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This study conducts a rigorous comparative analysis between two cutting-edge

instance segmentation methods, Mask R-CNN and YOLOv8, focusing on

stomata pore analysis. A novel dataset specifically tailored for stomata pore

instance segmentation, named PhenomicsStomata, was introduced. This dataset

posed challenges such as low resolution and image imperfections, prompting

the application of advanced preprocessing techniques, including image

enhancement using the Lucy-Richardson Algorithm. The models underwent

comprehensive evaluation, considering accuracy, precision, and recall as key

parameters. Notably, YOLOv8 demonstrated superior performance over Mask R-

CNN, particularly in accurately calculating stomata pore dimensions. Beyond this

comparative study, the implications of our findings extend across diverse

biological research, providing a robust foundation for advancing our

understanding of plant physiology. Furthermore, the preprocessing

enhancements offer valuable insights for refining image analysis techniques,

showcasing the potential for broader applications in scientific domains. This

research marks a significant stride in unraveling the complexities of plant

structures, offering both theoretical insights and practical applications in

scientific research.
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1 Introduction
Stomata, microscopic pores found on the surfaces of plant

leaves, stems, and other plant organs, play a pivotal role in plant

physiology (Fetter et al., 2019). These small openings facilitate gas

exchange, enabling plants to take in carbon dioxide essential for

photosynthesis and release oxygen and water vapor (Evans and Von

Caemmerer, 1996). Studying stomatal behavior and density is

crucial in understanding plant responses to environmental factors

such as light intensity, humidity, and carbon dioxide levels.

Additionally, stomatal density is a key indicator of a plant’s

adaptation to various ecological niches and climate conditions

(Hetherington and Woodward, 2003).

Traditionally, stomata analysis has been a labor-intensive and

time-consuming task, often performed manually by plant biologists

(Jayakody et al., 2017). The advent of computer vision and deep

learning techniques has revolutionized this process, offering

automated and efficient solutions for stomata segmentation in

plant images. The development of robust and accurate algorithms

for stomata segmentation not only expedites research in plant

physiology but also holds significant implications for agriculture,

environmental science, and climate change studies (Hetherington

and Woodward, 2003).

Semantic segmentation, a critical task in computer vision, has seen

significant advancements with the development of deep learning

techniques (Lateef and Ruichek, 2019). Early methods relied on

hand-crafted features, but the introduction of convolutional neural

networks (CNNs) revolutionized the field (Li et al., 2022). Fully

Convolutional Networks (FCNs) (Long et al., 2015) were among the

first deep learning models to achieve pixel-level classification by

replacing fully connected layers with convolutional layers, enabling

end-to-end learning for segmentation tasks. Building upon this, U-Net

(Ronneberger et al., 2015) introduced a more robust encoder-decoder

architecture, enhancing segmentation performance in biomedical

imaging by combining low-level spatial information with high-level

feature representations. Meanwhile, Mask R-CNN (He et al., 2017)

and YOLOv8 (Jocher, 2023) have emerged as powerful instance

segmentation algorithms, demonstrating outstanding performance

in various object detection tasks (Jocher, 2023). However, their

application and effectiveness in stomata segmentation re-main

relatively unexplored. This study aims to bridge this gap by

conducting a comprehensive comparative analysis of these

algorithms in the context of stomata segmentation. By evaluating

their accuracy, speed, and adaptability to the complex biological

structures of stomata, this research contributes valuable insights to

the field of plant biology and automated phenotyping. Importance of

stomata segmentation in plant biology.

In the field of plant biology, the precise quantification and analysis

of stomatal pores are of fundamental importance for understanding

plant physiology and responses to environmental stimuli (Jayakody

et al., 2021). Stomata, serving as the primary conduits for gas exchange

in plants, play a pivotal role in essential processes such as

photosynthesis and transpiration. Traditional methods of stomatal

analysis are laborious and time-intensive, underscoring the necessity

for advanced automated techniques to streamline the research process
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(Duarte et al., 2017). The challenge at hand involves developing an

automated system capable of accurately identifying and segmenting

individual stomata from intricate plant imagery. This task is intricate

due to the inherent variability in stomatal shapes, sizes, and

orientations across different plant species and environmental

conditions. Additionally, achieving high seg-mentation accuracy is

paramount for ensuring reliable quantitative analysis, significantly

impacting fields such as plant physiology, agriculture, and climate

change research (Bheemanahalli et al., 2021). Figure 1 illustrates

examples of stomatal images captured under a microscope.

Figure 1B displays a full-sized image, while Figure 1A showcases

four split images, highlighting the complexities involved in the

segmentation process.

This study addresses the challenge by employing cutting-edge

deep learning algorithms, Mask R-CNN and YOLOv8, for automated

stomata segmentation on the novel dataset PhenomicsStomata.

Through rigorous experimentation and comparative analysis, the

study aims to assess the efficacy of these algorithms in accurately

delineating stomatal structures from high-resolution plant images.

Specific objectives include optimizing algorithmic parameters for

enhanced accuracy, evaluating the algorithms’ robustness across

diverse plant species, and elucidating the algorithms’ computational

efficiency for real-time applications. By achieving these objectives,

this research provides a robust, automated solution for stomata

segmentation, thereby advancing the frontiers of plant biology re-

search, particularly on the PhenomicsStomata dataset. Furthermore,

the insights gained from this study can catalyze advancements in

automated phenotyping, contribute to a deeper understanding of

plant-environment interactions, and inform sustainable agricultural

practices and environmental conservation efforts.

In contemporary computer vision, Mask R-CNN (Mask Region-

based Convolutional Neural Network) and YOLOv8 (You Only Look

Once version 8) stand as prominent pillars of object detection and

instance segmentation methodologies. Mask R-CNN, an extension of

Faster R-CNN (Ren et al., 2015), excels in accurately delineating

object boundaries while simultaneously providing per-pixel

segmentation masks. This unique capability makes it particularly

potent for tasks requiring precise localization and intricate

segmentation, such as stomata analysis in plant biology. Mask R-

CNN achieves this through a two-stage process: first, a Region

Proposal Network (RPN) generates potential bounding box

proposals, and subsequently, these proposals undergo refinement

through convolutional layers for both bounding box regression and

mask prediction. The architecture’s effectiveness lies in its ability to

seamlessly fuse object localization and segmentation, offering a

holistic solution for tasks demanding detailed object understanding.

On the other front, YOLOv8 epitomizes the single-shot object

detection paradigm. Its hallmark feature is real-time processing,

providing rapid predictions while maintaining robust accuracy.

YOLOv8 employs a unified neural network to predict bounding

boxes and class probabilities directly from the entire image. The

architecture’s efficiency is attributed to its division of the input image

into a grid, with each grid cell responsible for predicting objects. This

grid-based approach, coupled with feature pyramid networks, enables

YOLOv8 to swiftly process diverse object scales and sizes. Both Mask

R-CNN and YOLOv8 have played pivotal roles in revolutionizing
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https://doi.org/10.3389/fpls.2024.1414849
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Thai et al. 10.3389/fpls.2024.1414849
object detection, impacting fields ranging from autonomous vehicles

to biomedical imaging. In the domain of stomata segmentation, their

prowess is harnessed to automate the meticulous task of isolating

these vital plant structures, fostering advancements in plant

biology and phenotypic analysis. The amalgamation of advanced

convolutional architectures, strategic neural network designs, and

innovative training techniques renders Mask R-CNN and YOLOv8

indispensable tools in the contemporary landscape of computer

vision applications. It’s crucial to underline that this study did not

undertake modifications to the fundamental structures of Mask R-

CNN or YOLOv8. The research approach centered on the utilization

of the official architectures of these models tailored specifically for the

PhenomicsStomata dataset. The study refrained from altering the

core frameworks of Mask R-CNN or YOLOv8, emphasizing the use

of their original designs. For a comprehensive understanding of these

deep learning models and their intricate components, readers are
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encouraged to refer to the related literature, where detailed insights

into these models and their inherent mechanisms are provided. This

strategic decision ensured the study’s focus remained on the

adaptation and application of these established models to the

unique challenges posed by the PhenomicsStomata dataset.
2 Materials and methods

2.1 Image acquisition and
preprocessing steps

In the pursuit of precise stomata segmentation, the acquisition

and preprocessing of plant images form the foundational bedrock of

our study. The images, sourced from leaves of Hedyotis corymbosa,

are cultivated under controlled conditions to ensure uniformity and
FIGURE 1

Image from the PhenomicsStomata dataset. (A) Splitted images, (B) Original full-sized image.
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eliminate extraneous variables. Germinated in a substrate blend of

clean soil and cow manure, the plants are meticulously nurtured in

a greenhouse under specific light conditions—450 ± 100 mmol.m

−2.s−1 sunlight at 32 ± 2°C and 70 ± 5% relative humidity.

Following a standardized protocol, the fifth leaves from the top

of the plants are delicately affixed onto microscope slides using

cyanoacrylate glue. The resulting leaf surfaces are meticulously

captured using a CKX41 inverted microscope equipped with a

DFC450 camera, generating high-resolution images stored in

JPEG format at 2592 × 1458 pixels.

Addressing the challenge of blurriness in stomatal images, we

employ the Lucy-Richardson Algorithm (Fish et al., 1995), known

for its deblurring capabilities as show in Figure 2. Applied iteratively

to each image, this algorithm refines the images, reducing blurriness

and enhancing the definition of stomatal boundaries. The

application of this algorithm is grounded in scientific principles,

ensuring a rigorous enhancement process.

The original image filenames are systematically replaced with a

standardized convention {W}_{Leaf Number}.jpg, with ‘W’ signifying

‘White.’ To optimize subsequent detection processes, the enhanced

images undergo strategic segmentation into smaller, non-overlapping

segments. Using a grid-based approach, the images are divided into 6

columns and 3 rows. This meticulous segmentation results in 18

focused images, each containing a subset of stomatal pores. This

precision-driven approach ensures well-defined regions of interest,

facilitating precise and efficient detection in subsequent stages.

To mitigate computational complexities and streamline

subsequent analysis, these split images are resized to 512×512

pixels, reducing memory overhead while preserving pertinent

morphological information. This resizing, from the original

432×486 pixels, proves instrumental in enhancing the efficiency of

subsequent deep learning algorithms.

The significance of this preprocessing methodology lies not only

in its role as a computational optimization strategy but also in its

meticulous preservation of stomatal morphology. The resultant

dataset, meticulously preprocessed to encapsulate the nuances of

stomatal structures, forms the nucleus upon which our subsequent

segmentation methodologies are anchored, ensuring an empirical

and precise approach in our pursuit of automated stomata analysis.

The prepared dataset is partitioned into distinct subsets for

training and validation, maintaining a balanced ratio of 8:2. This

division exposes machine learning models to diverse yet

representative data. The validation set, constituting 20% of the

data, serves as an independent benchmark, preventing overfitting

and ensuring the robustness of the trained models.
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2.2 Instance segmentation using Mask
R-CNN and YOLOv8

Both Mask R-CNN and YOLOv8 were trained using the official

configurations recommended by the developers of the models,

without any modifications to their architectures. For Mask R-

CNN, a learning rate of 0.001 was used with a batch size of 8,

and the model was trained for 50 epochs (Figure 7). For YOLOv8,

the learning rate was 0.01, with a batch size of 16, and the model was

also trained for 100 epochs (Figure 8).

The training phase of Mask R-CNN, a cutting-edge instance

segmentation algorithm, demands a meticulous amalgamation of

neural network architecture and hyperparameter tuning (Figure 3).

In this study, Google Colab (“Google Colab, Https://Colab.Google/”

2023), bolstered by an NVIDIA Tesla T4 GPU, serves as the

computational powerhouse, accelerat ing the intricate

computations involved in training. This configuration ensures

that the model is adeptly harnessed to process the complexities of

stomatal structures in plant imagery. Crucial to the training process

is the compatibility of software components. To safeguard against

discrepancies during inference, we meticulously downgraded

TensorFlow (Abadi et al., 2016) from version 2.9.2 (released on

January 4, 2023) to version 2.5.0. Accompanying this was a

corresponding downgrade of the cuDNN library to version

8.1.0.77-1+cuda11.2. This meticulous version control guarantees a

seamless interplay between the software components, mitigating

potential errors and ensuring the model’s precision during

subsequent inference. The implementation of Mask R-CNN in

this study originates from the Matterport library (Abdulla, 2023),

renowned for its efficacy in complex object detection tasks.

However, adapting this architecture to stomata detection

necessitates fine-tuning. To tailor the model to our specific task,

we initiated the training process with a dataset comprising 810

meticulously annotated images. This dataset was strategically

divided into train and validation sets, allocating 648 images for

training and 162 for validation. This partitioning ensures a robust

training regimen while enabling a stringent evaluation of the

model’s performance.

In defining the confidence threshold for object detection, a

critical parameter in the process, a judicious choice was made to set

it at 0.5. This threshold serves as the discriminatory metric,

determining the minimum confidence score required for an

object to be classified as detected (He et al., 2017). A balanced

selection, this threshold strikes an equilibrium between precision

and recall, essential in optimizing the algorithm’s accuracy without
FIGURE 2

Preprocessing pipeline of the dataset.
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incurring undue compromises in detection sensitivity. Through this

meticulous orchestration of computational resources, software

compatibility, and parameter tuning, the training process of Mask

R-CNN converges towards a model finely attuned to the intricate

task of stomata segmentation. This calibrated model forms the

linchpin of our automated stomata analysis, promising not just

accuracy, but also reliability of plant biology research.

YOLOv8 (Jocher, 2023) stands as a paradigm of efficiency,

offering real-time predictions while maintaining commendable

accuracy. The training process for YOLOv8 demands meticulous

attention to architectural nuances and strategic parameter

configurations to harness its potential effectively. In this study,

the training endeavors commence on a robust computational

platform, leveraging a system fortified with a Windows 11

Professional 64-bit operating system, an AMD Ryzen 7 5800x3D

8-Core Processor, and 32GB of RAM. Additionally, the training

benefits from the computational prowess of an NVIDIA GeForce

RTX 4080 GPU with 16GB of dedicated memory. This hardware

synergy forms the cornerstone for expedited computations,

enabling the model to grapple with the intricacies of stomatal

detection in a diverse array of plant imagery.

In this study, we have strategically utilized the meticulously

crafted official version of YOLOv8, a sophisticated deep learning

architecture as show in Figure 4, to tackle the intricate task of

stomatal segmentation. YOLOv8’s exceptional efficiency in

processing images in a single pass is a testament to its

computational prowess. The underlying neural network

architecture of YOLOv8 is ingeniously engineered, incorporating

advanced features such as feature pyramid networks and grid-based

object detection techniques. Through a meticulous parameter

configuration process, where learning rates and batch sizes are

finely tuned, the model strikes an optimal balance between rapid

convergence and stable performance. The iterative training process,

crucial for enhancing predictive capabilities, involves exposing the

model to a meticulously curated dataset rich in stomatal

annotations. This dataset diversity enables YOLOv8 to discern the
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subtle nuances within various stomatal instances, ensuring its

adaptability to the complexities of natural plant imagery. This

calibrated approach represents a seamless fusion of hardware

resources, architectural intricacies, and parameter optimization,

resulting in a YOLOv8 model uniquely poised to decipher the

complexities of stomatal segmentation. Its real-time predictive

abilities and remarkable accuracy position it as a powerful tool in

the domain of automated plant phenotyping, promising significant

contributions to the fields of plant biology and automated

image analysis.

In the domain of image analysis and segmentation, the

extraction of mask contours constitutes a pivotal step, especially

when dealing with intricate biological structures like stomata.

Following the instance segmentation process, wherein Mask R-

CNN or YOLOv8 generates precise masks delineating stomatal

regions, the subsequent task involves extracting these masks’

contours. Utilizing the sophisticated capabilities of the OpenCV

(“OpenCV, Https://Opencv.Org/”, 2023) library, specifically the

findContours function, the algorithm meticulously traces the

perimeters of the generated masks. These contours represent the

precise boundaries of stomatal pores, capturing their intricate

shapes with sub-pixel accuracy. The findContours function

operates on binary images, identifying connected components

and outlining their boundaries. In the context of stomatal

segmentation, the binary masks generated by the algorithms serve

as the input, containing pixel values denoting stomatal and non-

stomatal regions as shown in Figure 5. The function systematically

traces along the pixels’ edges, discerning the transitions from

stomatal to non-stomatal areas. As a result, a series of coordinates

representing the contour’s path are derived, encapsulating the

stomatal region’s geometry. This contour extraction process is not

merely a technicality; it represents the bridge between raw pixel data

and meaningful geometric information. These contours, essentially

a sequence of points, serve as the foundation for subsequent

analyses, facilitating computations of stomatal parameters such as

area, width, length, and angle.
FIGURE 3

Pipeline of Mask R-CNN for instance segmentation on Stomata pore dataset.
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FIGURE 5

Post processing for parameter computation.
FIGURE 4

YOLOv8 structure (“Model Structure of YOLOv8, Https://Github.Com/RangeKing”, 2024).
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The precision of this contour extraction process significantly

impacts the accuracy of subsequent analyses. Imperfections or

inaccuracies in contour delineation can lead to distorted

measurements, thereby affecting the reliability of the derived

stomatal parameters. Hence, the careful implementation of the

findContours function, coupled with the high-quality masks

generated by the segmentation algorithms, ensures the faithful

representation of stomatal contours. This meticulous process forms

the cornerstone for quantitative analyses, enabling precise

morphological characterizations crucial for advancing our

understanding of plant physiology and environmental responses.

Following the meticulous extraction of mask contours, the

subsequent step involves the computation of essential stomatal

parameters, providing quantitative insights into these biological

structures. Leveraging the rich functionality of the OpenCV library,

particularly the cv2.fitEllipse function, and employing mathematical

formulations, our analysis delves into the intricate morphological

characteristics of stomata. The cv2.fitEllipse function operates on the

extracted contours, fitting an ellipse that best approximates the

stomatal shape. This elliptical approximation yields crucial

parameters: the center coordinates, major and minor axis lengths,

and the orientation angle. These parameters encapsulate the inherent

geometric properties of stomata, enabling a comprehensive

characterization beyond mere visual segmentation.

From these fundamental parameters, additional significant

measures are derived. The width and length of stomatal pores are

calculated, providing insights into their structural dimensions. The

area of each stomatal pore, a pivotal metric reflecting its size, is

computed as well. Additionally, employing trigonometric principles,

the diameter of the stomatal pore is accurately determined. The
Frontiers in Plant Science 07
application of sine and cosine functions, utilizing the center

coordinates and the minor axis length, yields the diameter, a

fundamental parameter crucial for various physiological analyses.

These computations are not confined to individual stomata; rather,

they extend across the entire dataset, generating a wealth of

quantitative data. The precise values acquired through these

computations serve as quantitative descriptors, enabling

comparative analyses between stomatal populations across diverse

plant species or experimental conditions. The accuracy and precision

of these parameters are contingent on the fidelity of the extracted

contours. Thus, the robustness of the cv2.fitEllipse function in

capturing the true stomatal geometry, combined with the high-

quality masks generated during segmentation, ensures the reliability

of the computed parameters. These meticulously computed stomatal

parameters provide a quantitative foundation for subsequent

statistical analyses, fostering a deeper understanding of stomatal

behavior and adaptation in the plant biology.
2.3 Model evaluation and
performance metrics

A meticulous evaluation of model performance against ground

truth annotations is paramount for validating the accuracy and

reliability of segmentation algorithms as shown in Figure 6. The

ground truth, representing manually annotated stomatal pores,

serves as the reference against which the predictions of Mask R-

CNN and YOLOv8 are assessed. Ground truth annotations,

meticulously created through manual delineation, epitomize the

precise location and boundaries of stomatal pores. These
FIGURE 6

Model evaluation diagram.
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annotations encapsulate the gold standard against which automated

segmentation methods are benchmarked. The ground truth

provides a clear, human-verified delineation of each stomatal

pore, offering a reliable foundation for comparative analysis.

Mask R-CNN, a sophisticated instance segmentation algorithm,

generates predictions by outlining stomatal pores based on learned

patterns from the training data. Its outputs consist of bounding

boxes and pixel-wise masks encapsulating the segmented stomatal

regions. The algorithm aims to align its predictions with the ground

truth, with a focus on accurate boundary delineation and shape

consistency. YOLOv8, a state-of-the-art object detection

framework, predicts stomatal pores using bounding boxes

coupled with confidence scores and semantic segmentation within

each detected region. Known for its efficiency in real-time detection

tasks, YOLOv8 delivers fast and accurate predictions. Similar

to Mask R-CNN, its outputs are assessed against ground

truth annotations, with key performance metrics including

precision, recall, and intersection over union (IoU), allowing a

comprehensive evaluation of the model’s segmentation accuracy.

Comparing the outputs of Mask R-CNN and YOLOv8 against the

ground truth enables a comprehensive assessment of their

segmentation accuracy. Metrics such as intersection over union,

precision, and recall are computed to quantitatively measure the

alignment between the predicted stomatal pores and the ground

truth annotations. The comparative analysis sheds light on the

strengths and limitations of each algorithm, offering insights into

their respective capabilities in accurately capturing the intricate

features of stomatal pores. This rigorous comparison not only

validates the effectiveness of the segmentation algorithms but also

aids in identifying areas of improvement, guiding further

refinements in these methodologies for enhanced precision and

reliability in the intricate task of stomatal pore segmentation.

A suite of evaluation metrics is instrumental in quantifying the

accuracy and efficacy of segmentation algorithms. These metrics,

including Intersection over Union (IoU) (He et al., 2017), Precision,

Recall, and F1 Score (Saito and Rehmsmeier, 2015), provide a

nuanced understanding of how well the algorithmic predictions

align with the ground truth annotations.

IOU =
Area(GTBbox ∩ PBbox)
Area(GTBbox ∪ PBbox)

(1)

Precision =
True   Positive

True   Positive   +   False   Positive
(2)

Recall =
True   Positive

True   Positive   +   False  Negative
(3)

F1 = 2* 
Precision*Recall
Precision + Recall

(4)

IoU, also known as the Jaccard Index, measures the overlap

between the predicted segmentation mask and the ground truth

mask. It is computed as the ratio of the intersection area to the union

area of the predicted and ground truth regions. A higher IoU signifies

a better match between the prediction and the actual segmentation,

indicating a precise delineation of object boundaries. Precision
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quantifies the accuracy of positive predictions made by the model.

It is calculated as the ratio of true positive predictions to the total

positive predictions (true positives and false positives). Precision is

vital in tasks where false positives need to be minimized, ensuring

that the predicted positive instances are re-liable and accurate. Recall,

also known as sensitivity or true positive rate, assesses the model’s

ability to capture all positive instances. It is calculated as the ratio of

true positive predictions to the total actual positives (true positives

and false negatives). Recall is crucial when missing positive instances

is highly undesirable, emphasizing the model’s sensitivity to detect all

relevant objects. The F1 Score strikes a balance between precision and

recall, offering a single metric that encapsulates both aspects. It is the

harmonic mean of precision and recall and provides a comprehensive

evaluation of the model’s performance. A higher F1 score indicates a

well-rounded model that achieves both high precision and recall,

highlighting its effectiveness in accurate object segmentation. These

metrics collectively provide a thorough assessment of the

segmentation algorithm’s performance. IoU ensures accurate

boundary delineation, precision emphasizes precise positive

predictions, recall focuses on exhaustive detection of positive

instances, and F1 score balances the trade-off between precision

and recall. By meticulously computing and interpreting these

metrics, researchers gain valuable insights into the algorithm’s

strengths and areas for improvement, fostering the continual

advancement of image segmentation methodologies.

Visualizations play a pivotal role in comprehending the intricate

dynamics of model predictions. These visual representations, coupled

with qualitative analysis, offer invaluable insights into the nuances of

segmentation algorithms, shedding light on both their successes and

challenges. One fundamental aspect of qualitative analysis involves

visualizing the masks generated by the segmentation models. These

masks, outlining the segmented regions, are overlaid onto the original

images. By juxtaposing the predicted masks with the input images,

researchers gain a firsthand understanding of the model’s ability to

capture the subtle details of stomatal pores. Visual inspection aids in

identifying discrepancies between the predicted boundaries and the

actual stomatal structures, facilitating a nuanced assessment of

segmentation accuracy. Comparing the visual outputs of different

segmentation algorithms, such as Mask R-CNN and YOLOv8,

alongside the ground truth annotations, forms the cornerstone of

qualitative analysis. Researchers meticulously scrutinize these visual

comparisons to discern similarities and disparities. Examining in-

stances where algorithms excel or falter provides qualitative context to

quantitative metrics. Such comparative visual analyses are

instrumental in pinpointing specific scenarios, such as challenging

lighting conditions or overlapping stomatal structures, where

algorithms might exhibit varying degrees of accuracy. Visualizations

aid in identifying false positives (erroneously predicted stomatal

pores) and false negatives (missed stomatal pores) within the model

outputs. These mispredictions are scrutinized to discern patterns and

commonalities, offering cues for potential model enhancements. By

closely analyzing these misclassifications, researchers can iteratively

refine algorithms, addressing specific challenges encountered during

segmentation tasks.

Beyond mere pixel-level accuracy, visualizations provide an

intuitive understanding of the clarity and interpretability of
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segmented stomatal pores. Researchers assess the smoothness of

segmented boundaries, the level of detail captured, and the overall

visual fidelity of predictions. These qualitative aspects, often

nuanced and challenging to quantify, are pivotal in gauging the

real-world applicability of segmentation models, especially

in scientific contexts where precise stomatal measurements

are crucial. The visualizations and qualitative analyses not only

serve as tools for model refinement but also offer scientific insights

into plant biology. Researchers can leverage these visual outputs to

study stomatal behavior under varying environmental conditions.

Observations regarding stomatal opening and closure, density, and

arrangement within leaves can be derived, contributing to a deeper

understanding of plant physiological responses. Visualizations,

therefore, bridge the gap between technical algorithmic

performance and meaningful biological interpretations, fostering

a holistic approach to image analysis in botanical research.
3 Results

In Figure 7, the training and validation loss curves for Mask R-

CNN illustrate the model’s learning progress. The training loss

steadily decreased over epochs, reaching an impressive low of 0.16.

This decrease signifies the model’s ability to effectively minimize

errors during the training process. Simultaneously, the validation loss,

a crucial metric indicating the model’s performance on unseen data,

reached a value of 0.25. While slightly higher than the training loss,

this validation loss still indicates the model’s generalization capability

and its ability to perform well on new, unseen stomatal pore images.

The smaller the loss value, the better the model’s accuracy and

predictive power, highlighting the robustness of Mask R-CNN in

accurately segmenting stomatal pores during training and validation.

Figure 8 provides a detailed overview of the training and

validation process of the YOLOv8 model on the dataset.

Throughout the training phase, the model achieved remarkable

progress, with the box loss reaching 0.66543, segmentation loss at

0.76429, classification loss at 0.42379, and distribution focal loss at

0.85613. These values reflect the model’s ability to optimize its

predictions, ensuring precision and accuracy in identifying stomatal
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pores. Notably, the training phase demonstrated a high precision of

0.94709, indicating the model’s proficiency in making accurate

positive predictions. The recall, signifying the model’s capability

to identify all relevant instances, was at an impressive 0.9288.

Additionally, the mean average precision at a confidence

threshold of 0.5 reached an outstanding value of 0.98164,

underlining the model’s robustness in various scenarios.

Moreover, the mean average precision for confidence levels

between 0.5 to 0.9 was at 0.80269, emphasizing the model’s

consistent performance across different confidence ranges. During

the validation phase, the model’s performance remained strong,

with the box loss on the validation set measuring 0.64362,

segmentation loss at 0.68271, classification loss at 0.391, and

distribution focal loss at 0.7391. These validation metrics mirror

the model’s ability to generalize well beyond the training data,

ensuring its reliability in real-world applications. Collectively, these

training and validation logs showcase the YOLOv8 model’s

proficiency and reliability in accurately segmenting stomatal

pores, marking a significant achievement in the botanical

image analysis.

TheMean Absolute Error (Willmott andMatsuura, 2005) (MAE)

serves as a critical metric, quantifying the disparity between predicted

and ground truth stomatal pore attributes. Notably, Table 1

delineates the MAE values for width, length, and area estimations,

elucidating the comparative performance of Mask R-CNN and

YOLOv8 against the ground truth data. In the domain of width

estimation (measured in pixels), YOLOv8 exhibits a noteworthy

precision, yielding an MAE of 1.83972. This marginally surpasses

the MAE of 1.83979 attributed to Mask R-CNN. YOLOv8’s ability to

delineate the width of stomatal pores with a slightly reduced error

underscores its accuracy in capturing the fine details of these

structures. When estimating the length of stomatal pores, YOLOv8

excels further, yielding anMAE of 6.19958. In stark contrast, Mask R-

CNN manifests a comparatively higher MAE of 8.72383. YOLOv8’s

ability to predict the length of stomatal pores with a diminished error

emphasizes its proficiency in capturing the elongated dimensions of

these vital biological features. The estimation of stomatal pore area, a

pivotal metric in botanical research, reinforces YOLOv8’s superiority.

With an MAE of 152.9066, YOLOv8 outperforms Mask R-CNN,
Epoch_val_lossEpoch_loss

0.2

0.4
0.6
0.8

1.0
1.2
1.4
1.6

0 5 10 15 20 25 30 35 40 45 50

0.5

5 10 15 20 25 30 35 40 45 50

0.6

0.7

0.8

0.9

1.0

0

FIGURE 7

Loss of the training Mask R-CNN.
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which exhibits a higher MAE of 168.5477. YOLOv8’s adeptness in

estimating stomatal pore area with reduced error signifies its

precision in quantifying the surface area, crucial for various

physiological analyses. These findings underscore YOLOv8’s

superior accuracy in predicting width, length, and area attributes of

stomatal pores when compared to Mask R-CNN. The diminished

MAE values achieved by YOLOv8 highlight its robustness and

efficacy in capturing the intricate morphological details of stomatal

structures, thus enhancing the accuracy and reliability of

botanical analyses.

Figure 9 illustrates the instance segmentation performance

evaluation conducted on the new validation dataset using Mask

R-CNN and YOLOv8. In the first row (Figure 9A), the predicted

stomata pores from YOLOv8 are depicted, while the second row

(Figure 9B) showcases the predicted stomata pores from Mask R-

CNN. The visual analysis reveals that both methods successfully

detect clear pores; however, challenges arise in the case of blurry

pores. Particularly, YOLOv8 exhibits superior performance

compared to Mask R-CNN, as evidenced in the third and fifth

columns, where YOLOv8 successfully detects blurry stomata that

Mask R-CNN fails to identify. This highlights YOLOv8’s enhanced

capability in handling challenging instances, particularly in

scenarios involving blurry or less defined stomata structures.

We employed well-established instance segmentation models,

Mask R-CNN and YOLOv8, without altering their architectures, the

processing times for each model are intrinsically tied to their

respective structures. The original developers of YOLO have

already provided extensive comparisons of processing times

against other methods, including Mask R-CNN. Therefore, we did

not perform a separate analysis of processing times in this study.
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4 Discussion
The comparative analysis of Mask R-CNN and YOLOv8

performance in stomata pore instance segmentation provides

valuable insights into the strengths and weaknesses of these state-

of-the-art algorithms. Mask R-CNN, a widely recognized instance

segmentation method, demonstrated remarkable accuracy in

localizing stomatal pores, evident from its mean average precision

(mAP) score of 0.97920. This high mAP underscores Mask R-

CNN’s ability to precisely outline stomatal regions, making it a

robust choice for intricate biological image analysis. In contrast,

YOLOv8 exhibited a comparable mAP of 0.98164, slightly

surpassing Mask R-CNN. YOLOv8’s precision and recall metrics

of 0.94709 and 0.9288, respectively, further emphasize its accurate

predictions, ensuring minimal false positives and false negatives.

The model’s performance was consistent across varying confidence

thresholds, indicating its stability in differentiating stomatal pores

from the background.

A notable observation was YOLOv8’s enhanced performance in

estimating stomatal pore dimensions. Specifically, YOLOv8

demonstrated lower Mean Absolute Error (MAE) values for width,

length, and area predictions compared to Mask R-CNN. This

superior accuracy in dimension estimation is crucial for botanical

studies, enabling precise quantification of stomatal characteristics.

The blurriness of stomatal images posed a challenge that both

models navigated differently. Mask R-CNN showcased robustness,

achieving a fine balance between precision (0.95098) and recall

(0.95755) even in the presence of blurry or partially visible stomatal

pores. YOLOv8, while excelling in dimension estimation, faced
TABLE 1 Mean absolute error comparison between ground truth, Mask R-CNN, and YOLOv8 outputs.

Width(pixel) Length(pixel) Area(pixel)

YOLOv8 Mask R-CNN YOLOv8 Mask R-CNN YOLOv8 Mask R-CNN

MAE 1.83972 1.83979 6.19958 8.72383 152.9066 168.5477
MAE, Mean Absolute Error
FIGURE 8

Training log of YOLOv8 on dataset.
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challenges in handling blurry images, leading to a slight compromise

in recall.

Our research findings hold profound implications for plant

biology research, providing valuable insights into the intricate world

of plant structures and their responses to environmental cues.

Accurate segmentation of stomatal pores, demonstrated by both

Mask R-CNN and YOLOv8, opens new avenues for understanding

plant physiological processes. Precise localization and quantification of

stomatal pores are crucial for unraveling plants’ adaptive strategies to

diverse environmental conditions, including drought, humidity, and

temperature fluctuations. The advanced instance segmentation

techniques employed in this study allow researchers to explore the

complexities of stomatal behavior in unprecedented detail. YOLOv8’s

superior accuracy in dimension estimation enables nuanced insights

into plant adaptation mechanisms, shedding light on evolutionary

processes and ecological interactions within various plant species.

Moreover, the robust performance ofMask R-CNN and YOLOv8

in handling challenging image conditions broadens the scope of

botanical research. Scientists can now analyze diverse samples,

including those with imperfections, without compromising the

integrity of their analyses. This inclusivity is crucial for

comprehensive studies aiming to capture the true diversity of

stomatal structures across plant species and environmental

contexts. Practically, these findings have significant implications for

agriculture and ecology. Accurate stomatal pore segmentation is

essential for assessing plant water-use efficiency, a critical

parameter in crop breeding programs. Understanding stomatal
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behavior under different environmental stressors is invaluable for

optimizing agricultural practices and enhancing crop resilience.
5 Conclusions

Our study makes a substantial contribution to the field of plant

biology by introducing a unique dataset focused on stomata pore

instance segmentation. We conducted a meticulous comparison

between two cutting-edge instance segmentation methods, Mask R-

CNN and YOLOv8, using this innovative dataset. Notably, our

research introduced preprocessing techniques that enhanced the

accuracy of these models significantly. Through a comprehensive

analysis, YOLOv8 demonstrated superior performance, particularly

in the precise calculation of stomata pore parameters. The implications

of our findings are significant for biology research. The new dataset

and the in-depth comparative analysis provide fundamental insights,

opening doors for more nuanced explorations into plant physiology.

These insights are valuable for studying plant adaptations, ecological

dynamics, and evolutionary biology. Additionally, the proposed

preprocessing enhancements offer valuable insights for refining

image analysis techniques, not only benefiting plant biology but also

finding applications in various scientific domains where precise image

segmentation is essential. In essence, our research represents a

substantial advancement in unraveling the complexities of plant

structures, contributing both to theoretical understanding and

practical applications in the scientific community.
FIGURE 9

Qualification evaluation for instance segmentation models on the new dataset. (A) YOLOv8 predicted stomata pore, (B) Mask R-CNN predicted
stomata pore.
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