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Quantification of species
composition in grass-clover
swards using RGB and
multispectral UAV imagery
and machine learning
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Greet Ruysschaert1, Ivan A. Janssens2, Isabel Roldán-Ruiz1

and Peter Lootens1*

1Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO),
Melle, Belgium, 2Research Group Plants and Ecosystems (PLECO), Department of Biology, University
of Antwerp, Wilrijk, Belgium, 3Institute of Agricultural Sciences, Spanish National Research Council
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Introduction: Growing grass-legume mixtures for forage production improves

both yield productivity and nutritional quality, while also benefiting the

environment by promoting species biodiversity and enhancing soil fertility

(through nitrogen fixation). Consequently, assessing legume proportions in

grass-legume mixed swards is essential for breeding and cultivation. This study

introduces an approach for automated classification and mapping of species in

mixed grass-clover swards using object-based image analysis (OBIA).

Methods: The OBIA procedure was established for both RGB and ten band

multispectral (MS) images capturedby an unmanned aerial vehicle (UAV). The

workflow integrated structural (canopy heights) and spectral variables (bands,

vegetation indices) along with a machine learning algorithm (Random Forest) to

perform image segmentation and classification. Spatial k-fold cross-validation

was employed to assess accuracy.

Results and discussion: Results demonstrated good performance, achieving an

overall accuracy of approximately 70%, for both RGB and MS-based imagery,

with grass and clover classes yielding similar F1 scores, exceeding 0.7 values. The

effectiveness of the OBIA procedure and classification was examined by

analyzing correlations between predicted clover fractions and dry matter yield

(DMY) proportions. This quantification revealed a positive and strong relationship,

with R2 values exceeding 0.8 for RGB and MS-based classification outcomes.

This indicates the potential of estimating (relative) clover coverage, which could

assist breeders but also farmers in a precision agriculture context.
KEYWORDS

OBIA, drone, supervised classification, pasture, Lolium, Trifolium, high-throughput
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1 Introduction

In European temperate grasslands, grasses and legumes are

frequently cultivated in mixtures (Skovsen et al., 2017), with the

main legume species being white clover (Trifolium repens L.) and red

clover (Trifolium pratense L.) (Rognli et al., 2021). The main reason is

that grass-clover mixtures can perform better than each of the

component species in monoculture, in terms of yield and/or

nutritional quality (Nyfeler et al., 2011; Fujiwara et al., 2022).

Owing to their ability to capture atmospheric nitrogen through a

symbiotic relationship with soil bacteria, legumes generally are rich in

protein content (Sun et al., 2021). A key advantage of incorporating

legumes into grassland mixtures stems from the fact that nitrogen

fixed by legumes can be transferred to neighboring non-legume

plants (e.g. grass) (Pirhofer-Walzl et al., n.d; Thilakarathna et al.,

2016). Establishing grass-legume swards by combining species with

varying aboveground characteristics and root architecture (species

niche complementarity) offers other benefits, including an increase in

biodiversity (Rochon et al., 2004) and other positive consequences for

the environment (Lüscher et al., 2014). Such mixtures have

demonstrated enhanced resistance to weed invasion when

compared to monocultures (Deak et al., 2007). Introducing

legumes can also help restore nitrogen levels in the soil, thus

reducing the need for fertilizer application (Khatiwada et al., 2020).

A forage with a high clover content can offer a high feed quality

(Sun et al., 2021) and can increase fodder intake by livestock

(Dewhurst et al., 2009; Mortensen et al., 2017). Consequently, the

objective of forage production is to maintain a predetermined

proportion of the legume component (Skovsen et al., 2017), while

maximizing the annual dry matter yield. However, maintaining

such well-balanced grass-legume mixtures over time is challenging

(Lüscher et al., 2014) due to various environmental factors (e.g. soil

fertility, temperature, soil moisture content, species and cultivar

choice) that play a crucial role in the growth and persistence of

clover in mixed swards (Botha, 2009), as well as management

factors (e.g. cutting regime and nitrogen fertilization) which affect

the competition dynamics between grass and clover (Sun et al.,

2021). For instance, the grass-clover ratio can be regulated by

manipulating the amount of nitrogen fertilizer applied (Skovsen

et al., 2017). With ample soil nitrogen availability (high

fertilization), the faster-growing grass will outcompete clover. On

the contrary, with limited soil-available nitrogen, clover will

dominate the sward (Skovsen et al., 2017). An optimal quantity

and quality of forage is reached when the clover fraction ranges

from 30% to 50% in total dry matter (Botha, 2009). A higher

percentage of clover usually leads to a notable decrease in the yield

(Khatiwada et al., 2020). Conversely, if clover content falls below

30%, the nutritional value of the feed decreases (Botha, 2009).

Therefore, an accurate follow-up of the clover ratio by farmers is

essential for targeted management regarding fertilization or

reseeding, and to estimate the nutritional value of the forage

(Biewer et al., 2009; Himstedt et al., 2010; Skovsen et al., 2017).

A common method used for estimating the clover fraction in

grass-clover swards in the context of breeding and research involves

destructive sampling: cutting vegetation subsamples, followed by

manual separation of the component species (e.g. grasses, legumes
Frontiers in Plant Science 02
etc.), drying and weighing (Himstedt et al., 2010; Mortensen et al.,

2017). Due to its labor-intensive and time-consuming nature, this

approach is expensive and difficult to employ in practice

(Mortensen et al., 2017). A non-destructive and simpler method

consists of the visual assessment of species coverage and their

composition, in the same way as farmers do. Estimating the

clover ratio visually comes with challenges. For instance, to

achieve 30% of clover, the pasture must visually display about 50

to 60% of clover coverage because the observable clover content is

typically twice its actual amount (AHDB, 2021). In addition, coarse

visual inspections are subjective and prone to inaccuracies

(Himstedt et al., 2010). They also do not account for spatial

variation, both intra-field or across different fields (Skovsen et al.,

2017). These limitations have encouraged the advancement of

remote sensing (RS) solutions (Li et al., 2021). RS technologies,

particularly unmanned aerial vehicles (UAV), offer several

advantages in this respect. They are cost-efficient, capable of

covering large areas and can capture high-resolution imagery

(Deng et al., 2018). These attributes make RS technologies useful

for grassland monitoring.

Several RS-based studies that estimate the grass-clover content/

ratio in mixed swards through image analysis have been conducted

in recent years. The most recent ones focused on the use of deep

learning methods for semantic segmentation. For example, Skovsen

et al. (2017) trained a fully convolutional network (FCN) to

automatically generate a pixel-wise classification of clover, grass,

and weeds. Bateman et al. (2020) introduced a new local context

network (LC-Net) designed for dense swards and canopies with

high occlusion. Sun et al. (2021) utilized not only the FCN

architecture but also fine-tuned DeepLab V3+ and SegNet

transfer learning methods for clover detection. (Kartal, 2021)

compared thirty different segmentation models built with a

combination of three deep learning architectures and then

randomly initialized encoders. Finally, Fujiwara et al. (2022)

employed the fine-tuned GoogLeNet model to estimate legume

proportion. Overall, these studies showed that the methods applied

are useful to determine the clover fraction in mixed grass-clover

swards. A shared characteristic across all these studies is their

utilization of RGB imagery acquired with close-range remote

sensing; either with a camera setup mounted on a pushcart

(Skovsen et al., 2017), on a ground-based platform (Bateman

et al., 2020), on a UAV flying at an altitude of 4 m (Fujiwara

et al., 2022) or using an Apple iPhone SE camera (Sun et al., 2021).

As a result, ultra-high-resolution imagery was captured, revealing

fine details of the canopy cover, such as individual grass and clover

leaves. Acquiring such high-resolution images and then analyzing

them using deep learning techniques comes with challenges,

including high computational cost (Justus et al., 2018), extensive

manual labeling (Skovsen et al., 2017), and limited field coverage.

To address these challenges, in this study we used UAV imagery

captured at higher altitudes, thereby facilitating increased spatial

coverage up to the field level. Furthermore, we explored the Object-

Based Image Analysis (OBIA) approach, to mitigate computational

costs and reduce manual labeling efforts. Thus, potentially offering a

simplified procedure for the end user while still achieving

satisfactory results.
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In a traditional pixel-based approach, each pixel is classified

separately, and the classification procedure predominantly relies on

spectral properties (Blaschke et al., 2014; Zou and Greenberg, 2019).

In contrast, OBIA operates at the ‘object level’ (Blaschke, 2010).

OBIA segments an image by grouping pixels into non-overlapping

objects with a meaningful representation (Blaschke, 2010; Grippa

et al., 2017; Hossain and Chen, 2019) and then classifies each object

(Blaschke, 2010). This approach was designed primarily to analyze

high-spatial resolution imagery by incorporating spectral, shape

and textural characteristics as well as spatial patterns (Lang et al.,

2009), but is considered an efficient tool for classifying remotely

sensed imagery (Lu and He, 2018). Clustering pixels into image

objects also aims to overcome the ‘salt and pepper effect’ (Blaschke,

2010). The primary objective of the study presented here was to

automatically detect and quantify the percentage of component

species in mixed grassland swards using UAV-derived imagery and

an OBIA approach. To analyze the effectiveness of the applied

method we investigated the relationship between the clover fraction

determined using the generated OBIA classification maps and the

relative proportion of clover in terms of harvestable dry matter yield

determined with destructive methods.
2 Materials and methods

2.1 Study site

The study was carried out in the municipality of Merelbeke in

Belgium (N50°98’, E3°79’; Figure 1), using a trial established to test

and compare the performance of various species mixtures, when

mown frequently (five cuts per year). The field trial was sown in

September 2020 with nine different combinations of the following

species: perennial ryegrass (Lolium perenne L., R), tall fescue

(Festuca arundinacea Schreb., F), white clover (Trifolium repens

L., WC), red clover (Trifolium pratense L., RC), bird’s-foot trefoil

(Lotus corniculatus L., T), common sainfoin (Onobrychis vicifolia

Scop., S), narrowleaf plantain (Plantago lanceolata L., P) and

common chicory (Cichorium intybus L., C). In addition, each

species was sown separately in border rows. The mixtures were

arranged in a randomized block design with four replicates (A, B, C,

D), resulting in a total of 44 plots (2.5 x 6 m).

To address the objectives of this study, only two different combinations

(8 plots in total) were selected for further analysis: mixture 2 (grass and

clover) and mixture 3 (grass, clover and plantain), marked in yellow in

Figure 1. Such swardmixtures are commonly grown for forage production

in Belgium. The remaining mixtures were not considered in this

investigation as this would greatly increase the complexity of the

analysis, which was not the aim of this study.
2.2 Field sampling and data acquisition

For this study, data was collected at the beginning of May

(spring cut) of 2021. Field sampling and data acquisition can be

divided into five steps (Figure 2): (1) UAV-based image collection,

(2) reference photo capturing, (3) biomass harvesting, (4) manual
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separation of component species and (5) weighing and drying of

sorted plant material. All the steps are described in detail below.

The first step in the procedure was to perform two drone flights.

We utilized a DJI Matrice 600 Pro (DJI, Shenzhen, China) platform

and two different sensors: (a) a standard digital RGB camera (a6000,
Sony Corporation, Tokyo, Japan) and (b) a multispectral (MS)

camera (Dual Camera System, MicaSense, Seattle, USA), with the

following ten bands: coastal blue (444 nm), blue (475 nm), green (531

nm), green (560 nm), red (650 nm), red (668 nm), red edge (705 nm),

red edge (717 nm), red edge (740 nm), and near-infrared (840 nm).

The flight mission was carried out on 6th May around solar noon (2

p.m.). The UAV with each sensor was operated along a pre-defined

route and at different altitudes above the ground level. For the RGB

camera, the flight altitude was set to 18 m (the lowest possible), as

descending further may potentially disrupt the canopy due to the air

turbulence generated by the heavy M600 drone propellers.

Conversely, with the MicaSense multispectral sensor we followed a

recommended minimum flying altitude of 30 meters. Different sensor

parameters and flight heights resulted in distinct spatial resolutions,

with RGB and MS imagery achieving pixel sizes of 2 mm and 2 cm,

respectively. Once the UAV flights were completed, we started a field

sampling campaign. Non-destructive and destructive measurements

performed in the next steps are not only more time-consuming but

also labor-intensive. Therefore, a limited number of subplots were

selected within the grass-clover and grass-clover-plantain mixtures (a

total of 10 subplots, marked in blue in Figure 1). A metal frame (0.55

x 0.55 m in size) and plastic markers were used to define the borders

and mark the location of the subplots. First, we captured reference

images at ground level (around 1.2 m height) using a tripod and a

consumer-grade RGB camera (D90, Nikon Corporation Tokyo,

Japan). In the next step, we harvested all aboveground biomass

(green vegetation) within the metal frame to a height of 5 cm

above soil level. Shortly after the cut, the collected biomass samples

were manually separated and sorted into four classes: grass, clover,

plantain and weeds. The sorted biomass fractions were oven-dried at

70°C for a minimum of 72 h and weighed. In the last step, the relative

proportion (weight-%) of harvestable dry matter yield (DMY) of each

fraction related to the total DMY was calculated.
2.3 Image processing and image analysis
– workflow

A graphical workflow (Figure 3) represents the key steps of the

processing chain, including image processing, calculation of

different indices, extraction of information, sampling procedure,

segmentation, image classification and performance evaluation,

which are described in more detail below.

2.3.1 Image processing
Images acquired with the UAV-based sensors were

photogrammetrically processed using Agisoft Metashape Professional

(Agisoft LLC, St. Petersburg, Russia) and Pix4DMapper v4.5.6 (Pix4D

S.A., Prilly, Switzerland) for the RGB and the multispectral camera,

respectively. Both software packages are commonly used for aerial

imagery processing and both apply the structure from motion (SfM)
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FIGURE 1

Study site in Merelbeke with a field trial featuring different mixtures of species. Letters A, B, C, and D represent four replicates. Mixture 2: R + WC +
RC; mixture 3: R + WC + RC + P. Imagery captured with a UAV-based RGB sensor (collected in May 2021) was set as the base image.
FIGURE 2

Stages of field sampling and data collection carried out in 2021 at the study site.
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technique to produce accurate, georeferenced maps and 3D models.

The main steps in the image processing procedure for both sensors

(and software packages) are similar. They were adopted from our

previous study (Pranga et al., 2021), so further details on selected

options and parameter settings can be found there. In this study, six

Ground Control Points (GCPs), were evenly spread across the field and

utilized for precise georeferencing. The geographic coordinates of the

GCPs were measured on-site with an RTK GPS (Stonex S10 GNSS,

Stonex SRL, Italy).

2.3.2 Image post-processing
As two different sensors were used in this study, the Canopy

Height Model (CHM) was computed separately for RGB

(CHMRGB) and multispectral (CHMMS) imagery. The CHM was

calculated by subtracting the Digital Surface Model (DSM) and the

Digital Terrain Model (DTM) at a pixel level. To compute the

DTM, we applied a Triangulated Irregular Network (TIN)

interpolation tool. Here, we measured 20 ground points, evenly

spread across the study site, with the same RTK GPS.

The RGB orthomosaic created in the previous step was further

transformed into hue (H), intensity (I), and saturation (S) color space

using the GRASS GIS module with its i.rgb.his tool. Similarly,
Frontiers in Plant Science 05
vegetation indices (VIs) were calculated for RGB and MS imagery.

Vegetation indices are relatively simple but powerful features that can

help in quantitative and qualitative vegetation monitoring and

assessment (Xue and Su, 2017). Four VIs were selected for the

RGB imagery: (Normalized) Excess Green (ExG), (Normalized)

Excess Red (ExR), Excess Green - Excess Red (ExGR), and

Normalized Green-Red Difference Index (NGRDI). The MS sensor,

with additional data from the red-edge and near-infrared part of the

spectrum, provides more possibilities for index calculations. Here, we

selected eight indices, comprising Chlorophyll Index Green (Clg),

Enhanced Vegetation Index (EVI), Green Atmospherically Resistant

Vegetation Index (GARI), Green Normalized Difference Vegetation

Index (GNDVI), Modified Chlorophyll Absorption in Reflectance

Index (MCARI), and Simple Ratio (SR) with the red-edge band. All

vegetation indices were calculated using equations enlisted in the

previous study (Pranga et al., 2021). The selection of VIs was based on

their general applicability in vegetation monitoring.

A set of further processing steps were applied to the acquired

rasters. As digital surface models and maps were generated with

different pixel sizes, we started with the raster alignment tool. Here,

rasters were resampled to the same cell size and offset in the grid

using the nearest neighbor resampling method. The output pixel
FIGURE 3

Graphical workflow illustrating the main stages of the processing chain, including image processing, segmentation, image classification and
performance assessment (*HIS: Hue, Intensity, and Saturation; ** raster stack of spectral bands and/or vegetation indices).
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size was approximately 2 mm and 2 cm for RGB-based and MS-

based imagery respectively. All RGB-based rasters (RGB + HIS +

CHRGB + VIs) were mosaicked into one raster stack in the next step.

The same procedure was repeated for MS-based rasters (10 spectral

bands + CHMS + VIs). To perform all these calculations, we used the

open-source QGIS 3.22.8 with GRASS 7.8.3. software (QGIS

Geographic Information System, QGIS Development Team, Open

Source Geospatial Foundation). As the procedure had to be

repeated for different sensors, we used the integrated Python

console for scripting within the QGIS software (Python version 3.9).

2.3.3 Object-Based Image Analysis
We can divide the OBIA procedure into two main stages: 1)

image segmentation and 2) feature extraction and classification.

2.3.3.1 Image segmentation

Image segmentation is the first and key step in OBIA (Lu and

He, 2018). During this step, disjoint, spatially continuous and

homogenous segments, also known as objects, are generated

(Blaschke et al., 2014). The essential objective here is to cluster

individual pixels from any raster or image into meaningful objects

that should match, as much as possible, the real-world objects

(Grippa et al., 2017). A segmentation procedure aims at producing

internally homogeneous segments (intra-segment homogeneity)

that are distinct from their neighbors (inter-segment

heterogeneity) (Espindola et al., 2006). Finding the balance

between this intra-segment homogeneity and inter-segment

heterogeneity is crucial as it affects the segmentation quality

(Grippa et al., 2017; Wijesingha et al., 2020).

In this study, the image segmentation procedure was performed

using the open-source project Orfeo ToolBox (OTB) (Grizonnet

et al., 2017), which was developed by the Centre National d’Etudes

Spatiales (CNES) in France. OTB incorporates many ready-to-use

tools for remote sensing (RS) tasks (OTB, 2018), including OBIA-
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were applied through the QGIS software with an integrated Python

console (Python version 3.9). Image segmentation was performed

using the mean-shift algorithm (Michel et al., 2015) option available

in the OTB platform, with computation implemented on a tile-wise

basis. This way, we could limit memory usage and apply the method

to very high-resolution (VHR) imagery (Michel et al., 2015; OTB,

2018). In the mean-shift algorithm, a moving window average is

used to group pixels close in the spatial and spectral domain into

segments (Comaniciu and Meer, 2002; Hossain and Chen, 2019).

Three key parameters must be set within the OTB mean-shift

algorithm: spatial radius (spatialr), range radius (ranger), and

minimum region size (minsize) (Teodoro and Araujo, 2016;

Varo-Martıńez et al., 2017). The first parameter defines the radius

of the spatial neighborhood for averaging. The range radius

determines the interval in the spectral space (expressed in

radiometry units). Thus pixels with a lower range distance than

the given parameter value will be grouped into image objects. The

last parameter defines the minimum size of a segment (in pixels) to

be kept after clustering. Smaller image segments will be merged with

the neighboring one that has the closest spectral signature (Teodoro

and Araujo, 2016; OTB, 2018; De Luca et al., 2019). The selection of

segmentation parameters is a crucial step in the OBIA procedure

(Neubert et al., 2008; Grippa et al., 2017), as they control the

segmentation quality (Espindola et al., 2006). The most common

methods for parameter selection and segmentation evaluation are

based on visual and expert interpretations (Zhang et al., 2008;

Durgan et al., 2020). Here, a trial-and-error visual approach with a

gradual (step-by-step) adaptation of segmentation parameters was

implemented. The ranger parameter was adapted following the

sensor used to obtain the imagery. Pixel values in RGB imagery are

recorded as digital numbers (DN), where each band is encoded in

the range of 0 to 255. With an MS sensor, a reflectance map is

produced, where each pixel indicates the reflectance of the object
TABLE 1 The list of spatialr, ranger and minsize parameter combinations tested during the segmentation procedure using RGB and MS imagery.

segmentation
RGB (2mm) MS (2 cm)

spatialr ranger minsize spatialr ranger minsize

1 10 10 30 5 0.01 2

2 10 10 120 5 0.01 8

3 10 10 200 5 0.01 14

4 10 30 30 5 0.02 2

5 10 30 120 5 0.02 8

6 10 30 200 5 0.02 14

7 30 10 30 15 0.01 2

8 30 10 120 15 0.01 8

9 30 10 200 15 0.01 14

10 30 30 30 15 0.02 2

11 30 30 120 15 0.02 8

12 30 30 200 15 0.02 14
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(values between 0 and 1). Theminsize parameter was selected based

on the geographical context (smallest patch of grass or clover) and

spatial resolution of the analyzed imagery (lower resolution

corresponds to lower parameter value) (Table 1). It has been

suggested to set the range of parameter values that will result in

under and oversegmented results as extremes (Grippa et al., 2017).

The segmentation procedure was carried out using either RGB-

based (RGB + HIS + CHRGB) or MS-based (10 spectral bands +

CHMS) images mosaicked into a raster stack (Figure 3; Table 2). As a

result, a segmented vector layer was generated.

2.3.3.2 Feature extraction

Before proceeding with image classification, an important step

of feature extraction must be completed, as it builds a learning

database. In this step, vector layers, generated during the

segmentation stage (representing image objects), were used to
Frontiers in Plant Science 07
compute zonal statistics from multiband raster layers. For this

purpose, the Zonal Statistics tool from the OTB toolbox was

applied. Both spectral and structural features were extracted and

used further as predictor variables in the classification process

(Table 2). The mean and standard deviation statistics were

computed for each polygon. Segmented vectors were also used to

calculate various shape indices (SI) (Table 2), mainly based on area,

perimeter and maximum diameter values. To calculate SI, the

Polygon Shape Indices tool from the SAGA toolbox was applied

(Conrad et al., 2015). A recent study by Lam et al. (2021) has shown

that selected shape indices are useful in distinguishing small-leaved

species from other plant species.

2.3.3.3 Labeling procedure

To train supervised learning algorithms and conduct image

classification, a set of labeled ground truth data (with selected
TABLE 2 Variables used for segmentation and/or classification procedure with the description.

CATEGORY SENSOR VARIABLES STATISTIC USAGE EXPLANATION

spectral bands

RGB

red,
green,
blue,
hue,

intensity,
saturation

mean, sd
segmentation,
classification

spectral bands of employed sensors

MS

blue (444 nm),
blue (475 nm),
green (531 nm),
green (560 nm),
red (650 nm),
red (668 nm),

red edge (705 nm),
red edge (717 nm),
red edge (740 nm),

nir (840 nm)

mean,
sd

segmentation,
classification

vegetation
indices (VI)

RGB

ExG,
ExR,
EXGR,
NGRDI

mean,
sd

classification

indices that highlight the difference between spectral
properties of plant species; the selection criteria are based on

their general applicability in vegetation monitoring

MS

CIg,
EVI,
GARI,
GNDVI,
MCARI,
MSAVI,
NDVI,
SR717

mean,
sd

classification

structural
features

RGB CHRGB
mean,
sd

segmentation,
classification

information about the vegetation height above the
ground surface

MS CHMS
mean,
sd

segmentation,
classification

information about the vegetation height above the
ground surface

shape
indices (SI)

RGB,
MS

A (area),
P (perimeter),

P/A
P/sqrt(A),
Sphericity,
Shape Index,

Dmax,
Dmax/A

Dmax/sqrt(A)

– classification
area and perimeter of the object, the inverse of the sphericity,
the maximum distance between two polygon vertices, the

smoothness of an object border
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species classes) is needed. The sampling and labeling procedure was

performed outside of the main processing chain using a polygon-

based approach. This means that polygons were manually generated

across the plots and then labeled by hand through visual image

interpretation. The high spatial resolution UAV-derived RGB

orthomosaic (pixel size of 2 mm) was used as a reference. The

polygons were labeled as either grass (class 1), clover (class 2),

plantain (class 3) or weeds (class 4). The polygon digitization was

spatially randomized and concentrated on defining patches of

species rather than single leaves. The 1167 labeled polygon were

evenly spread across the analyzed plots and covered around 17% of

the total plot area. Special attention was paid to the equal

distribution of species classes among the polygons created.

Nevertheless, plots were dominated by grass and clover with

sporadic and scattered occurrences of plantain or weeds.

Consequently, it was impossible to obtain an equal number of

samples per class. In the end, grass was represented by 434, clover

by 468, plantain by 192, and weeds by 73 labeled polygons.

These manually generated polygons which are treated as ground

truth data (also known as reference data) were utilized to extract

mean values from raster variables (spectral bands, CHMs, and

vegetation indices), and were then used to build grouped boxplots

and Principal Component Analysis (PCA). The main aim here was

to identify and visualize the patterns within the dataset and

understand the differences among classes and relationships

among variables. Boxplots and PCAs were generated separately

for data obtained with the RGB and with the multispectral sensor.

In this study, sample segments (learning database) used for OBIA

classification were generated by applying spatial join of manually

labeled polygons (ground truth data) and image segmentation results.

The spatial join parameters were set as ‘within’ and ‘overlap’ to select

segments that were entirely contained within the labeled polygons, as

well as segments that partially overlapped the labeled polygons.

2.3.3.4 Image classification

The prepared learning databases that can be used for the

classification procedure were then exported to the RStudio (RStudio:

IDE for R, R Studio Inc., Boston, MA, USA), where further analysis on

model calibration and validation was conducted. In this study, we

applied the Random Forest (RF) machine learning algorithm. Due to

its high processing speed and great classification performance, RF has

gained increasing attention over the past decades (Belgiu and Drăgut,̧

2016). Several studies (Akcay et al., 2018; De Castro et al., 2018; Lu and

He, 2018; Hall and Lara, 2022) have demonstrated that RF is suitable

for land cover and species classification using high-resolution UAV

imagery. The main reasons for selecting this classifier are its ability to

manage large datasets with many variables (Akcay et al., 2018) and to

adjust for interactions (correlations) among those predictor features

(Hall and Lara, 2022). Random forest, introduced by Breiman

(Breiman, 2001), is an ensemble learning technique that uses a

combination of de-correlated decision trees. Such ensemble classifiers

perform better, with higher accuracy and generalization capability than

a single classifier (Rodriguez-Galiano et al., 2012).

Random Forest was trained for each prepared learning database

(RGB and MS-based) using the ranger package (Wright and Ziegler,

2017) The following hyperparameters were considered: (1) the number
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of decision trees to be generated (num.trees) was set to default 500, as

previous studies suggest that errors stabilize before this number of

decision trees is reached (Belgiu and Drăgut,̧ 2016), (2) the number of

variables selected and tested at each split (mtry) was set to the default

square root of the number of input variables present in the learning

dataset, and (3) minimal node size (min.node.size) was set to the default

1 for classification.

2.3.4 Accuracy assessment
As stated before (section 2.1.), only two types of species mixtures,

totalling 8 plots, were chosen for Object-Based Image Analysis (OBIA):

one comprised of grass and clover (mixture 2) and the other of grass,

clover, and plantain (mixture 3). To assess the performance of the

developed procedure, a form of spatial k-fold cross-validation approach

was implemented. This involved resampling based on the location of

observations, which was determined by the replicate scheme of the field

trial. In total, four Random Forest (RF) classification models were built.

Each model utilized 6 plots for training (from 3 different replicates and

2 mixtures), and the remaining 2 plots (from 1 replicate and 2

mixtures) were used to test the model. This process was repeated 4

times, using various replicate combinations, as illustrated in Figure 4.

Both qualitative evaluation through visual inspection and

quantitative evaluation using reference data are integral

components of the accuracy assessment in OBIA (Zhao et al.,

2020). In supervised classification, a confusion matrix is a

commonly used tool to organize information essential for accuracy

assessment (Bratic et al., 2018). To summarize the confusion matrix

information, several classification measures (scalar metrics) can be

calculated. In this study, we focused on two metrics: a) the overall

accuracy and b) the F1 score on a class-wise basis. The F1 score

combines the harmonic mean of precision and recall (Guns et al.,

2012), aiming to maximize both measures and obtain a better

classifier. F1 evaluates model performance based on individual

classes, as opposed to accuracy where the overall performance is

computed. In general, an F1 score equal to 1 represents a model that

perfectly classifies each observation into the correct class.
2.4 Species mapping

In order to obtain a classification map, a random forest (RF)

model was built using labeled segments from all 8 plots. This model

was then used to predict species class in all unclassified segments of

the analyzed plots. The predicted class was used as a symbol label to

create a species classification map. This procedure was repeated for

different image segmentation results, obtained with different

parameter combinations tested in the segmentation procedure.
3 Results

3.1 Multivariate relationships in
reference data

Mean values extracted from rasters (bands, CHMs and VIs)

with manually generated polygons (ground truth data) were used to
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build grouped boxplots (Figure 5) and PCAs (Figures 6, 7). The

multivariate analysis indicates that spectral separation among the

grass, clover, plantain, and weed classes is clearer with RGB imagery

than with MS. What stands out in this figure is the difference

between median and spread values of the plantain class for the

RGB-derived data (Figures 5A, B). For almost all analyzed variables

(except CHM, ExR, and NGRDI) the range of the plantain class is

the largest, indicating wider distribution and more scattered data

(spectral response). For MS-based data (Figures 5C, D) measures of

spread and central tendency for plantain are closer to that of clover

and weed class.

The interquartile range (the box heights) does not overlap

between the grass and clover classes for the majority of analyzed

variables (Figure 5). This indicates a clear difference between the

two classes in terms of spectral response. Features, such as hue,

CHM, ExR, ExGR and NGRDI, NDVI are an exception, as the

median scores are similar for grass and clover and boxes overlap.

On average, grass has lower values for almost all spectral bands and

vegetation indices. On the contrary, when considering saturation,

ExG, ExGR, and GNDVI features, grass shows higher values than

clover. There are several similarities between clover and weed in

their spectral response, as the range and median values are close to

each other. Nonetheless, differences between these two classes can

be observed in the RGB-based blue, ExG, and ExGR variables, as

they are more aligned with the grass class. Canopy height has
Frontiers in Plant Science 09
similar median and interquartile range values for the four

analyzed classes.

The RGB-based 3D PCA plot presented in Figure 6 shows that

the first three principal components (PC1, PC2 & PC3) capture

almost 96% of variance from the data. The first component (PC1)

explains 79.5% of that variation, the second component (PC2) 9.1%

and the third component (PC3) 7% of that variation. Hence, they

are included in the further description and results.

The clusters in Figure 6 reveal the presence of multiple

distinct distributions within the data. There is not much

overlap between plantain and the other three classes. The

spread of observations is the largest for plantain, especially

across PC1 and PC3. These samples are not as closely grouped

as the grass or clover classes. There are a number of similarities

and differences between grass and clover across the PCs. Both

grass and clover samples share a similar spread of values across

PC2. There is also a considerable overlap between these two

classes along PC1 and PC3 However, when looking at

observations in the three-dimensional space, one can see that

grass and clover cluster separately. Even though both grass and

clover observations cluster rather diagonally from low (negative)

values on PC1 and PC3 space to higher values on PC1 and PC3,

grass displays lower values on PC1 and higher values on PC3 than

clover samples. The weed class overlaps to a large extent with the

grass and clover classes in PC1 and PC2 values, but it differs when
FIGURE 4

Visual representation of 4-fold cross-validation implemented in the study (green color: training set, orange color: test set).
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considering PC3. The weed class reaches higher values (on

average) along PC3.

The next important step is to look into the relationship of the

principal components with their original variables. For this

purpose, the magnitude and the direction of linear coefficients,

also known as loadings, were explored (Supplementary Table S1).
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The first principal component is primarily an equally weighted

contrast between blue, green, intensity, red, and ExR variables

(positive coefficients) and hue, saturation, ExG, ExGR, and

NGRDI variables (negative coefficients). In contrast, the second

principal component has a large positive association with CHM

and very small contributions from all the other variables. The
FIGURE 6

Principal Component Analysis (PCA) score plot representing RGB-based data of four distinct classes (grass, clover, plantain, and weed) obtained from
labeled ground truth polygons, utilizing three dimensions.
B

C D

A

FIGURE 5

Visual summary (boxplots) of data extracted using labeled polygons as ground truth data for RGB-based color space with HIS color space (A) and
RGB-based vegetation indices with CHM (B) MS-based spectral bands (C) and MS-based vegetation indices (D).
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third principal component has the strongest weighted contrast

between hue and saturation. Blue, NGRDI (negative coefficients),

and ExR, CHM (positive coefficients) are other variables

influencing PC3.

The 3D PCA plot on multispectral rasters (Figure 7), shows that

nearly 98% of variance from the data is explained by the first three

principal components (PC1, PC2, & PC3). PC1 captures 70.1% of

the variability, followed by PC2 with 21.4%, and PC3 with 6.2%.

Consequently, these components are considered for further

description and analysis.

Similar to the RGB-based PCA, the plantain class displays the

widest spread, particularly across PC1. However, in contrast to the

RGB-based PCA, observations of the plantain category overlap with

those of the other three classes. Also, in this case, grass and clover

classes share several similarities and differences across the PCs.

Observations of both classes have a similar spread of values across

PC2 and PC3, but a different spread across PC1. While grass

observations cluster around negative PC1 values, clover

observations center around the positive PC1 values. Similar to the

RGB-based PCA, the weed class intersects with other classes in PC1

and PC2 space, yet it diverges in PC3 dimension, where it typically

reaches higher values.

The first principal component represents an evenly weighted

sum of all analyzed variables (Supplementary Table S2). This PC

has negative associations with GNDVI, Clg, SR, and NDVI, while it

has positive associations with the remaining variables. Conversely,

the second principal component shows the strongest positive

correlation with MSAVI. Features such as EVI, NDVI, GARI,

GNDVI or nir spectral band are the other variables influencing

PC2. PC3 demonstrates the strongest weighted contrast between
Frontiers in Plant Science 11
MCARI (positive coefficient) and SR with blue spectral band

(negative coefficients).
3.2 Object-based image analysis:
segmentation and classification results
with accuracy assessment

In this study, different combinations of parameters were

investigated and their impact on segmentation was explored and

visualized. Figure 8 illustrates the results of such image

segmentation (red polygons) for both RGB (left side) and

multispectral (right side) rasters. A few sets of segmentation

parameters (minsize, ranger, and spatialr) were selected as an

example to present varying levels of detail, with decreasing

number of acquired segments (from top to bottom). Figure 8A

also indicates grass, clover, plantain and weed classes, showcasing

the variations.

As expected, the spatial resolution associated with the UAV

sensor (RGB vs. MS) and its flight altitude, plays an essential role in

defining the outcomes of the applied OBIA technique. With high

spatial resolution imagery, like the one acquired with the RGB

sensor, segmentation is possible with a very high level of detail.

With lower resolution rasters (i.e. multispectral ones) we achieve

coarser image segmentation. As shown in Figure 8B, pixels are

clustered into very small objects such as individual grass leaves or

clover leaflets. What is interesting about this segmentation outcome

is that the single plantain leaf, as well as the weed plant (accentuated

in Figure 8A), are separated into several objects. This is a

consequence of over-segmentation, with multiple objects that
FIGURE 7

Principal Component Analysis (PCA) score plot representing MS-based data of four distinct classes (grass, clover, plantain, and weed) obtained from
labeled ground truth polygons, utilizing three dimensions.
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represent a single feature. In the following segmentation

(Figure 8C), the number of segments obtained was much lower.

Certain plants are still depicted by more than one object (i.e.

plantain leaf). While other plants, e.g. weeds or some grass

patches are more homogeneous and spatially continuous. In this

case, a weed plant is well-delineated into one object. The

segmentation result shown in Figure 8D also shows a low number

of segments and the boundaries between features are rather well-

defined. For instance, in the top left corner of Figure 8D, a grass

patch (comprising multiple grass blades) is clustered into one

object, similarly to a clover patch located nearby.
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Upon close examination of MS-based segmentation results

(presented in Figures 8F–H), several notable differences with the

RGB-based results can be observed. While MS imagery may lack the

level of detail of RGB images, it is still able to distinguish patches of

grass and clover, with grass appearing darker than clover. In MS

rasters, plantain leaves do not stand out anymore and cannot be

distinguished easily (mixed pixel problem, as pixels contain

information from multiple ground cover classes). In addition, the

weed plant closely resembles a clover patch. Figure 8F displays the

most detailed MS-based segmentation, capturing the smallest

objects. In the segmentation shown in Figure 8G), less detailed
B
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FIGURE 8

Image segmentation results of a B3 plot fragment, performed separately for RGB (left) and MS (right) imagery. RGB-based orthomosaic (A) and MS-
based true color composite (E) are used as a background. The parameters of minsize, ranger, spatialr were set respectively, as follows: (B) 30, 10, 10;
(C) 200, 10, 10; (B) 120, 30, 10; (F) 2, 0.01, 5; (G) 8, 0.02, 5; (H) 14, 0.01, 15.
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results are obtained with a reduced number of objects. The

segmentation output shown in Figure 8H is a clear case of under-

segmentation. Multiple features, representing different ground

cover classes, are contained within a single segment.

Figure 9 showcases the outcomes of species classification using

UAV imagery with different spatial resolutions derived from both

sensors. The C2 plot, sown with a mixture of grass-clover, and a

blow-up of the yellow-framed area are used as examples of further

analysis. The detailed RGB-based orthomosaic shown in Figure 9A

and the MS-based true color composite shown in Figure 9D were

utilized as input. Image segmentation using the mean-shift
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algorithm is shown in Figures 9B, E. Classification maps

differentiating four classes (grass, clover, plantain, and weed) are

presented in Figures 9C, F. The RGB-based classification yields a

more intricate and detailed species map Figure 9C than the MS-

based one (Figure 9F) But, as can be seen from the selected area of

interest, both OBIA classification maps share some key similarities.

The largest patches of clover and grass are identified in similar/

corresponding areas. However, clover covers a larger area in the

RGB-based classification map compared to the MS counterpart.

The main difference is visible in the upper section, where a larger

grass patch is predicted with coarser MS imagery. In both cases, a
B
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FIGURE 9

A C2 plot with a sown mixture of grass and clover species, the area highlighted by the yellow frame represents an area of interest (AOI) for further
analysis (top). Enlarged view of AOI showing RGB-based orthomosaic (A) and MS-based true color composite (D) as input imagery for OBIA; results
of image segmentation (B, E); classification maps acquired with OBIA technique (C, F), where green: grass, yellow: clover, blue: plantain, pink: weed.
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weed plant located on the upper right side (weed class) was correctly

classified. However, the predicted coverage area of that weed is

larger than in reality, particularly evident in the MS-based

classification map. For instance, in Figure 9F, the small clover

patch (bottom left) was partially misclassified as weeds. Visual

inspection of the generated classification maps reveals that the

OBIA procedure facilitates fine segmentation and classification of

the UAV-derived imagery. It is possible to successfully identify the

two primary cover classes (grass and clover), but distinguishing the

remaining two classes (plantain and weeds) remains challenging.

The results of the performance assessment for OBIA are

presented separately for RGB (Figure 10A) and MS (Figure 10B)

imagery. The overall accuracy and the F1 score on a class-wise basis

are the two metrics used for this evaluation (x-axis), with a range

between 0 and 1 (y-axis). Outcomes for different segmentation

parameter combinations used in the classification procedure

(numbered from 1 to 12, presented in Table 1) are summarized.

Segmentations 10, 11, and 12 from the RGB-based analysis are

removed from further analysis due to insufficient object separation.

The results were obtained by applying a Random Forest (RF)

classifier and 4-fold cross-validation.

Both RGB and MS-based imagery yield good to moderate

performance, with overall accuracies of approximately 70%. For

both RGB and MS-based classification, the highest overall accuracy

was achieved with segmentation 1, 4, and 7, with approximate

accuracies of 0.69 and 0.72, respectively. On the contrary, the least

accurate outcomes were recorded for segmentations 3, 6, 9 or 12,

with accuracies of 0.65 and 0.64 for RGB and MS-based

classification, respectively. Overall, segmentations that generated

smaller objects demonstrated higher overall accuracy. This trend

can be observed for both RGB and MS-based OBIA. The minsize
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parameter plays a key role in determining the size of segments and

has thus the strongest influence on the achieved accuracy.

The highest F1 score for the clover class in RGB-based OBIA

was achieved with segmentation 4 (F1 = 0.73), while in MS-based

OBIA, segmentations 1 and 7 resulted in the highest F1 score (F1 =

0.74). Conversely, the lowest F1 score values of 0.67 (segmentations

3 and 9) for RGB and 0.66 (segmentations 3 and 6) for MS-based

OBIA were noted. Similar F1 values were observed for the analyzed

grass class. With high-resolution RGB imagery, the F1 score peaked

at 0.7 (for segmentations 1 and 7) and was the lowest for

segmentation 6 (0.62). With MS imagery, the F1 score was the

highest for segmentation 1 (0.75) and the lowest for segmentations

3 and 6 (0.66). These results demonstrate that both RGB and MS-

based OBIA yield similar F1 scores for the grass and clover class.

The plantain and weed classes are particularly difficult to detect and

yielded very low F1 scores. When compared, MS-based OBIA

results in lower F1 values (on average) for the plantain class than

for the weed class. The variability (spread) of F1 scores across

different segmentation parameters is also more pronounced for the

plantain and weed classes.
3.3 Clover fraction estimation

To check the effectiveness of the OBIA procedure, we opted to

explore the relationship between the OBIA results and the relative

proportion of dry matter yield. Classification maps obtained with

the OBIA technique were clipped by 10 subplots selected in the

procedure (shown in Figure 1) and the cover area of each class was

calculated. This information was coupled with the Dry Matter Yield

(DMY) data collected in the field. The correlation between
BA

FIGURE 10

Performance assessment of multiresolution image segmentation using RGB (A) and multispectral (B) imagery, with different parameter combinations
using Random Forest (RF) classifier and spatial k-fold cross-validation. The evaluation metrics included the overall accuracy and the F1 score on a
class-wise basis (x-axis), having a range between 0 and 1 (y-axis).
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classification results (clover coverage) and corresponding dry

matter proportion is presented in Figure 11 by employing the

following metrics, defined in Equations 1 and 2:

clover coverage fraction ½cover  %�
= clover coverage=total subplot area (1)

clover DMY proportion ½weight  %� 
=  DMY of clover=total subplot DMY (2)

A positive and strong relationship was found between the

predicted clover cover and the dry matter fraction. Despite the

lower resolution of the MS sensor imagery, similar correlations were

observed between the clover ratio and the DMY proportion (0.81

and 0.8 for RGB and MS, respectively).
4 Discussion

Image analysis of mixed sward canopies faces numerous

challenges due to the varying optical plant properties and varying

leaf shapes and colors of the constituent species, as well as

overlapping plant parts (Himstedt et al., 2009). Very high-

resolution imagery can pose further challenges in species

classification as it captures detailed features, such as gaps,

shadows or nonuniform soil background, which may introduce

noise and result in misclassification (Lu and He, 2018). Object-

based image analysis (OBIA), as an alternative to pixel-based

classification, segments an image into meaningful objects and

assigns a specific vegetation class to each object (Blaschke et al.,

2014). A recent study by Ventura et al. (2022) utilized OBIA

classification and UAV imagery to monitor and map semi-natural

grasslands. They successfully differentiated three grassland types,
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such as closed and open grasslands, achieving an overall

classification accuracy of over 89%. Another study conducted by

Lu and He (2017) employed OBIA on UAV-acquired images to

investigate species composition in a tall grassland, focusing on

brome, goldenrod, milkweed, and fescue species. They recorded an

overall accuracy of approximately 85% across images obtained at

different times.

The assessment of the accuracy of the OBIA approach applied

in this study demonstrated good performance, achieving an overall

accuracy of approximately 70%, for both RGB and MS-based

imagery. The F1-score used to estimate the accuracy achieved for

the four analyzed classes, offered a deeper insight into model

performance. Grass and clover classes yielded similar F1 scores,

exceeding values above 0.7 in both RGB and MS-based OBIA,

which is an indication of good performance (Van Otten, 2023). It

implies that roughly 70% of the samples were classified correctly.

The confusion matrices show that clover was primarily misclassified

as grass and that grass was predominantly misclassified as clover.

Misclassification of clover and grass into other classes (plantain and

weeds) was negligible. This pattern is consistent across RGB andMS

imagery. In contrast, detecting the plantain and weed classes were

challenging, with F1 scores reaching at best 0.27. According to the

confusion matrix, both plantain and weeds were predominantly

misclassified as grass and clover. In RGB-based classification, the

misclassification of plantains and weeds was evenly distributed

between the grass and clover classes, while in MS-based

classification, plantain and weeds were more frequently

misclassified as clover, probably because they are interpreted as a

dicot due to the lower resolution images. Furthermore, lower

performance (lower F1 scores, depicted in Figure 10) for the

plantain and weed classes was to be expected due to imbalances

in the dataset: grass and clover classes had considerably more

instances (labeled polygons) than the other two classes.

Consequently, classifiers tend to overlook the less represented
BA

FIGURE 11

Relationship between the predicted clover cover (x-axis) and the harvested dry matter (y-axis) using linear regression with 95% confidence interval
(grey area), regression line equation, Pearson correlation coefficient (R2 value), and p-value. Selected classification results, based on segmentation 4
for RGB (A) and segmentation 1 for MS (B) imagery, are given as an example.
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classes while focusing on and prioritizing classes with higher

representation (Lin and Chen, 2013) in the learning database.

Similarities in the spectral response among the classes can also

be a reason for misclassification, as explained in section 3.1. In MS

data, the measures of spread and central tendency for plantains are

closer to those of clover and weed class. This could be explained by

the lower spatial resolution of MS rasters, along with the small size
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of the plantain polygons used for data extraction. Here, a mixed

pixel problem arises, as other classes contribute to the spectral

response of plantains. In consequence, delineating segments

containing plantains proved to be challenging. Additionally,

similarities in multispectral response between weed and clover

classes could possibly explain difficulties in the delineation and

classification of weed segments.
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FIGURE 12

Defining sample segments (learning database) for OBIA classification. In this study, ‘within’ and ‘overlap’ parameters were selected when applying the
spatial join tool, presented on the left side (A–D). For a comparison, only the ‘within’ parameter could be selected, shown on the right side (E–H).
Examples of different segmentation results are shown here, with RGB-based segmentation creating smaller (A, E) and larger objects (B, F); and MS-
based segmentation creating smaller (C, G) and larger objects (D, H).
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To examine the effectiveness of the OBIA procedure, the

relationship between the predicted clover coverage and the

relative proportion of harvestable dry matter yield was

investigated. A positive and strong relationship was found

between the predicted clover fraction and DMY proportion, with

R2 values exceeding 0.8 for RGB and MS-based OBIA classification

results. Remarkably, even though the MS imagery has a lower

resolution, comparable correlations were found, underscoring the

applicability of the analysis across different data resolutions.

Nevertheless, as a relatively small sample size (10 subplots) was

used to examine the relationship between the obtained clover cover

and DMY proportion, these findings should be interpreted with

caution. Further research (with additional data collection) is

necessary for deeper investigation of these relationships. Image

segmentation stands as the initial step in OBIA, and it partitions the

entire image into distinct, non-overlapping segments (Marçal and

Rodrigues, 2009), with meaningful representation. Hence, an

optimal segmentation should yield an image partitioning where

each segment corresponds (as much as possible) to an object of

interest in the study area (Troya-Galvis et al., 2015), while still

maintaining high internal within-segment homogeneity (Hao et al.,

2021). This makes the segmentation parameter selection a critical

step in the OBIA procedure. Segmentation errors can be due either

to over-segmentation or to under-segmentation. Over-

segmentation occurs when a single object of interest is segmented

into too many polygons, whereas under-segmentation happens

when multiple objects of interest are included in a single segment

(Troya-Galvis et al., 2015; Hao et al., 2021). As shown in Figure 10,

segmentations which generated more and smaller segments (e.g. 1,

4 or 7) resulted in higher overall accuracy and F1 scores for the grass

and clover class. A similar trend was observed with clover fraction

estimation outcomes. In general, the correlations between clover

coverage (classification results) and corresponding dry matter yield

proportion achieved better R2 values when more detailed

segmentation was obtained in the OBIA procedure.

The minsize parameter also referred to as the scale parameter,

which determines the relative segment size (Drǎgut ̧ et al., 2010), has
a substantial impact on OBIA and classification results (Zhao et al.,

2020; Hao et al., 2021). Possibly, setting a smallerminsize parameter

reduces the probability of segmenting multiple classes into a single

object, leading to increased overall accuracy. These findings are

consistent with Huang et al. (2020) who showed that a smaller scale

parameter produces higher accuracy. Correspondingly, Grippa et al.

(2017) advocated for over-segmentation over under-segmentation,

arguing that the former allows for correction during the

classification phase. The findings of this study corroborate these

conclusions. Therefore, employing segmentations that generate

numerous smaller segments should be preferred. Nevertheless,

performing detailed segmentation, particularly with high-spatial

resolution RGB imagery is time-consuming and computationally

intensive. Therefore, a selection of technology (sensors,

segmentation parameters) would depend on the end users and

their objectives (e.g., acceptable error margins or required decision-

making time).

In this study, sample segments used for OBIA classification

assessment were generated with spatial join where ‘within’ and
Frontiers in Plant Science 17
‘overlap’ parameters were selected. As a result, a higher number of

segments were selected for sample representation which led to

decreased agreement between samples and segments, treated as a

limitation of the selected method. While this approach performs

better with segmentation that generates smaller objects (e.g.,

Figure 12A for RGB-based OBIA and Figure 12C for MS-based

OBIA), it shows limitations with larger segments (e.g., Figures 12B,

D). With such larger objects, there is a tendency to incorporate

segments into the sample representation that, in reality, belong to a

different class. The evidence of this can be seen in the center of

graphs B and D where segments representing grass and clover were

incorrectly assigned to the plantain class. Larger objects also present

a higher likelihood of assigning multiple classes into a single

segment. This can be seen in the bottom of graphs B & D, where

one bigger segment that actually represents both a weed plant and a

patch of clovers was assigned as a weed class.

An alternative approach that would enhance conformity

between labeled polygons and segments is to define fewer

segments for sample representation. This option is depicted in

Figure 12 (right side), where only the ‘within’ parameter was

applied. This means that only segments whose entire geometry is

enclosed by the labeled polygon, without any shared boundary

points, are considered. While this approach might be effective for

RGB-based OBIA, particularly for segmentation that generates

smaller objects (Figure 12E). It is not suitable for MS-based

OBIA, especially when dealing with segmentation that produces

larger objects (like in Figure 12H), where no segments would be

selected to represent the analyzed classes and build a learning

database. This issue can be further illustrated in graphs F and G,

where only a few segments were chosen for the grass and clover

classes, but none were selected for the weed and plantain classes. It

seems that the results presented in Figure 10 (F1 scores) could be

improved if the selection of sample segments is refined, by

minimizing incorrect assignment of segments to a class. This

improvement could then be utilized to construct an enhanced

learning database for OBIA classification.

When extensive fields need to be assessed, visual inspection of

clover coverage and proportion becomes impractical (Skovsen et al.,

2017). Hence, automated and efficient methods are deemed

necessary. Farmers and breeders could greatly benefit from tools,

that enable visualization of clover spatial distribution, like the ones

examined in this study. The main question here revolves around the

end-user of such outcomes (e.g., classification maps). While very

detailed segmentations and classifications may be useful for

scientific analysis and applications, for a farmer, coarser maps

showing the approximate distribution of grass-clovers patches

across the field may suffice. With this objective in mind, it

becomes apparent that high-resolution RGB imagery is not

necessary and multispectral data with lower resolution and faster

processing time can be successfully applied using the

OBIA procedure.

The classification maps derived from both RGB and MS-based

OBIA hold potential for agricultural applications. They could be

leveraged by farmers for forage quality assessments and for

optimizing agronomic tasks, such as the need for resowing or

fine-tuning fertilizer applications in a precision agriculture
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context. While the determination of some of the analyzed classes

(plantain and weeds) with MS-based OBIA is unsatisfactory, it

could certainly be utilized to differentiate between monocots (grass)

and dicots (clover, weeds, and plantain possibly grouped into one

class). Even though the results for the plantain and weed classes

obtained with RGB-based OBIA were disappointing, they still

outperformed the MS-based OBIA. Several possible factors, such

as clearer distinction of spectral responses among classes (Figure 5)

and higher resolution of RGB camera (reducing mixed pixel

problem), could explain this.
5 Conclusions

Given the significance of having automated and efficient

methods for estimating legume coverage and proportion in mixed

swards, we proposed an open-source OBIA approach. This study

aimed to detect and quantify the ratio of species within mixed grass-

clover swards, while also providing a simpler procedure suitable for

breeders and farmers (as an alternative to more complex deep

learning methods). A UAV was employed to capture high spatial

resolution imagery with an RGB and a multispectral sensor,

achieving 2 mm and 2 cm spatial resolution, respectively. The

findings showed that both RGB and MS-based OBIA yielded good

performances, where comparable F1 scores for the grass and clover

classes were reached (exceeding 0.7 values). Conversely, identifying

less prevalent plantain and weed classes posed challenges, resulting

in low F1 scores. Both RGB and multispectral sensors yielded

comparable results. However, the choice between them depends

on the specific objectives of the application. For instance, when

coarse maps delineating the distribution of grass-clover patches

suffice, multispectral data with lower resolution and faster

processing times may be preferred. The strong correlation

observed between predicted clover fraction and dry matter yield

proportion highlights the potential of the proposed procedure for

estimating and visualizing clover coverage in mixed grass-clover

fields. Such findings indicate the practical applicability in providing

valuable support for breeders and also farmers operating within the

realm of precision agriculture. Moving forward, further research

could explore refinements of this methodology to enhance its utility

across different sites and environmental conditions.
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