∼ 800 cm−1), contrary to some of the previous work in literature,

where the same functional and basis set was used, but the

environmental effects were accounted for in a more advanced way

(Jurinovich et al., 2015).
3.3 Energy shifts of chlorophyll dimers

3.3.1 Selected dimers and their CT states
We selected chlorophyll dimers that have the Mg–Mg distance

less than 12Å. For each selected dimer, we performed quantum

chemical calculations and compared static and transition from the
TABLE 1 Qy energies of the tailless isolated chlorophyll monomers, energy shifts for these states calculated with CDC method ð eeff ¼ 1 Þ, and their
total Qy energies in the Lhca4 complex.

Monomer EQy,
cm-1

DEQy,
cm-1

EQy + DEQy,
cm-1

m1 − m0j j,
D

m0→1j j,
D

DEN98H
Qy ,

cm-1
EQy + DEN98H

Qy ,
cm-1

a601 17576 64 17639 0.6062 5.1466 59 17635

a602 17527 -301 17226 0.6330 5.0764 -283 17244

a603 17481 28 17509 0.5303 5.1435 -151 17330

a604 17549 -117 17433 0.5986 5.1148 -114 17435

a608 17535 160 17695 0.5971 5.1646 169 17704

a609 17493 125 17618 0.6149 5.1338 120 17613

a610 17535 -38 17497 0.5936 5.1644 -37 17498

a611 17525 80 17605 0.6096 5.1453 81 17606

a612 17525 -74 17451 0.6049 5.0521 -70 17455

a613 17573 136 17709 0.8073 5.2488 138 17711

a614 17534 57 17591 0.5972 5.1900 53 17587

b605 18381 -43 18338 0.2503 4.1736 -40 18341

b606 18339 -36 18303 0.1315 4.1228 -39 18300

b607 18386 -48 18338 0.1844 4.0244 -43 18343

b615 18375 -25 18350 0.1548 3.9901 -26 18349
The difference between the static dipole moment values of the ground and the first excited states and the transition from the ground to the excited state dipole moment values for every monomer
are given as well. The last two columns represent energy shifts and total Qy energies in N98H mutant of Lhca4 complex (see Section 3.4).
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ground to the excited state dipole moments, as well as the sum of

Mulliken partial charges for each monomer of eight lowest excited

states. Large values of static dipole moment and small values of

transition dipole moment indicate the CT state (Premvardhan et al.,

2008), and the sum of Mulliken partial charges for such state will be

approximately equal to 1 for one pigment of the dimer and to –1 for

another pigment (Voityuk, 2013). The results of these calculations

for the dimer a610–a611 are given in Table 2. The values of the

physical quantities mentioned above significantly differ for the fifth

and sixth excited states. Therefore, these states are CT states.

The results for the rest of the selected dimers can be found in

Supplementary Material. After analyzing the results for all 12

selected dimers, 19 low energy CT states were found in Lhca4

complex. It is crucial to stress that after performing calculations in

vacuo, the Qy energies of monomers (see Table 1) are far lower than
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the energies of CT states of dimers and it is only the environmental

electrostatics effects that can make them comparable.

3.3.2 Estimated protonation of the protein
For every CT state found in the Lhca4 complex we calculated

the energy shift influenced by the environment. The protein is

considered to be in the estimated protonation state where the total

charge of the chain is –5. The environmental chlorophylls and

carotenoids are in their ground state while their net charge is set to

neutral. The energy shifts were calculated using the CDC method.

The CT state energy values of the isolated dimers and energy shifts

caused by the environment are given in Table 3. The energies of the

CT states in vacuo and in the Lhca4 environment are compared in

Figure 3 as well.

There are four dimers whose total energy of the CT state is

lower than the Qy energy of monomers: a602–a603, a603–a608,

b607–a609 and b607–b615. In principle, these CT states might

contribute to the formation of the red-shifted peak in the

experimental fluorescence spectra (Morosinotto et al., 2003;

Wientjes and Croce, 2011). The former two dimers are more

probable candidates, since our calculated electrostatic shifts were

done by assuming eeff   =  1, while in proteins this value is expected

to be slightly higher.

The lists of environmental blocks that create the largest energy

shifts for monomers (see Table 4) and dimers mentioned above

(see Table 5) reveal that the protein influences both monomer Qy

energies and dimer CT energies more than remaining pigments.

While looking at Table 4, one can notice that the majority of

monomers listed are the ones that form the four dimers of interest

and that the largest energy

shifts are calculated for these exact monomers (a602, a608,

a609, b607 and b615). Amino acids that have significant influence

on these monomers also have effect on the corresponding dimers

that these monomers form (see Table 5). Amino acids that

significantly influence both a602 monomer and a602–a603 dimer

are GLU95, ASP77 and ARG209. For the dimer a603–a608 and
TABLE 2 The comparison of the static (SDM) and transition (TDM) dipole moments for the first eight excited states of the dimer a610–a611.

State E, cm-1 SDM, D TDM, D Mulliken charges

mnj j mn − m0j j m0→nj j a610 a611

S0 – 4.127 – – -0.02 0.02

S1 17180 4.075 0.103 7.814 -0.02 0.02

S2 17583 4.006 0.149 2.215 -0.02 0.02

S3 20406 3.570 1.123 1.161 -0.02 0.02

S4 20648 3.415 1.111 1.742 -0.02 0.02

S5 24197 30.872 32.649 0.811 0.90 -0.90

S6 24762 36.266 34.022 0.280 -0.97 0.97

S7 27504 2.888 1.528 0.656 0.01 -0.01

S8 28149 1.769 17.568 6.353 0.48 -0.48
The last two columns give the sum of Mulliken partial charges (in atomic units) for each pigment of the dimer. The values given in bold indicate the CT state.
FIGURE 2

Energy level diagram of isolated (left column) monomer energies
and monomer energies predetermined by the environment (right
column). The energy levels of chlorophylls a and b are depicted in
blue and pink respectively.
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FIGURE 3

Energy level diagram of the isolated (left column) dimer CT state energies and CT energies predetermined by the environment (right column). In the
right column, energies of the CT states, whose first pigment is negatively charged and the second one is positively charged, are given in dash. Cases,
where the first pigment is positively charged and the second one is negatively charged, are given in solid lines. Black dashed lines mark the lowest
and the highest monomer Qy energies predetermined by the environment.
TABLE 3 Energy shifts for the CT states determined using CDC method (eeff ¼ 1).

No. Dimer
(Chl1–Chl2)

R, Å SCT E0,
cm–1

DE,
cm–1

E0 + DE,
cm–1

DEN98H,
cm–1

E0 + DEN98H,
cm–1

1 a601–a610
11.75

S5(+–) 27505 8379 35884 8311 35816

2 a601–a610 S6(–+) 27505 –8281 19224 –8217 19288

3 a602–a603
11.87

S5( –+) 27505 15756 43261 16399 43904

4 a602–a603 S6(+–) 27666 –15428 12238 –16366 11300

5 a603–a608 8.93 S6(+–) 24521 –10292 14229 –8840 15681

6 a604–b605

8.67

S5(+–) 23633 –3598 20035 –3536 20097

7 a604–b605 S8(+–) 27263 –2831 24432 –2789 24474

8 a604–b605 S6(+–) 26537 –3488 23049 –3429 23108

9 b607–a608 10.46 S5(+–) 26698 1019 27717 276 26974

10 b607–a609 11.75 S5(+–) 25488 –9189 16299 –8990 16498

11 b607–b615 11.43 S7(–+) 27586 –9652 17933 –9398 18188

12 a608–a614
10.23

S5(+–) 25811 1231 27042 403 26214

13 a608–a614 S6(–+) 26940 –1012 25928 –254 26687

14 a609–a611 11.86 S5( –+) 27344 10 27354 299 27642

15 a610–a611
9.90

S5(+–) 24198 –4484 19714 –4460 19738

16 a610–a611 S6 (–+) 24762 4274 29036 4253 29015

17 a612–a613

9.40

S5(+–) 23714 –1805 21908 –1622 22092

18 a612–a613 S6 (+–) 25892 –1975 23916 –1812 24080

19 a612–a613 S7 (–+) 27182 1889 29071 1710 28892
F
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The energies of the CT states of isolated pigments E0 and total site energies are given as well. Column R denotes the Mg–Mg distance between the pigments of the dimer. Column SCT denotes the
type of the CT state. The last two columns represent energy shifts and total CT state energies in N98H mutant of Lhca4 complex (see Section 3.4). The cases where monomer Qy energy value
exceeds the value of the CT state of the dimer are given in bold.
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monomer a608 the most significant impact comes from ARG156.

Qy energy of the monomer b607 and CT state energy of the dimer

b607–a609 are

both shifted by ARG155 and ARG156 amino acids. The last

dimer b607–b615 and monomer b615 are strongly influenced by

ASP169, and the same dimer and monomer b607 are influenced by

ARG156 and ARG100.

3.3.3 Possible non-standard protonation of
the protein

The Lhca4 protein chain contains nine amino acids with an

absolute difference between their pKa (or pKb) and pH values less

than or equal to 2. In principle, these amino acids could easily gain/

lose a proton under physiological conditions. We calculated the

energy shifts for the CT states of selected dimers considering these

various protonation patterns of the protein. There were nine

distinct protonation states, with one of the nine amino acid

residues exhibiting a protonation state opposite to the one

estimated and all other residues exhibiting previously estimated

protonation state. The differences in the CT state energy shifts

calculated in estimated protonation environment and all non-

standard protonation environments are given in the Figure 4

(similar representation of the results in various protonation
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patterns for chlorophyll monomers is given in Supplementary

Figure S1 in Supplementary Material). The most significant

energy shift differences after changing the protonation pattern of

the protein are obtained for the dimers a602–a603, a603–a608,

a604–b605, b607–a608, b607–a609, b607–b615, and a608–a614.

Amino acids that are mostly responsible for these differences are

protonated GLU95 (for the dimer a602–a603), standard GLU145

(for the dimer a604–b605), and standard GLU153 (for the dimers

a603–a608, b607–a608, b607–a609, b607–b615, and a608–a614).

Four dimers, whose CT state energies are lower than the monomer

Qy energies, together with amino acids, that create large energy

shifts for these pigments, are shown in Figure 5.
3.4 N98H mutant

Apart from the WT environmetnt of Lhca4, we also checked

whether the energy shifts for the CT states of the Chl dimers and the

Qy energies of the monomers would still lead to similar results in

N98H mutant environment. In N98H mutant, the asparagine

(ASN) in position 45 (counting from N-terminus) is substituted

for histidine (HIS). We chose the most probable rotamer of

histidine (probabililty ~36%) using UCSF Chimera software
TABLE 4 List of the environmental blocks that have the largest (≥ 80cm−1) influence on the monomer Qy energies (in descending order).

Monomer Env. block DE, cm−1 Monomer Env. block DE, cm−1

a608 ARG156 244 a601 GLY54 118

b615 ARG155 203 b615 ASP169 -111

a609 ARG100 201 a610 LYS203 111

b607 ARG100 -193 a613 HIE236 111

a602 ARG209 165 a609 LYS201 98

b607 ARG156 -152 b606 SER138 -97

a602 GLU95 -148 a610 GLU199 -88

a611 LYS203 146 b606 GLU132 85

b607 ARG155 144 a613 PRO240 -84

a602 ASP77 -118
TABLE 5 List of the environmental blocks that have the largest (≥ 4000cm−1) influence on the CT state energies of dimers a602–a603, a603–a608,
b607–a609 and b607–b615 (in descending order).

Dimer Env. block DE, cm−1 Dimer Env. block DE, cm−1

b607–b615 ASP169 -10990 b607–a609 ARG155 -5931

a602–a603 GLU95 -10679 a603–a608 ARG156 -5354

a602–a603 ARG209 10505 a602–a603 ASP77 -5209

b607–a609 GLU204 -9338 a602–a603 ASP73 -4887

b607–b615 ARG156 -8191 b607–a609 ASP159 4823

b607–a609 ARG156 -7407 b607–b615 ASP159 4425

b607–b615 ARG100 -6861 b607–a609 LYS203 4041
The blocks that have large influence on corresponding monomer Qy energies as well are given in bold.
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FIGURE 4

The difference between the energy shifts of the CT states, calculated in estimated protonation environment and the non-standard protonation state
of the specific amino acid indicated at the bottom of each column.
B

C D

A

FIGURE 5

Spatial arrangement of the dimers a602–a603 (A), a603–a608 (B), b607–a609 (C) and b607–b615 (D) together with amino acids that have the
largest influence on the Qy energies of the monomers and the CT energies of the dimers.
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(Pettersen et al., 2004). The same methods were used for the

mutated protein chain to find that the newly added amino acid is

neutral e-tautomer and thus the net charge of the protein

remains unchanged.

Using the CDC method, energy shifts in the new environment

for both monomers and dimers were calculated. The results are

given in the last two columns of Tables 1 and 3, respectively.

Compared to the results obtained in the environment of WT Lhca4,

energies of the monomer Qy and dimer CT states in N98H

environment show no significant changes. After comparing the

energies of the dimer CT states and the corresponding monomer Qy

states in N98H environment, it is clear that there are 4 CT states

whose energy is lower than the Qy energy of the monomers that

form these dimers. These four states are the same as were obtained

in WT Lhca4 environment.
4 Discussion

The presence of CT states in the Lhca4 complex has been

suggested based on the significantly red-shifted peaks in the

emission spectra. LHCII trimers, for instance, fluoresce at ∼
680nm (Chmeliov et al., 2016), and almost the same fluorescence

wavelength is observed for the monomeric CP29 complexes

(Mascoli et al., 2019). For the light-harvesting antenna of PSI, the

experimental investigations are hindered by the fact that Lhca1–4

monomers cannot be isolated. Nonetheless, both Lhca1/4

heterodimer (Wientjes and Croce, 2011), and reconstituted Lhca4

complexes (Morosinotto et al., 2003) show red-shifted fluorescence,

with peaks at∼ 730nm.While initially this was thought to be related

to excitonic interaction (Morosinotto et al., 2003), it was soon

proposed that CT states should play a role (Ihalainen et al., 2005),

which was confirmed later by Stark absorption measurements

(Romero et al., 2009). Another point to consider is that Lhca4

complexes might exist in multiple conformations. This is supported

by single-molecule spectroscopy fluorescence measurements

(Krüger et al., 2011) and by time-resolved fluorescence

measurements (Wientjes et al., 2011). All this implies that the

spectroscopic features of Lhca4 might be influenced by more than

one CT state. Therefore, in this work we have performed a

systematic quantum-chemical investigation of the possible CT

states, paying particular attention to the electrostatic

environment-induced shifts of the CT state energies. Below we

will discuss the implications of our work in more detail.

We first note that we have found 4 possible CT states that, in

principle, could contribute to the experimental fluorescence signal:

a602+–a603−, a603+–a608−, b607−–a609+, and b607−–b615+. The

calculated energies of the latter two states are reasonably close to the

Qy manifold, as the mean Qy energy for Chls a is 17543cm−1 and

the lowest energy, corresponding to a602, is 17226cm−1. For

simplicity, all calculations in this work were done using eeff   =  1.

Note that eeff is an effective scaling factor, accounting for both the

dielectric screening of the protein environment and possible

systematic errors in the evaluation of the atomic partial charges.

Previous theoretical work often assumed eeff   =  1:5; therefore, after

performing calculations with eeff   =  1, we have also checked the
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effect of its variation within the interval between 1 and

1.5.Assuming this value, the estimated energies of the latter two

CT states would be much higher than the Qy manifold, while the

energies of the former two states would become Ea602+−a603− =

 17381cm−1 and Ea603+−a608− = 17659 cm−1, which would put

them in the middle of the Qy manifold. A slightly smaller

value of eeff   =  1:3 would result in Ea602+−a603− = 15799 cm−1 and

Ea603+−a608− = 16604 cm−1 , and the corresponding energy gap to the

Qy manifold would then become comparable to the red-shifted

fluorescence peak. We thus propose that both of these states could

contribute to the experimental fluorescence signal, although fine-

tuning of the eeff value in the future detailed theoretical modeling is

needed to precisely describe the whole spectrum. The latter

two (energetically higher) CT states will hardly contribute to the

red-shifted fluorescence, but their presence might still be needed

to correctly reproduce all the features of the experimental

data, especially those observed in the Stark measurements

(Romero et al., 2009).

Interestingly, previously only the a603–a608 dimer (note that it

is often called a603–a609 dimer due to the prevalent usage of the

LHCII nomenclature) was considered to be the origin of the

relevant CT state in both experimental considerations (Ihalainen

et al., 2005; Romero et al., 2009) and theoretical calculations

(Novoderezhkin et al., 2016; Sláma et al., 2023). One of the

reasons for that is that the Mg–Mg distance between Chls a603

and a608 is much shorter than between a602 and a603 (see

Table 3). Clearly, a short enough distance between two pigments

is a necessary, but not sufficient condition for a spectroscopically

active CT state to occur therein. Indeed, even for the Lhca4

complex, the shortest distance between the two pigments

corresponds to the a604–b605 dimer, yet no low-lying CT state is

present there. At this point it is also worthwhile to point out a recent

quantum-chemical work on the PSII reaction center (Sirohiwal

et al., 2020b), where it was shown that no low-energy CT states

could be identified between the so-called special pair pigments PD1
and PD2, despite a very small spatial separation. Clearly, the

environmental effects on the CT state energetics are of the

paramount importance.

There is another argument that is often employed to claim that

the a603–a608 dimer is the spatial origin of the CT states in the

Lhca4 complex. It comes from site-directed mutagenesis. The

amino acid coordinating the a603 pigment can be changed from

ASN to HIS (N98H mutant in our notation, often called N47H

elsewhere in literature). It was demonstrated that for this mutant

the fluorescence spectrum of the reconstituted Lhca4 loses the red-

shifted peak almost entirely (Morosinotto et al., 2003). Very

recently, a partial loss of the red-shifted fluorescence in this

mutant was a lso demonstrated for intact PSI–LHCI

supercomplexes (Li et al., 2023). In addition, recent advanced

quantum-chemical calculations also demonstrated the loss of the

red-shifted fluorescence for this Lhca4 mutant (Sláma et al., 2023).

We have performed calculations for this mutant as well, but our

results do not show any huge differences for the CT state energies.

At first glance, this seems to make our results to be at odds with the

literature data. That is not the case, however. What our calculations

show, is that solely replacing ASN98 to HIS98 while keeping the
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geometry of the nearby Chls the same, cannot account for huge

energy shifts, neither for a602+–a603−, nor for a603+–a608− dimers.

Therefore, protein electrostatics is not the main factor in this case.

Indeed, Sláma et al. (2023) demonstrated that this mutation induces

spatial shifts for a603 pigment. It is these shifts that are the reason

for different CT state energetics. We must stress that changes in the

spatial position of Chl a603 would also induce significant changes in

the a602+–a603− energetics. Thus, it might be that the N98H lacks

both of these CT states, and this is the reason for the disappearance

of the red-shifted fluorescence.

We must also highlight that our suggestion that the a602+–

a603− state also contributes to the experimentally observable

red-shifted fluorescence of the Lhca4 complex is indirectly

supported by experimental evidence. Morosinotto et al. (2005)

investigated several Lhca4 mutants, one of them being E95V/

R209L double mutant (E44V/R158L in the original notation of

Ref (Morosinotto et al., 2005)). GLU95 coordinates a602 and

ARG209 is quite close to it, thus these mutations should affect

the geometry of this pigment. Indeed, this mutant no longer

fluoresces at ~730 nm, though fluorescence at ~ 700 nm remains

(Morosinotto et al., 2005). Thus, it is very probable that a602 is

involved in one of the spectroscopically active CT states, which

our work shows to be a602+–a603−.

Let us now discuss the protonation pattern of the Lhca4 protein.

According to our estimations, there are 31 charged amino acids at

neutral pH, not counting the N- and C-terminus. Almost all the

charged amino acids are quite close to the stromal or lumenal

surfaces. The majority of the charged amino acids are on the

stromal side of the membrane. Two of the three amino acids not

exhibiting the standard protonation pattern (GLU145 and

GLU153) are neutral and are located deeper inside the protein,

while HIS242 is positively charged and located near the lumenal

surface. Of all the charged amino acids, only the guanidino group of

ARG156 quite far from the stromal surface and oriented towards

the inside of the protein. We thus find that the estimated

protonation should be reliable since both methods and software

used are time-tested and proven to be credible and that the resulting

protonation pattern does not contain any unexpected features.

Under physiological conditions, the protonation pattern of the

amino acids results from a statistical process, and some of the

amino acids could be easily (de)protonated. This, in turn, could

shift the energy levels of the chlorophyll excited states, leading to

different conformational states of the whole pigment–protein

complex. Indeed, for Lhca4 the single-molecule spectroscopy

measurements (Krüger et al. , 2011) and time-resolved

fluorescence measurements (Wientjes et al., 2011) suggest the

coexistence of a few conformational states. We have investigated

the possible non-standard protonation states of the Lhca4 complex

by considering amino acids with an absolute difference between

their pKa and pH values not exceeding 2. The resulting energy shifts

for the Chl Qy states are presented in Supplementary Figure S1,

while the shifts for the identified CT states are presented in Figure 4.

We will now discuss these possibilities in more detail.

Our identification of the easily protonable amino acids was

based on the corresponding pKa values. Some additional

consideration should be applied, however, because some of these
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amino acids are coordinating the pigments in the Lhca4 complex.

GLU95 coordinates Chl a602, GLU153 coordinates Chl a608, and

HIS236 coordinates Chl a613. Thus we hold that it is rather unlikely

for these amino acids to change their protonation state, since that

might affect the surrounding geometry. GLU145 does not directly

coordinate the Mg atom of any Chl, yet it coordinates the water

molecule that coordinates Chl b605 and it also coordinates the C7-

formyl of Chl b606, thus it is also unlikely for this amino acid to

change its protonation state. GLU113 and HIS242 are both on the

periphery of the complex on the lumenal side. According to our

calculations, the change of the protonation state of these amino

acids would not result in any significant energy shifts for both the

Chl Qy states and the CT states that could contribute to the red

emission. ASP159 is on the stromal side of the complex, and if it

were to acquire a proton, this would result in significant decrease of

the b607−–a609+ and b607−–b615+ state energies, making them

comparable to the energies of a602+–a603− and a603+–a608−. This

could result in an increase of the red emission. On the other hand,

the effects of the protonation state to the Chl Qy state energies are

minor. GLU202 and HIS222 are both on the periphery of the Lhca4

complex (on the stromal and lumenal sides, respectively). The

changes of their protonation states would result in either higher

(in case of GLU202) or lower (in case of HIS222) energy of the

a602+–a603− state, which could affect the low energy emission in

the fluorescence spectra. Regarding the Chl Qy states, all the

calculated energy shifts are less than 100cm−1, with the largest

effect being an increase of b606 Qy energy by 84cm−1 in case of

protonated HIS202.

There is one other issue that should be addressed. In the present

work, similarly to many other works in literature (Frankcombe,

2015; Kavanagh et al., 2020; Sirohiwal et al., 2020b), we have

considered chlorophyll dimers as a large supermolecule, and the

identified CT states are then the eigenstates of this supersystem. The

obtained CT states are thus not pure, but mixed (at least partially)

with the excitonic states. This approach allows us to easily identify

the energetically relevant CT states, but it must be kept in mind, that

if the mixing with bright states is vanishingly small, such states

would not receive oscillator strength; hence, these CT states would

not be visible spectroscopically. Future studies thus should also

consider the degree of mixing of pure CT states with pure site-basis

excitations, which could provide the couplings of the CT states to

the bright states that could then in principle be used to model the

population transfer between all possible excited states. Such

couplings could be obtained via the diabatization procedure, as in

Ref (Nottoli et al., 2018).
5 Conclusion

In this work, we have performed a systematic study of possible

CT states in the Lhca4 complex. In vacuum, all the CT states have

energies much higher than the Qy states of the pigments. However,

when the electrostatic effects of the protein environment are taken

into account, the energies of some of CT states drop down

significantly. Based on our calculations, we propose that in

addition to the a603+–a608− CT state, also the a602+–a603− state
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contributes to the far-red fluorescence signals of the Lhca4

complexes, which is supported by the experimental work on site-

directed mutants. We have also investigated the possible

protonation patterns of the titrable amino acids, and found that

changes in protonation states of ASP159, GLU202 and HIS222

could affect the low energy emission. Future work should investigate

the couplings between the pure CT states and molecular excited

states, which would allow one to estimate the CT state populations.
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