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repressors in seed-to-seedling
transition and crop adaptation
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and Liang Song1*

1Department of Botany, University of British Columbia, Vancouver, BC, Canada, 2Department of
Biological Science, University of Toronto Scarborough, Toronto, ON, Canada, 3Department of Cell
and Systems Biology, University of Toronto, Toronto, ON, Canada
High-quality seeds provide valuable nutrients to human society and ensure

successful seedling establishment. During maturation, seeds accumulate

storage compounds that are required to sustain seedling growth during

germination. This review focuses on the epigenetic repression of the embryonic

and seed maturation programs in seedlings. We begin with an extensive overview

of mutants affecting these processes, illustrating the roles of core proteins and

accessory components in the epigenetic machinery by comparing mutants at

both phenotypic and molecular levels. We highlight how omics assays help

uncover target-specific functional specialization and coordination among

various epigenetic mechanisms. Furthermore, we provide an in-depth

discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family,

comparing and contrasting their regulation of seed germination in the

dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and

wheat. Finally, we compare the similarities in the activation and repression of the

embryonic and seed maturation programs through a shared set of cis-regulatory

elements and discuss the challenges in applying knowledge largely gained in

model species to crops.
KEYWORDS

climate, crop adaptation, epigenetic regulation, HDAC, LAFL, PKL, PRC, Sdr4
Introduction

Seeds contributed greatly to the successful colonization of dry land by spermatophytes

(seed plants) by allowing reproduction in the absence of water and dispersal under

unfavorable growth conditions. During mid-to-late development, seeds enter the

maturation phase, during which the seed accumulates storage compounds (lipids,
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proteins, or polysaccharides depending on the species) that are

needed during germination to sustain post-germinative growth.

Seeds can contribute up to 70% of our caloric intake, as food and

livestock feed, and therefore play a fundamental role in human

nutrition. For these reasons, there is a great interest in

understanding the gene regulatory networks (GRNs) controlling

seed development and germination to improve qualitative and

quantitative traits associated with these processes.

GRN depicts transcriptional regulators and their target genes as

nodes and the regulatory relationships as directed edges (Barabási and

Oltvai, 2004). GRN analysis often employs one or more of model-,

information theory-, and machine learning-based methods (Zhao et al.,

2021). Although barebone GRNs can be inferred from transcription

profiles of transcription factors (TFs) and their potential target

genes based on co-expression in bulk tissues, higher resolution of

transcriptome profiles and data examining additional regulatory

features will provide valuable information for more accurate inference

and a higher understanding of context-specific regulation. However,

data availability differs by biological systems. In animals, single-cell (sc)

omics data are widely available. These datasets are increasingly paired,

which means various types of omics data are collected from the same

cells. Equally importantly, a plethora of tools, developed and validated

with multi-omics data in animals, are available to infer GRNs (Badia-i-

Mompel et al., 2023). By contrast, although a growing amount of plant

sc transcriptome and ATAC-seq profiles became available in recent

years, sc datasets are still relatively scarce in number and type in plants,

and multi-omics assays are usually generated from separate samples,

resulting in reduced data resolution, increased noise, and fewer features

for multimodal predictions of important biological processes. To date,

plant sc transcriptome profiles of vegetative tissues have provided

excellent insights into plant development (Shahan et al., 2022),

evolution (Guillotin et al., 2023), and response to environmental cues

(Wendrich et al., 2020). TF binding sites are widely used together with

sc profiles of transcriptome or chromatin accessibility in integrative

analysis pipelines such as MINI-EX and MINI-AC to infer cell type-

specific GRN (Ferrari et al., 2022; Manosalva Pérez et al., 2024).

There are several challenges in studying transcriptional repression

in seeds. First, high-resolution data are limited, especially during late

seed maturation. Second, the regulation of gene repression is arguably

more complex. For instance, the inference of gene activation is

relatively straightforward based on open chromatin, binding (sites) of

transcriptional activators, and elevated transcript abundance. By

contrast, lack of transcription could result from either active

repression or a lack of activation, which may not be distinguishable

solely by chromatin accessibility assays. Additionally, both

computational analysis (Brooks et al., 2021) and experimental

evidence (Zhu et al., 2024) show that TFs may play a dual role of

activation and repression depending on their interacting partners, and

such characterizations are relatively limited in seeds. In this review, we

highlight various omics datasets useful for GRN inference in seeds. We

place a special emphasis on the repressive machinery by detailing the

genetic and functional genomic characterizations to provide context for

their mode of action. Considering complex biological networks are

hierarchical and scale-free (Basso et al., 2005), we focus on the master

LAFL TFs in the examples because these hubs are likely to capture

extensive regulation.
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The function of LAFL in seed development and maturation has

been extensively studied in Arabidopsis (Lepiniec et al., 2018;

Alizadeh et al., 2021; Gazzarrini and Song, 2024). LEC1, FUS3,

and LEC2 transcripts accumulate since the zygote or pre-globular

stage of embryogenesis, and the expression of ABI3 initiates later at

the globular stage. These TFs play a prominent role during seed

maturation, where they are required for the accumulation of seed

storage compounds, such as triacylglycerols (TAGs), seed storage

proteins (SSPs), oleosins (OLEO), and stress proteins (LEA)

(Giraudat et al., 1992; Meinke, 1992; Meinke et al., 1994; West

et al., 1994; Roscoe et al., 2015). LAFL also promote seed dormancy

and suppress precocious germination of immature seeds, known as

vivipary or pre-harvest sprouting (PHS) in cereals, by inhibiting cell

division, the activity of the shoot and root meristems, and the

differentiation of the cotyledon epidermis (trichome development)

and vascular system (xylem) (Meinke, 1992; Keith et al., 1994;

Nambara et al., 1995; Raz et al., 2001; Bryant et al., 2019). LAFL’s

functions in seed development and germination are partly mediated

by the hormones auxin, ABA, GA, ethylene, brassinosteroids, and

jasmonate (Parcy et al., 1994; Curaba et al., 2004; Gazzarrini et al.,

2004; Braybrook et al., 2006; Stone et al., 2008; Lumba et al., 2012;

Ryu et al., 2014; Chiu et al., 2016; Pan et al., 2020). The

spatiotemporal expression patterns of LAFL are tightly controlled

at the transcriptional and epigenetic levels. Epigenetic silencing of

LAFL is required to promote post-embryonic development

(Lepiniec et al., 2018; Alizadeh et al., 2021; Gazzarrini and

Song, 2024).

Seed quality is a holistic term that includes seed viability, moisture

and nutrient content, depth of dormancy, longevity, and vigor. Some of

these traits, such as seed vigor, are assessed during the transition from

seed to seedlings (Finch-Savage and Bassel, 2016). Therefore, we focus

on the regulation and performance of seed-to-seedling transition by

using this process as a proxy of seed quality in this review. Recent

advances made possible by omics tools provide a rich resource to

compare and contrast various epigenetic machinery that regulate the

transition from seed to seedlings. The information will also provide

mechanistic context for GRN inference at this developmental stage.

Using a novel transcriptional cofactor, Seed dormancy 4 (Sdr4), as an

example, we summarize and discuss the role of this corepressor and its

orthologs in Arabidopsis, rice, and wheat. We also discuss cis-

regulatory elements (CREs) important for seed maturations as well

as a potential regulatory symmetry exerted on these CREs, which

together facilitate the activation and repression of the seed

maturation program.
Phenotypic and omics resemblance of
genetic and epigenetic regulators

Functional characterization of players in
seed-to-seedling transition by phenotypic
resemblance and genetic evidence

The importance of shutting down the embryonic program and

silencing LAFL at the end of seed development is clearly shown by

LAFL overexpression/ectopic expression (OE) phenotypes, which
frontiersin.org
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include delayed germination, growth and flowering (ABI3, FUS3,

and LEC2), development of cotyledon-like organs (LEC1, FUS3, and

LEC2), somatic embryos, and callus-like structures (LEC1 and

LEC2) (Table 1). Ectopic expression of early-acting genes (LEC1

and LEC2) shows the most dramatic phenotypes, such as somatic

embryos and development of callus-like structures. These

embryonic structures accumulate seed storage lipids (TAGs), and

proteins (2S and 12S), as a result of ectopic expression of the seed

maturation program (Table 1). Robust repression of LAFL and the

embryonic program during vegetative development is orchestrated

by a suite of epigenetic regulators, including Polycomb group (PcG)

repressive complex 1 (PRC1) and PRC2, Trithorax group (TrxG),

chromatin remodeling factors and other repressive proteins

(Figure 1) (Xiao et al., 2017a; Lepiniec et al., 2018; Gazzarrini and

Song, 2024). PRC1 catalyzes monoubiquitylation of lysine (K) 121

on histone 2A (H2AK121ub). PRC1 core components include

BMI1A, BMI1B, BMI1C, RING1A, and RING1B (Figure 1), all of

which have E3 ligase activity (Mozgova and Henning, 2015; Baile
Frontiers in Plant Science 03
et al., 2022). PRC2 promotes trimethylation of H3 on K27

(H3K27me3), catalyzed by the histone methyltransferases SWN,

CLF, and MEA. Arabidopsis has three core PRC2 complexes: EMF-

PRC2, composed of EMF2, CLF/SWN, FIE, and MSI1; VRN-PRC2,

composed of VRN2, CLF/SWN, FIE, and MSI1; and FIS-PRC2,

which includes FIS2, MEA, FIE, and MSI1 (Figure 1). These PRC2

complexes have overlapping as well as specific functions throughout

development (Bieluszewski et al., 2021; Baile et al., 2022). Several

PRC1 and PRC2 accessory proteins that physically interact with the

PRC core components to repress transcription, such as VAL1/2,

HDAC, LHP1/TFL2, AL6, AL7, EMF1, NDX, and VRN5/VIL1, as

well as TrxG factors such as H3K4me3 methyltransferases ATX and

ULT1, chromatin remodeling factors such as PKL and PKR2, and

corepressors such as TPL, TPR, and AtSDR4L, aid in repression of

LAFL and the embryonic program during vegetative development

(Gazzarrini and Song, 2024).

Loss-of-function mutants in PRC1 and PRC2 components

mimic LAFL OE phenotypes, supporting a role for PRCs in
TABLE 1 Genetic and epigenetic regulators in seed-to-seedling transition.

OE/
mutant

Phenotypes Genetic and genomic insights related to seeds
and seedlings

LEC1 OE Storage compounds:
Ectopic lipids and starch in lec1-d tnp (Casson and Lindsey, 2006). Ectopic
cruciferin and starch in 35S:LEC1-GR seedlings induced 0–3 days after
imbibition (DAI) (Junker et al., 2012).
Callus and somatic embryos (SE):
Cotyledon-like organs and somatic embryos in 35S:LEC1 seedlings (Lotan
et al., 1998).
Swollen hypocotyl, but no embryonic callus in lec1-d tnp (dominant mutant).
Phenotype enhanced by auxin, sugar or GA inhibitor (paclobutrazol), but not
rescued by GA (Casson and Lindsey, 2006).
35S:LEC1-GR seedlings show different phenotypes dependent on time of
induction: most show cotyledon-like organs, swollen and green roots, and
callus and somatic embryos, and 10%–40% show arrested roots (0–2 DAI,
days after imbibition); long hypocotyls with an apical hook (3 DAI); no
phenotype if induced at 4 DAI, but induction at 4DAI+ABA resulted in
cotyledon-like leaves that express CRU (Junker et al., 2012).

Selected marker genes:
Ectopic expression (in situ hyb) of seed storage proteins: 12S cruciferins
(CRA), S3 oleosin (OLEO) in 35S:LEC1 seedlings (Lotan et al., 1998).
Ectopic expression of LEC2, FUS3, ABI3, and maturation genes (2S
albumin, CRC) in 35S:LEC1-GR seedlings (Kagaya et al., 2005b).
Ectopic expression of CRU, LEC2, FUS3, and ABI3 in 35S:LEC1-GR
seedlings induced 0–3 DAI (Junker et al., 2012) (Junker et al., 2012).
35S:LEC1-GR associates with LAFL, WRI, and seed maturation genes in
ChIP-chip in seedlings (Pelletier et al., 2017).
Omics datasets:
GSE22352 (ChIP-chip of LEC1 of 2-week-old 35S:LEC1:GR seedlings
treated by DEX or mock for 24 h), GSE22173 (ATH1 microarray of 2-
week-old 35S:LEC1-GR treated by DEX or mock for 8 h with and without
ABA) (Junker et al., 2012).
GSE99528 (microarray of 8-day-old 35S:LEC1:GR treated with and without
DEX for 1 h), GSE99529 (ChIP-chip of LEC1 in 8-day-old 35S:LEC1-GR
seedlings either grown on DEX plates or treated by DEX for 4 h),
GSE99587 (ChIP-seq of LEC1 in LEC1:LEC1-GFP: LEC1/lec1–1 seeds at the
bent cotyledon-stage) (Pelletier et al., 2017).

LEC2 OE Storage compounds:
Ectopic lipids and starch accumulation in 35S:LEC2-GR ovules (Stone et al.,
2008).
Ectopic accumulation of seed-specific lipids and triacylglycerol (TAGs) in
leaves of 35S:LEC2-GR induced after 2 weeks (Santos Mendoza et al., 2005)
Callus and SE:
Somatic embryos in 35S:LEC2 (Stone et al., 2001).

Selected marker genes:
Ectopic expression of CRA (12S) and OLEO detected by in situ
hybridization in 35S:LEC2 seedlings (Stone et al., 2001). Ectopic expression
(RT-PCR) of LEC1, FUS3, 2S, CRA1, and OLEO in 35S:LEC2-GR seedlings
(Stone et al., 2001).
Ectopic expression of S3 (OLEO), 2S3 (albumin), and LAFL in leaves of 35S:
LEC2-GR (Santos Mendoza et al., 2005). Ectopic expression (microarray
and/or RT-PCR) of LEC1, FUS3, 2S, CRA1, and OLEO in 35S:LEC2-GR.
LEC2 associates (ChIP) with 2S3 and OLEO in 35S:LEC2-GR seedlings
(Stone et al., 2008).
Omics datasets:
GSE3959 (ATH1 microarray of 8-day-old 35S:LEC2-GR seedlings treated by
DEX for 1 and 4 h) (Braybrook et al., 2006).

FUS3 OE Dormancy and germination:
Delayed germination, vegetative growth, and flowering of fus3 ML1:FUS3.
Strong lines are arrested at the seedling stage (Gazzarrini et al., 2004; Tsai
and Gazzarrini, 2012). ML1:FUS3 seeds hypersensitive to ABA, sorbitol, and
glucose during germination (Tsai and Gazzarrini, 2012).
Storage compounds:
Ectopic accumulation of seed storage proteins (2S, 12S) in ML1:FUS3 leaves

Selected marker genes:
Ectopic expression of 2S3 (enhanced by ABA). Ectopic expression of CRC
only in +ABA in 7 DAI seedlings of DEX inducible GRpro:FUS3 (Kagaya
et al., 2005a).
Repression of GA biosynthesis genes in fus3 ML1:FUS3 seedlings (GA20ox
and GA3ox) (Gazzarrini et al., 2004). Ectopic expression of OLEO, 2S3,
CRU, and WRI in ESTpro: FUS3 (Zhang et al., 2016).

(Continued)
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TABLE 1 Continued

OE/
mutant

Phenotypes Genetic and genomic insights related to seeds
and seedlings

(Gazzarrini et al., 2004).
Increased TAGs content in estradiol-inducible XVEpro: FUS3 (Zhang et al.,
2016).
Callus and SE:
Development of cotyledon-like organs, arrested seedlings, but no somatic
embryos in fus3 ML1:FUS3 strong lines. Delayed flowering and cotyledon-
like leaves are partially rescued by GA (Gazzarrini et al., 2004).

Genomics datasets:
GSE43291 (ChIP-chip of FUS3:FUS3-myc/fus3–3 embryonic culture) (Wang
and Perry, 2013)
GSE80360 (ATH1 microarray of 8 day-old XVEpro: FUS3 seedlings ±
sucrose) (Zhang et al., 2016).

ABI3 OE Dormancy and germination:
Increased sensitivity to ABA during seed germination (Zhang et al., 2005).
Increased sensitivity to ABA in inhibition of root elongation (Parcy et al.,
1994).
Storage compounds:
Increased TAGs content in XVEpro: ABI3 (Yang et al., 2022b).

Selected marker genes:
Ectopic expression of seed maturation genes 2S3, Em1, Em6, and CRC in
35S:ABI3 in response to ABA (Parcy et al., 1994).
Ectopic expression of 2S3, and ectopic expression of Em and CRC in
response to ABA in 7-day-old seedlings of GRpro: ABI3 (Kagaya et al.,
2005a). Ectopic depression of FUS3, OLEO, and WRI in XVEpro: ABI3
(Yang et al., 2022b).
Omics datasets:
GSE150561 (microarray of wild-type and abi3–5 seeds harvested at 15–16
days after flowering with and without placement on moist blotter for 1 day;
ChIP-chip of ABI3:ABI3-myc/abi3–5 embryonic culture) (Tian et al., 2020)
PRJNA678646 (RNA-Seq of XVEpro: ABI3 using fifth to eighth rosette
leaves treated with b-estradiol or mock for 4 days) (Yang et al., 2022b).

atbmi1a
atbmi1b

Dormancy and germination:
Delayed germination both in unstressed condition and under salt or osmotic
stress (Molitor et al., 2014)
Storage compounds:
Low penetrance of the pickle-root trait (~8%) (Chen et al., 2010a).
Callus and SE:
Low penetrance of embryonic callus (~18%) (Chen et al., 2010a). The same
double mutant exhibits high penetrance (>75%) of callus and somatic
embryos in another study (Bratzel et al., 2010).

Selected marker genes:
Increased expression of STM, WOX5, WUS, LEC1, and FUS3 (Bratzel et al.,
2010). Derepression of LAFL in atbmi1a atbmi1b examined by RT-qPCR in
2-week-old seedlings (Chen et al., 2010a). Reduced H2AK121ub of LEC1,
FUS3, ABI3, WUS, and BBM (Yang et al., 2013). Increased expression of
ABI3, DOG1, CRU1, CUR3, PER1, and CHO1. Altered histone marks
(H3K4me3, H3K27me3) (Molitor et al., 2014).
Omics datasets:
GSE67322 (RNA-seq and H3K27me3 ChIP-seq of 2-week-old atbmi1a
atbmi1b, atring1a atring1b, lhp1, clf, and clf swn seedlings) showed that
H3K27me3 and differential expression of seed maturation genes are
similarity regulated in clf swn, atring1a atring1b, and atbmi1a atbmi1b
(Wang et al., 2016).
GSE89358 (RNA-seq of 7-day-old atbmi1abc and wild-type seedlings;
H3K27me3 and H2AK121ub ChIP-seq of atbmi1abc, clf swn, lhp1, and
wild-type seedlings) (Zhou et al., 2017).
GSE83568 (RNA-seq of 10-day-old single, double, and triple mutants of
atbmi and wild-type seedlings).
PRJE 52473 (Hi-C and ChIP-seq of BMI1B-FLAG and H3K4me3 using 10-
day-old seedlings) (Yin et al., 2023)

atring1a
atring1b

Dormancy and germination:
Hypersensitive to ABA in seedling establishment (Zhu et al., 2020).
Storage compounds:
moderate penetrance of the pickle-root phenotype (~50%) (Chen et al.,
2010a).
Callus and SE:
Low penetrance of embryonic callus (~17%). Embryonic and pickle-root
traits are attenuated by auxin transport inhibitor NPA (Chen et al., 2010a).

Selected marker genes:
RT-qPCR showed that LAFL are derepressed in atring1a atring1b 2-week-
old and 1-month-old seedlings (Chen et al., 2010a). ABI3 is upregulated in
atring1a atring1b (Zhu et al., 2020).
Omics datasets:
GSE67322 (see description in the atbmi1a atbmi1b row in this table).
GSE155378 (ATAC-seq of atbmi1abc, atring1a atring1b, clf swn, emf1, and
lhp1; H2AK121ub ChIP-seq of emf1 and atring1a atring1b; H3K27me3
ChIP-seq of atring1a atring1b and lhp1; RNA-seq of clf swn, atring1a
atring1b and emf1; all assays were carried out using 10-day-old whole
seedlings and include wild-type Col-0 controls) (Yin et al., 2021).

atring1a
atring1b
clf

Storage compounds:
clf slightly exacerbates the pickle-root phenotype of atring1a atring1b (Chen
et al., 2010a).
Callus and SE:
clf substantially exacerbates the embryonic callus phenotype of atring1a
atring1b (Chen et al., 2010a).

Selected marker genes:
RT-PCR showed upregulation of LEC1, LEC2, and FUS3 is further increased
in atring1a atring1b clf compared to atring1a atring1b (Chen et al., 2010a).

al6 al7 Dormancy and germination:
Delayed germination; enhanced under salt (NaCl) or osmotic (mannitol)
stress (Molitor et al., 2014).
Storage compounds:
Increased level of CRU1 and CRU3 (3 DAI). Tissue-level defects
not observed.

Selected marker genes:
Increased expression of ABI3, DOG1, CRU1, CUR3, PER1, and CHO1, but
much lower than in atbmi1a atbmi1b. Altered histone marks at ABI3 and
DOG1 in 3 DAG (increased H3K4m3, decreased H3K27me3) albeit less
than in atbmi1a atbmi1b. AL6 shows similar binding to LHP1 at the ABI3
and DOG1 loci (Molitor et al., 2014)

(Continued)
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TABLE 1 Continued

OE/
mutant

Phenotypes Genetic and genomic insights related to seeds
and seedlings

atbmi1a
atbmi1b
al6 al7

Dormancy and germination:
Further delayed germination on regular plates and under salt (NaCl) or
osmotic (mannitol) compared to atbmi1a atbmi1b and al6 al7 double
mutants (Molitor et al., 2014).

ndx Dormancy and germination:
Hypersensitive to ABA during seedling establishment (greening) and root
growth (Zhu et al., 2020).

Selected marker genes:
ABI4 and ABI5 upregulation in ndx, and ABI3 and ABI4 upregulation in
ndx + ABA; RNA-seq and RT-qPCR showed that NDX binds to ABI3,
ABI4, and ABI5, but associates only with ABI4 in ChIP-qPCR. Upregulation
of these genes is much stronger in atring1a atring1b. ChIP-qPCR showed
that levels of H2AK121ub are reduced at ABI4, Em1, and SUT4, and slightly
at ABI3 in ndx-5 and to a similar level to atring1a atring1b (Zhu et al.,
2020).
Omics datasets:
PRJNA556351 (RNA-seq of 7-day-old seedlings ndx, atring1a atring1b, and
Col-0 ± ABA) (Zhu et al., 2020).
GSE201841 (RNA-seq, BS-seq, and sRNA-seq DRIP-seq of ndx1–4 and
wild-type control. ChIP-seq of flag-NDX and NDX-GFP. Ten-day-old
seedlings were used for the sequencing assays) (Karányi et al., 2022).

lhp1 (tfl2) Dormancy and germination:
Elevated expression of DOG1. Delayed germination on ABA plates, possibly
mediated by ANAC019 and ANAC055 (Ramirez-Prado et al., 2019).

Selected marker genes:
LHP1 binds to ABI3 and DOG1 (Molitor et al., 2014).
Modest upregulation of DOG1 in lhp1 mutant (Chen et al., 2020).
No deregulation of FUS3 or ABI3 in 14-day-old lhp1 seedlings (Ramirez-
Prado et al., 2019).
Omics datasets:
DamID-chip, an E. coli Dam fused with LHP1 followed by tiling microarray
profiling, and A-MEXP-602 (chip-chip of LHP1 and H3K27me3 in 10-day-
old wild-type and lhp1 seedlings) showed that LHP1 colocalizes genome-
wide with H3K27me3 (Turck et al., 2007; Zhang et al., 2007).
GSE76571 (ChIP-seq of LHP1 and H3K27me3 in 14-day-old wild-type,
lhp1, and clf seedlings) showed LHP1 is involved in the spreading of
H3K27me3 and shaping chromatin topology (Veluchamy et al., 2016).
GSE67322 (see description in the atbmi1a atbmi1b row in this table).
GSE89358 (see description in the atbmi1a atbmi1b row in this table).
GSE155378 (see description in the atring1a atring1b row in this table).

emf1 Callus and SE:
emf1–2 forms oval-shaped, petiole-less cotyledons that develop into
carpeloid, and no leaf primordia and do not produce vegetative rosettes
(Sung et al., 1992; Chen et al., 1997). A small % of emf1–2 and emf1–2 emf2–
1 plants form callus after 1 month of culture (Calonje et al., 2008).

Selected marker genes:
Increased ABI3 and At2S3 and decreased LEC1 and LEC2 transcript
abundance in 14-day-old seedlings (Xu et al., 2018).
Genomics datasets:
GSE155378 (see description in the atring1a atring1b row in this table).

emf1 atx,
emf1 ult,
emf1
atx1 ult1

Storage compounds:
Increased storage lipids in pickle-root regions of emf1 atx, emf1 ult, and emf1
atx ult (Xu et al., 2018).
Callus and SE:
emf1 atx (4%), emf1 ult (11%), and emf1 atx ult (22%) show embryo- and
callus-like structures arising from cotyledons, hypocotyls, and roots; roots are
arrested and swollen, pkl-like. The pickle-root phenotype is enhanced by a
GA biosynthesis inhibitor, PAC. atx, ult, or atx ult does not show any of
these phenotypes (Xu et al., 2018).

Selected marker genes:
Upregulation of ABI3, FUS3, LEC2, seed maturation genes (2S, OLEO, CRU,
and LEA), dormancy (DOG1), GA catabolism (GA2ox1) and GA signaling
repressor (RGL1), and downregulation of GA synthesis (GA3ox1) in 14-day-
old emf1 atx1 ult1 seedlings by qRT-PCR and/or RNA-seq (ABI3, FUS3,
LEC2, and 2S3 are also upregulated in emf1 ult but not in atx ult, by qRT-
PRC). LEC1 is downregulated in atx, ult, emf1, atx ult, and ult atx emf.
ChIP-seq and ChIP-qPCR showed that ULT and ATX are associated with
ABI3, LEC2, and 2S3, by ChIP-seq and ChIP-qPCR. Decreased H3K27me3
marks at ABI3, LEC2, seed maturation genes (CRU and OLEO) and
dormancy (DOG1) in emf1 atx1 ult1 (Xu et al., 2018).

fie Dormancy and germination:
Delayed germination and 40% dormant seeds, delayed cotyledon greening
similar to WT germinated on ABA; these phenotypes are not rescued by GA
(Bouyer et al., 2011).
Storage compounds:
Sugar-enhanceable accumulation of storage reserves at the root tip and in the
aerial part (Bouyer et al., 2011).
Callus and SE:
Development of somatic embryos and callus-like structures in seedlings
(Makarevich et al., 2006; Bouyer et al., 2011).

Selected marker genes:
Strong decrease in H3K27me3 levels and ABI3, FUS3, and LEC2
derepression. Upregulation of seed maturation (CRU3, CRA1, 2S1, 2S2,
OLEO, and LEA), dormancy (DOG1 and SOM), and ABA signaling (ABI4)
(Bouyer et al., 2011).
Omics datasets:
GPL10918 (ChIP-chip H3K27me3 and H3K4me3 in 20-day-old fie and
wild-type seedlings) (Bouyer et al., 2011).
GSE95562 (ChIP-seq of FIE in 30-h-old pRNAi-BPC; pRNAi-ZnF double
knockdown mutant and wild-type Ws accession); GSE84483 (ChIP-seq of
pFIE: FIE-HA in 30-h-old fie-11 in C24 accession) (Xiao et al., 2017b).
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TABLE 1 Continued

OE/
mutant

Phenotypes Genetic and genomic insights related to seeds
and seedlings

clf Dormancy and germination:
Two mutant alleles of clf show reduced seed yield and increased cell size and
seed size (Liu et al., 2016).
Storage compounds:
Increased level of FA and oil.

Selected marker genes:
Upregulation of LAFL, several OLE, and WRI in clf siliques; upregulation of
FUS3 and ABI3 and downregulation of LEC1 in mat green clf embryo. clf
seedlings: decreased H3K27me3 at FUS3, ABI3 (Liu et al., 2016).
Omics datasets:
GSE7065 (ChIP-chip of 10- to 14-day-old 35S::GFP-CLF in clf-50 in Ws
accession).
GSE67322 (see description in the atbmi1a atbmi1b row in this table).
GSE103361 (RNA-seq and H3K27me3 ChIP-seq of 3-week-old shoots of
pkl, clf, and wild-type plants) (Carter et al., 2018).
GSE155502 (HiChIP of H3K27me3 and H3K9ac and Hi-C in 14-day-old
wild-type and clf seedlings) showed altered H3K27me3 repressive loops in
clf (Huang et al., 2021).

swn clf Dormancy and germination:
Delayed germination, stronger than fie (Bouyer et al., 2011).
Storage compounds:
Increase accumulation of storage reserves.
Callus and SE:
Development of somatic embryos and callus-like structures in seedlings.
Swollen root that produced green shoot-like tissue, similar to fie
(Chanvivattana et al., 2004; Makarevich et al., 2006).

Selected marker genes:
LEC1, LEC2, and FUS3 derepression in seedlings; strong FUS3 (not LEC1 or
LEC2) upregulation in 3DAP siliques (Makarevich et al., 2006).
Omics datasets:
GSE67322 (see description in the atbmi1a atbmi1b row in this table).
GSE89358 (see description in the atbmi1a atbmi1b row in this table).
GSE98301 (RNA-seq of 10-day-old clf-50 swn-1 and wild-type seedlings
treated with ABA for 5 h or 4 days. RNA-seq of 10-day-old clf-50, swn-1,
clf-50 swn-1, and wild-type seedlings mock-treated for 4 days) (Liu et al.,
2019).
GSE108960 (RNA-seq of 10-day-old clf, swn, clf swn, and wild-type
seedlings, and ChIP-seq of 10-day-old CLF-GFP and SWN-GFP seedlings)
showed CLF and SWN function redundantly to deposit H3K27me3 at LAFL
loci (Shu et al., 2019).
GSE155378 (see description in the atring1a atring1b row in this table).

swn clf pkl Storage compounds:
Accumulation of storage lipids detected by Fat Red B staining (Aichinger
et al., 2009).
Callus and SE:
pkl enhances embryo and callus-like structure compared to swn clf
(Aichinger et al., 2009).

Selected marker genes:
LEC1 and FUS3 are synergistically upregulated in pkl clf double mutant
(Aichinger et al., 2009).

emf2 vrn2 Storage compounds:
Ectopic storage lipid and chlorophyll accumulation in emf2 vrn2 seedling
roots (Ikeuchi et al., 2015).
Callus and SE:
Somatic embryos in emf2 vrn2 (Schubert et al., 2005).
Ectopic shoot on emf2 vrn2 root (Ikeuchi et al., 2015).

Selected marker genes:
Ectopic expression of LEC1, LEC2, and FUS3 in emf vrn2 roots (Ikeuchi
et al., 2015).

emf2 sdg8 Storage compounds:
Accumulation of storage proteins and lipids (Tang et al., 2012).
Callus and SE:
No somatic embryos in emf2, vrn2, or sdg8. Somatic embryos in emf2 sdg8
(Tang et al., 2012).

Selected marker genes:
Derepression of FUS3, seed maturation genes (2S, LEA, and LTP), and GA
deactivation genes (GA2ox) in sdg8 (Tang et al., 2012). Depression of LAFL,
seed maturation genes (2S, LEA, and LTP), and GA deactivation genes
(GA2ox) in sdg8 emf2 (Tang et al., 2012).

bpc1 bpc2 Dormancy and germination:
No dormancy and germination phenotype. Instead, double mutant is
pleiotropic, exhibiting ovule and seed abortion, dwarfism, and reduced lateral
roots (Monfared et al., 2011).

Selected marker genes:
BPCs repress LEC2 (Xiao et al., 2017b), FUS3 (Xiao et al., 2017b; Wu et al.,
2020), and ABI4 (Mu et al., 2017). BPCs activate LEC2 (Berger et al., 2011).
Omics datasets:
GSE84483 (ChIP-seq of 30-h-old gBPC1-Myc in Col-0 accession) (Xiao
et al., 2017b).

val1 (hsi2) Dormancy and germination:
Similar to WT (Chen et al., 2020).
Storage compounds:
Embryonic phenotypes such as cotyledon-like organs and ectopic embryos
on leaves displayed by 23% of seedlings treated by the GA-biosynthesis
inhibitor, paclobutrazol (Suzuki et al., 2007).
Callus and SE:
A small % of callus observed at cotyledon margin (only in val1–1 in the WS
background) (Suzuki et al., 2007).

Selected marker genes:
Derepression of CRC and 2S2 in seedlings, and derepression of LAFL, L1L,
CRC, and 2S1 in seedlings rescued from embryos 9 days after pollination
(Suzuki et al., 2007; Jia et al., 2013).
Depression of LEC1, FUS3, ABI3, AGL15, and DOG1, and reduced
H3K27me3 level at LEC1, ABI3, AGL15, and DOG1 loci in hsi2–2. ChIP-
PCR showed that AGL15 and DOG1 are direct targets of HSI2 (Veerappan
et al., 2012, 2014; Chen et al., 2018, 2020).
Omics datasets:
ATH1 microarray from 5-day-old seedlings of Col-0, val1–2 and val2–1, and
7.5-day-old seedlings of val1–2 val2–1 double mutants) (Suzuki et al., 2007).
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TABLE 1 Continued

OE/
mutant

Phenotypes Genetic and genomic insights related to seeds
and seedlings

GSE74692 (RNA-seq time course of val1 and wild-type developing seeds)
(Schneider et al., 2016).

val1 val2
(hsi2 hsl1)

Dormancy and germination:
Reduced and delayed germination (Suzuki et al., 2007; Chen et al., 2020).
Storage compounds:
Over-accumulation of storage reserves in seedlings (Suzuki et al., 2007;
Tsukagoshi et al., 2007).
Callus and SE:
Embryonic callus found both in shoot and root (Suzuki et al., 2007).
Prevalent formation of callus if developing seeds of val1 val2 are rescued on
MS plates (Jia et al., 2013).

Selected marker genes:
Stronger derepression of LAFL, L1L, and seed storage genes in val1 val2
seedlings grown from mature seeds or rescued embryos than in val1
seedlings (Suzuki et al., 2007; Jia et al., 2013).
Derepression of LEC1, LEC2, FUS3, and seed storage genes in seedlings
since 4 days after imbibition, the magnitude of which is elevated by sucrose
(Tsukagoshi et al., 2007).
VAL1 and VAL2 binding and correlation with K27me3 at selected loci
(DOG1) by ChIP-PCR in seedlings (Chen et al., 2020).
Omics datasets:
ATH1 microarray (see description in the val1 row in this table)
GSE119715 (RNA-seq of 14-day-old val1, val2, val1 val2, and wild-type
seedlings). GSE145387 (ChIP-seq of VAL1-GFP and VAL2-GFP in wild-
type background, and ChIP-seq of H3K27me3 of val1 val2 and wild-type
samples using 14-day-old seedlings). GSE159499 (ChIP-seq of SWN-GFP in
val1 val2 or wild-type background using 14-day-old seedlings) (Yuan
et al., 2021).

vil1 (vrn5) Dormancy and germination:
Hypersensitive to ABA, delayed germination and cotyledon greening, and
reduced root length on ABA plates (Zong et al., 2022).

Selected marker genes:
VIL1 binds to ABI3, ABI4, and RD29. In the vil1 mutant, these genes show
upregulated transcript abundance and reduced H3K27me3 (Zong et al.,
2022).
Omics datasets:
GSE180587 (RNA-seq of 1-day-old vil1 and Col-0 seedlings) shows that DE
genes are enriched for genes related to ABA responses and seed
germination programs (Zong et al., 2022); PRJNA973989 (ChIP-seq of
VELs before and after vernalization) (Franco-Echevarrıá et al., 2023).

vil1 swn Selected marker genes:
Further upregulation of ABI3 and ABI4 compared to vil1 single mutant
(Zong et al., 2022).

pkl Dormancy and germination:
pkl mutant is hypersensitive to ABA, and shows delayed germination and
cotyledon greening on ABA plates (Perruc et al., 2007).
Storage compounds:
Low penetrance of storage lipids and proteins at the root tip, and the trait is
enhanced by GA biosynthesis inhibitors (Ogas et al., 1997).
Callus and SE:
Embryogenic callus formed from explants of pickle roots, cotyledons, and
hypocotyls from pkl plants (Ogas et al., 1997; Henderson et al., 2004).

Selected marker genes:
Increased and prolonged accumulation of ABI3 transcript and proteins in
imbibed pkl seeds and young seedlings (Perruc et al., 2007).
Elevated master TF expression in seeds (FUS3 and ABI3) and seedlings
(LAFL) (Shen et al., 2015).
Omics datasets:
GSE103361 (see description in the clf row in this table)
GSE186152 (RNA-seq of 14-day-old wild-type and pkl seedlings),
GSE186156 (RNA-seq of 14-day-old wild-type and val1 val2 pkl seedlings),
and GSE186157 (ChIP-seq of PKL in 14-day-old wild-type and val1 val2
seedlings) (Liang et al., 2022).

pkl pkr2 Storage compounds:
pkr2. but not pkr1, increases penetrance of pkl root phenotype (Aichinger
et al., 2009).

Selected marker genes:
Enhanced/synergistic de-repression of LEC1, FUS3, and ABI3 in pkl pkr2
(no LAFL derepression in pkl2), but no PKL association/binding in CHIP;
decreased H3K27me3 at LEC1 and ABI3, but not FUS3 (Aichinger et al.,
2009).
Omics datasets:
E-MEXP-2140 (microarray of root tips of 5-day-old pkl, pkr2, pkl pkr2, and
wild-type seedlings) (Aichinger et al., 2009).

hda19 Selected marker genes:
LEC1, LEC2, ABI3, and multiple seed storage genes, but not FUS3 are
derepressed in 14-day-old hda19 seedlings; increased active histone marks
and reduced repressive histone marks at the derepressed loci. Binding of
HDA19 to LEC1 and LEC2 (Zhou et al., 2013). Increased levels of H3ac,
H4ac, and H3K4me3 active marks, and decreased level of H3K9me2 and
H3K27me3 repressive marks in 7S1, OLE1, ABI3, CRA1, and LEC2 in
hda19–1. (Zhou et al., 2020).
Omics datasets:
Fourteen-day-old wild-type and hda19 seedlings were profiled by ChIP-seq
for H3K14ac and H3K9me2 (Zhou et al., 2013).
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terminating the embryonic program during seed-to-seedling

transition. Table 1 and Figure 1 summarize the phenotypes of

these mutants and dissect the regulation by the general epigenetic

machinery (e.g. core proteins in the PRCs and TrxG) that affects all

stages of plant development, as well as developmental stage-specific

epigenetic regulators, including the facultative accessory protein of

PRCs. Although there is extensive overlap in mutant phenotypes,

some epigenetic mutants only show a subset of phenotypes and with

variable penetrance. This is because some PRC2 complex subunits

are present in all complexes, e.g., FIE and MSI, while others are

specific for some developmental stages (e.g., EMF2, VRN2, FIS2,

and MEA), and/or their mutant phenotypes are so severe (embryo

lethality) that their roles in other developmental stages can be

difficult to uncover (FIE, FIS2, and MSI1). For instance, double

mutants lacking PRC2 paralogs that are involved in vegetative

development and flowering (swn clf and emf2 vrn2), show delayed
Frontiers in Plant Science 08
germination (swn clf) and develop embryonic callus (swn clf and

emf2 vrn2). FIE is a single subunit required in all PRC2 complexes

and fiemutants are not viable, due to endosperm over-proliferation

and embryo arrest at the heart stage. Similar phenotypes are shown

by prc2 mutants, fis2, mea, and msi1 (Meinke, 2020). However,

evaluation of embryonically-rescued fie plants allowed for the

discovery of its role in seed-to-seedling transition. Indeed,

embryonically rescued fie lines displayed delayed germination,

somatic embryos, and embryonic callus-like structures.

Embryonic callus also develops in double mutants lacking PRC1

paralogs (atbmi1a atbmi1b and atring1a atring1b), as well as

accessory proteins that promote histone deacetylation (hda6

hda19 RNAi) or recruit PRCs (val1 val2), albeit with different

frequencies. The penetrance of the embryonic callus phenotype

can be further increased in mutants simultaneously lacking core

subunits of PRC1 and PRC2 (atring1a atring1b clf) or in the absence
TABLE 1 Continued

OE/
mutant

Phenotypes Genetic and genomic insights related to seeds
and seedlings

GSE166090 (RNA-seq and H3ac ChIP-seq of 14-day-old hda19, hda6, and
wild-type seedlings) (Feng et al., 2021).

hda6
hda19

Dormancy and germination:
Post-germinative growth arrest (no cotyledon expansion or greening) in
~70% hda6/hda19:RNAi double repression seedlings (Tanaka et al., 2008).
hda6 RNAi and axe5–1 (hda6 splice mutant) are hypersensitive to ABA and
salt stress (Chen et al., 2010b).
Delayed germination and seedling growth arrest induced by HDAC inhibitor
Trichostatin A (TSA) is not affected by GA (Tanaka et al., 2008).
Storage compounds:
Increased accumulation of storage compounds inferred from upregulation of
LEC1, ABI3, and FUS3 and upregulation of seed storage genes in TSA-treated
seedlings that exhibit similar phenotypes to hda6/19:RNAi (Tanaka et al.,
2008).
Callus and SE:
Embryo-like structures on hda6/19 RNAi shoot (Tanaka et al., 2008).

Selected marker genes:
LEC1, FUS3, and ABI3 de-repression in hda6/19 RNAI (Tanaka et al.,
2008). CRA/B/C are derepressed in TSA-induced somatic embryos (Tanaka
et al., 2008). CRA1, OLE1, 2S2, and 7S1 are derepressed in hda19–1
seedlings (Zhou et al., 2020).

hda19
val2

Dormancy and germination:
Embryo lethal (Zhou et al., 2013).

sdr4l
(sfl1/odr1)

Dormancy and germination:
Delayed germination of mature seeds (Cao et al., 2020; Liu et al., 2020; Wu
et al., 2022; Zheng et al., 2022).
Storage compounds:
Increased accumulation of storage lipids (Wu et al., 2022; Zheng et al., 2022).

Selected marker genes:
ABI3, FUS3, and DOG1 are upregulated in 15-DAP Atsdr4l-1 seeds (Zheng
et al., 2022). LAFL and DOG1 are derepressed in 4-day-old Atsdr4l-3 and
Atsdr4l-4 seedlings (Wu et al., 2022). DOG1 is upregulated in maturing
Atsdr4l-1 and Atsdr4l-2 seeds at 12–18 DAP (Cao et al., 2020). ABA
biosynthesis genes NCED6 and NCED9 have elevated expression in Atsdr4l-
2 seeds harvested at fresh (Liu et al., 2020).
Omics datasets:
PRJNA663767 (RNA-seq of 4-day-old Atsdr4l-3, Atsdr4l-4, and Col-0
seedlings); GSE185388 (ChIP-seq of 4-day-old estradiol induced AtSDR4L
seedlings) (Wu et al., 2022).
GSE246997 (ChIP-seq of AtSDR4L expressed from its native promoter in
ABA-treated 1-DAI seedlings, and H3K27me3 in 1-DAI and 3-DAI Col-0,
Atsdr4l-4, Atsdr4l-5 seedlings grown with 1% sucrose) (Lu et al., 2024).

sfl1 sfl4
(sdr4l
dig2)

Dormancy and germination:
Severely reduced germination (Zheng et al., 2022).
Storage compounds:
Increased accumulation of storage lipids (Zheng et al., 2022).

Selected marker genes:
LAFL genes exhibit dynamic expression over the course of seed maturation
in Atsdr4l dig2 mutant: LEC1 and LEC2 have comparable expression levels
between the double mutant and wild type from 9 to 18 DAP; ABI3
expression is downregulated in 12-DAP, but upregulated in 15- and 18-
DAP mutants seeds; FUS3 exhibits lower expression than wildtype in 9-
DAP, but higher in 12-, 15-, and 18-DAP mutant seeds. DOG1 is
downregulated in the mutant at 12 DAP, and upregulated at 15 and 18
DAP (Zheng et al., 2022).
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of PRC2 and chromatin remodeling factors (swn clf pkl) (Table 1).

Thus, a stable shutdown of LAFL and the embryonic program

dur ing vege ta t i v e deve lopment requ i r e s a su i t e o f

epigenetic regulators.

Interestingly, mutants in accessory proteins such as al6 al7,

lhp1, and vil1 affect germination, dormancy, and sensitivity to ABA

and stress, and show repression of late-acting LAFL such as ABI3,

suggesting more stage- and context-specific roles for these accessory

proteins. While TrxG and PcG play opposite roles in regulating

flowering time through FLC (Pien et al., 2008), TrxG’s synergistic

role with PRC in transcriptional repression during seed-to-seedling

transition does not conform to the norm of TrxG in exerting

transcriptional activation. The TrxG mutants atx and ult strongly

enhance the phenotype of emf1, with emf1 atx ult showing swollen

roots and embryo- and callus-like structures (Xu et al., 2018).

Similarly, the TrxG homolog SDG8 acts synergistically with PRC2

EMF2 in repressing seed maturation genes, as shown by the

development of somatic embryos in emf2 sdg8 (Table 1).

Altogether, LAFL and downstream seed maturation genes serve as

excellent models for comprehending the repression of the seed

maturation program during the transition from seed to seedling,
Frontiers in Plant Science 09
similar to FLC for the transition from vegetative to reproductive

phases (Whittaker and Dean, 2017).
Omics studies facilitate a comprehensive
understanding of seed-to-
seedling transition

Mutant phenotypes and marker genes are powerful tools to

associate regulation with a specific developmental stage. These tools

together with omics studies allow for the efficient and

comprehensive characterization of biological processes.

Transcriptomic and epigenomic datasets confirmed the

observation that general epigenetic machinery participates in all

major development transitions, and their regulatory specificity is

often determined by accessory proteins and interacting

transcription factors (Merini et al., 2017; Xiao et al., 2017b).

Starting from profiling canonical histone marks such as

H3K27me3 (Table 1), our understanding of the epigenetic

regulation of plant phase transition has been substantially

advanced through the integration of genetic, biochemical, cell
FIGURE 1

Epigenetic regulators that repress the seed maturation program during seed-to-seedling transition. A proposed model on the regulation of early
developmental phase transitions by general and stage-specific epigenetic machinery in Arabidopsis (Table 1). Embryogenesis and maturation phases
of seed development are regulated by the LAFL network (top left). The seed-to-seedling phase transition comprises the break of dormancy,
germination, and seedling establishment. This normal developmental trajectory requires repression of the seed maturation program by a suite of
epigenetic regulators. Loss-of-function mutations in these epigenetic regulators often lead to an alternative developmental trajectory, with mutant
seeds exhibiting defects in one or more processes: (1) germination, (2) repression of post-embryonic accumulation of storage compounds, with pink
color indicating the accumulation of storage lipids, and (3) repression of subsequent formation of callus and somatic embryos. Severe mutants of
general epigenetic machinery usually show all three types of defects, whereas the role of stage-specific regulators may be limited to one or
two processes.
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biology, and multi-omic results. Here, we discuss some

representative examples of how transcriptomic and epigenomic

data enable a quantitative assessment of regulatory specificity,

suggest interactions between regulators, and uncover crosstalk

between regulatory machinery.

Genome-wide comparisons reveal regulatory
specificity of PRC components

Both PRC1 and PRC2 contribute to the repression of the

embryonic and seed maturation programs (Table 1). Omics

studies have strengthened the observation originally made based

on marker genes that PRC1 and PRC2 have both shared and unique

functions (Wang et al., 2016; Zhou et al., 2017). Furthermore, multi-

omic profiling, including chromatin accessibility, H2AK121ub,

H3K27me3, and transcriptome of mutants of core and accessory

components of PRC1 and PRC2 and wild-type seedlings have

shown that PRC1 regulates chromatin accessibility (Yin et al.,

2021), and defined PRC1-dependent and -independent repression

by H3K27me3 (Kralemann et al., 2020; Yin et al., 2021).

Genome-wide profiles also aid in the characterization of the

accessory proteins, which are crucial for general machinery such as

PRCs to exert specific roles in plant development and stress

responses. The association of LHP1 with PRC2 was supported by

extensive overlap between H3K27me3 and genome-wide binding of

LHP1 (Turck et al., 2007; Zhang et al., 2007). Additionally, omics

assays help to identify or rule out regulators at specific developmental

stages. Cross-comparison of differentially expressed (DE) genes and

H3K27me3 in the mutants of lhp1 and PRC core components showed

that LHP1 regulates vegetative-to-reproductive transition, but lacks a

major role in seed-to-seedling transition (Wang et al., 2016).

Furthermore, the accumulation of H2AK121ub is similar between

lhp1 and wild-type seedlings (Zhou et al., 2017). Collectively, despite

the physical association of LHP1 with both PRC1 (Xu and Shen,

2008) and PRC2 (Hecker et al., 2015), the binding of LHP1 to the

dormancy promoting loci, ABI3 and DELAY OF GERMINATION 1

(DOG1) (Molitor et al., 2014), and the modest upregulation of DOG1

in lhp1 mutant (Chen et al., 2020) showed a connection to PRC1 and

a minor role in germination, with genome-wide evidence indicating

that LHP1 mainly functions after the seed-to-seedling transition as a

PRC2 accessory protein.

Genome-wide comparisons support functional
redundancy and protein–protein interactions

As discussed above, the epigenetic machinery functions through

multi-protein complexes. ChIP-seq has been widely used to examine

target sites of epigenetic regulators. The sheer number of binding sites

across the genome provides numerous data points to assess binding

similarities of epigenetic regulators and infer functional redundancy

and/or protein–protein interactions (PPIs). In the case of PRC core

proteins CLF and SWN, the nearly identical binding patterns (Shu

et al., 2019), synergistic phenotype of the clf swn double mutant

(Chanvivattana et al., 2004), and the absence of data showing their

physical interaction indicate that these two methyltransferases

function redundantly in different variants of PRC2 core complexes.

By contrast, genomic data can also be used as supporting evidence in
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functional characterization of VAL proteins. Both VAL1/HSI2 and

VAL2/HSL1 bind to the RY motif (CATGCA/TGCATG), and they

homo- and heterodimerize via the PHD-L domain (Chen et al.,

2020). The physical interaction and association with the same CRE

are further supported by the extensive overlap of VAL1 and VAL2

across the genome (Yuan et al., 2021). Similarly, the physical

interaction of the VAL proteins with the PRC2 core components

SWN and CLF and with the chromatin remodeler PKL was

demonstrated by both PPI assays and genome-wide binding

similarities (Yuan et al., 2021; Liang et al., 2022).

Genome-wide comparisons suggest crosstalk of
epigenetic machinery

The seedling is arguably one of the most vulnerable stages of a

plant’s life cycle. Germinating seeds must strike a balance between

preserving limited resources to survive uncertain weather patterns

in spring and fall and the rapid consumption of storage compounds

to establish themselves and outcompete nearby seedlings. To cope

with these two seemingly conflicting priorities, master TFs of seed

maturation such as ABI3 and FUS3 remain inducible by abiotic

stresses during the early stages of germination, while these TFs and

the seed maturation program are robustly repressed within a few

days after germination if environment is favorable. The robust

repression requires coordination of various regulators. For instance,

the repression involves a transient increase of histone deacetylase

activity soon after germination (Tai et al., 2005), reduced

accumulation of active histone marks and increased accumulation

of repressive marks at seed maturation and dormancy loci within

the first 3 days of germination (Yang et al., 2022a; Pan et al., 2023a),

and participation of histone variants (Zhao et al., 2022b). Consistent

with the multifaceted regulation, higher-order mutants defective in

multiple epigenetic machinery often exhibit more severe

phenotypes in germination and seedling establishment (Table 1).

The coordination of gene repression is often facilitated by PPI. For

instance, VAL1 serves an interaction hub to unite the HDAC and

PRC activities (Baile et al., 2021; Mikulski et al., 2022), presumably

to reduce the level of active marks such as H3ac, enhance the level of

repressive histone marks, and limit chromatin accessibility through

H2AK121ub and H3K27me3 (Mikulski et al., 2022). Besides VAL

proteins, other TFs that possess an EAR motif can also recruit

HDAC and enhance H3K27me3 marking through their physical

interaction with TPL or SAP18 (Baile et al., 2021). Crosstalk

between repressive machinery has been revealed by omics assays.

For instance, LHP1 interacts with ATRX, a chromatin remodeler

that deposits histone variant H3.3. The intersection of LHP1 target

genes with DE genes in atrx mutant connects repressive histone

marks with histone variants (Wang et al., 2018). Another example is

the potential crosstalk between PRC and constitutive

heterochromatin in the pericentromeric regions. NDX was

discovered as a PRC1-associated protein that regulates ABA

sensitivity (Zhu et al., 2020). Recently, genome-wide profiling

revealed that NDX binds to heterochromatic small RNA loci and

affects non-CG DNA methylation (Karányi et al., 2022), suggesting

a potential connection between PRC1 with constitutive

heterochromatin and chromatin topology.
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A new puzzle piece: Sdr4 family in
model and crop species

AtSDR4L/ODR1/SFL1 is a nuclear-localized, plant-specific

transcriptional corepressor that is devoid of known DNA-binding

domains (Moon et al., 2016; Subburaj et al., 2016; Cao et al., 2020;

Liu et al., 2020; Wu et al., 2022). Here, we review the functional

characterization of AtSDR4L based on the features summarized in

Table 1, Figure 1, and omics tools discussed in the previous section.
AtSDR4L and its paralogs are novel
corepressors in Arabidopsis seed-to-
seedling transition

The role of AtSDR4L is specific to the seed-to-seedling transition,

and its expression increases during seed maturation, peaks in dry

seeds, and decreases upon imbibition, subsequent to the expression

patterns of LAFL that primarily span from embryogenesis to seed

maturation (Stone et al., 2001; Baumbusch, 2003; Cao et al., 2020).

Loss-of-function mutants of Atsdr4l share many phenotypic and

molecular characteristics with mutants listed in Table 1. Mature seeds

of Atsdr4l are more dormant (Cao et al., 2020; Liu et al., 2020; Wu

et al., 2022; Zheng et al., 2022). Atsdr4l seedlings exhibit stunted

growth, with seed storage compounds accumulating to various

degrees depending on exogenous sucrose and the duration of after-

ripening and cold stratification (Wu et al., 2022; Zheng et al., 2022). A

large number of seed maturation genes are upregulated in Atsdr4l

seedlings, and AtSDR4L binds to the upstream region of a subset of

these, including LEC1 and ABI3 (Wu et al., 2022). Furthermore,

AtSDR4L physically interacts with VAL2, and H3K27me3 at a distal

regulatory region upstream of ABI3 is decreased in 3-day-old Atsdr4l

seedlings (Lu et al., 2024). The lack of strong dedifferentiation

phenotypes, such as those shown in LEC1 and LEC2 OE and

mutants of PRC core components, indicates that not all genes

required for the formation of callus-like structures and somatic

embryos are misregulated. Atsdr4l seedlings resemble ML1:FUS3,

suggesting that FUS3 could be an indirect target activated by elevated

ABI3. Collectively, these data suggest that AtSDR4L functions

together with VAL2 to recruit PRC2 to directly or indirectly

repress LAFL and other seed maturation genes.

A recent study suggested that AtSDR4L shares partial

functional redundancies with its paralogs to form a repressive

module in Arabidopsis (Zheng et al., 2022). The paralogs are

collectively known as Dynamic Influencer of Gene expression

(DIGs) and DIG-like (DILs)/ABA-inducible transcriptional

repressors (AITRs)/Seed dormancy Four-Like (SFLs) (Song et al.,

2016; Tian et al., 2017; Zheng et al., 2022). Similar to AtSDR4L,

DIGs and DILs are nuclear localized (Song et al., 2016; Tian et al.,

2017) and physically interact with VAL2 (Lu et al., 2024). An sfl1

sfl4 (Atsdr4l dig2) double mutant shows strongly enhanced seed

dormancy and embryonic traits in seedlings compared to Atsdr4l,

suggesting synergy between AtSDR4L and its paralogs (Zheng et al.,

2022). On the other hand, sfl2 sfl3 sfl4 (aitr2 aitr6 aitr5, dig1 dil1
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dig2) triple mutant seeds exhibited reduced dormancy when they

were freshly harvested from siliques at 24 days after flowering

(DAF), suggesting antagonistic interaction between AtSDR4L and

its paralogs at certain developmental stages (Zheng et al., 2022).

Additionally, triple mutant seedlings are hyposensitive to ABA and

resistant to drought (Tian et al., 2017), while seedlings

overexpressing DIG1 or DIG2 are hypersensitive to ABA and salt

(Song et al., 2016). These lines of evidence suggest that AtSDR4L

and its paralogs may have context-specific functions that require

further investigation.
Sdr4 prevents pre-harvest sprouting in rice

Sdr4 is a major quantitative trait locus and a positive regulator

for seed dormancy in rice (Sugimoto et al., 2010; Zhao et al., 2022a).

Rice Sdr4, herein referred to as OsSdr4, is expressed in the embryo

and the protein is localized to the nucleus (Sugimoto et al., 2010).

OsSdr4 transcripts begin to accumulate after 7 DAF and increase as

seed ripens (Sugimoto et al., 2010). The expression control of

OsSdr4 and its orthologs in wheat, a monocot, and Arabidopsis, a

dicot, seems well conserved (Figure 2A). Upstream regulatory

sequences of OsSdr4 and orthologs contain multiple RY and G-

box (CACGTG) motifs, and binding by ABI3/VP1 and bZIP TFs

were shown by in vitro or in vivo assays in multiple species

(O’Malley et al., 2016; Tian et al., 2020; Chen et al., 2021; Wu

et al., 2022; Liu et al., 2024). Knocking down or knocking out

OsSdr4 leads to PHS (Sugimoto et al., 2010; Zhao et al., 2022a). In

contrast, Atsdr4lmutant seeds harvested at maturity exhibit delayed

germination (Cao et al., 2020; Liu et al., 2020; Wu et al., 2022). The

seemingly opposite mutant phenotypes of seed germination

between rice and Arabidopsis may be attributable to the

downstream target genes of Sdr4 (Figure 2B). In accordance with

elevated PHS of sdr4 mutants in rice, the expression of a gibberellin

biosynthesis gene, OsGA20ox-1, is significantly upregulated and an

ABA-responsive gene, OsLEA3, is significantly downregulated

compared to wild-type seeds (Sugimoto et al., 2010; Chen et al.,

2021; Zhao et al., 2022a). A few other OsLEA genes and a dormancy

regulator OsMFT2 are downregulated in the rice sdr4 mutant as

opposed to the upregulation of their orthologs in the Atsdr4l

mutants (Wu et al., 2022; Zhao et al., 2022a). Interestingly, a

recent spatiotemporal single-cell transcriptomic profile of

germinating rice embryo revealed that both OsSdr4 and OsMFT2

are expressed in the scutellum, and share a similar temporal

expression pattern as the transcript abundance of both genes

sharply decreases after imbibition (Yao et al., 2024). While

mature Atsdr4l seeds are more dormant, mutant seeds

prematurely harvested at 14 DAF germinate better than wild-type

seeds (Zheng et al., 2022), suggesting that temporal-specific

regulation may also contribute to the phenotypic difference

between rice and Arabidopsis mutants. Storage reserve genes were

upregulated in Atsdr4l seedlings in Arabidopsis whereas seed

storage catabolism genes are upregulated in Ossdr4 seeds in rice

(Wu et al., 2022; Zhao et al., 2022a). The major forms of storage

reserves in Arabidopsis are lipids and storage proteins that are
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deposited in cotyledons, and most of the endosperm except the

peripheral endosperm layer in Arabidopsis is consumed by the

embryo for nutrient uptake during seed maturation (Sreenivasulu

and Wobus, 2013; Doll and Ingram, 2022). In contrast, most of the

endosperm in Poaceae is retained and accumulates a substantial

amount of starch and storage proteins, followed by programmed

cell death without full degradation (Sreenivasulu and Wobus, 2013).

Thus, the contrasting role of Sdr4 and its annotated orthologs in

grasses and dicots may be associated with opposite regulation of key

downstream genes, different types of the major forms of storage

compounds, and a higher embryo-to-endosperm ratio in Arabidopsis

than that in wheat and rice. In summary, Sdr4 homologs in rice and

Arabidopsis share similar expression patterns in seeds and the nuclear

localization. However, their function in regulating dormancy is

species-, developmental stage-, and tissue-dependent.
Allelic variations of Sdr4 correlate with
regional weather patterns

Allelic variants of Sdr4 and its orthologs in coding and

regulatory sequences are associated with quantitative differences

in seed dormancy, germination, and post-germinative growth. In
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Arabidopsis, developmental defects include inhibited root growth,

swollen hypocotyl, and excess buildup of storage lipids. These

defects are more severe in the CRISPR/Cas9 frameshift or

segmental deletion mutants of Atsdr4l-3, Atsdr4l-4, and Atsdr4l-5

than in the T-DNA insertion mutants of Atsdr4l-1 and Atsdr4l-2,

possibly because the mutations reside in the CRISPR/Cas9 lines are

in the closer downstream of AtSDR4L start codon (Wu et al., 2022;

Lu et al., 2024) (Figure 2B). In rice, a nearly isogenic line of OsSdr4

[NIL(Sdr4)], in which the genomic segment containing OsSdr4

from the Kasalath (indica) group was introgressed into a

Nipponbare (japonica) background, had a substantially lower rate

of seed germination than that of Nipponbare, demonstrating that

the Kasalath allele of Sdr4 (OsSdr4-k) confers deeper dormancy

than the Nipponbare allele (OsSdr4-n) (Sugimoto et al., 2010)

(Figure 2B). The amino acid sequences of OsSdr4-k and OsSdr4-n

alleles differ by approximately 10 amino acid residues, which could

potentially affect OsSdr4’s characteristics as a cofactor, thus

changing binding behaviors to downstream target loci. The

japonica group has only the OsSdr4-n allele, whereas the indica

group has both OsSdr4-k and Sdr4-n. Analysis of SNPs flanking the

OsSdr4-n locus in the indica cultivars indicated their OsSdr4-n allele

was introgressed from the japonica group. A subsequent larger-

scale study revealed a correlation between allele frequency and
A B

FIGURE 2

Sdr4 and its orthologs in monocots and dicots. (A) Putative cis-regulatory motifs of OsSdr4 in rice, TaSdrs in wheat, and AtSDR4L in Arabidopsis from
1 bp to 1,500 bp upstream of the corresponding transcription start site. TF binding sites with experimental evidence are indicated by thick arrows
protruding from the regulators of SDR4. Data were summarized from O’Malley et al. (2016); Tian et al. (2020); Chen et al. (2021); Wu et al. (2022),
and Liu et al. (2024). (B) Top: occurrence of natural variants of OsSdr4 and TaSdr in various climates, and their repression of preharvest sprouting.
Bottom left: Mutant alleles of Atsdr4l, and function of wild-type AtSDR4L in promoting germination and preventing fatty acid over-accumulation.
Bottom right: the upregulation of the dormancy-related gene, MFT, and the seed reserve-related gene, OsLEA, by Sdr4 and the downregulation of
these orthologs by AtSDR4L. Data were summarized from Sugimoto et al. (2010); Zhang et al. (2014); Wu et al. (2022), and Zhao et al. (2022a).
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weather patterns (Zhao et al., 2022a). Allele frequency of OsSdr4-k

and sequence-similar OsSdr4-k' is higher in regions with high

annual temperatures and precipitation, whereas OsSdr4-n is more

prevalent in areas with lower annual temperatures and

precipitation. Interestingly, different geographic distribution for

Sdr4 alleles was also reported in wheat (Zhang et al., 2014).

Among three homeologs of wheat Sdr4, namely, TaSdr-A1,

TaSdr-B1, and TaSdr-D1, the TaSdr-B1b allele carries an SNP

that abolishes a G-box in the 5’ UTR immediately upstream of its

start codon and is associated with increased germination compared

to that of TaSdr-B1a allele with an intact G-box. The mutation in G-

box could affect the binding by bZIP and bHLH TFs t TaSdr-B.

Between the two alleles, TaSdr-B1a is likely positively selected for

resistance to PHS, since the allele frequency of the TaSdr-B1a is

high in areas that are more susceptible to severe PHS and low in

areas with reduced rainfall and less damage by PHS. These

observations in rice and wheat suggest that selection for Sdr4

alleles best adapted to local climates is a shared feature for the

adaptation of staple grains.
Regulatory symmetries of activators
and repressors at the same CREs for
developmental transitions

Regulatory symmetry via the RY motif

The regulatory symmetry is the activation and repression of

genes through the same CRE. The regulatory summary of the seed

maturation programs by B3 proteins is well established (Suzuki and

McCarty, 2008). The RY motif is enriched in many seed maturation

genes and is often bound by the B3 TFs FUS3, LEC2, and ABI3 for
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transcriptional activation, as well as VAL1/HSI2 and VAL2/HSL1

for transcriptional repression (Reidt et al., 2000; Nakabayashi et al.,

2005; Suzuki et al., 2007; Tsukagoshi et al., 2007; Suzuki and

McCarty, 2008; Jia et al., 2014; Yuan et al., 2021) (Figure 3).

VAL1 and VAL2 can homo- or heterodimerize to target RY

motifs in the DOG1 promoter and repress its expression in

seedlings (Chen et al., 2020). However, the B3 domains of these

TFs exhibit high similarity but differential binding affinity to the

target CREs, with the B3 domain of LEC2 (LEC2-B3) and FUS3-B3

having greater affinity than that of VAL1-B3 and ABI3-B3 (Jia et al.,

2021), and with VAL1-B3 binding more effectively than VAL2-B3

(Chen et al., 2020). These varying RY-binding efficacies are likely

owing to the slightly different structural bases of the B3 domains

and the absence or presence of additional domains (Jia et al., 2021).

This difference may also explain the more constrained and specific

roles of LEC2 and FUS3 in the establishment and maintenance of

the embryonic states, as well as lending greater flexibility for ABI3

to incorporate additional cues into more complex target recognition

(Jia et al., 2013, 2021; Roscoe et al., 2015).
RY and G-box motifs function coordinately
in the activation of seed maturation genes

Transcriptional activation of maturation genes via the RY

motif is often coupled with the G-box motif. G-box motifs are

preferentially bound by the basic leucine zipper (bZIP) and basic

helix-loop-helix (bHLH) TFs, and these CREs are an

overrepresented CRE in seed maturation genes (Nakabayashi

et al., 2005; Mönke et al., 2012; Mendes et al., 2013; Ezer et al.,

2017; Jo et al., 2020). ABI5, a bZIP TF that interacts with ABI3,

was found to transactivate the promoter of AtEm6 (Nakamura
A B

FIGURE 3

Regulatory symmetry in the activation and repression of seed maturation genes. (A) A phylogenetic tree of the AtSDR4L family in Arabidopsis by the
maximum-likelihood method and the JTT-matrix-based model using MEGA11 (Tamura et al., 2021). AtSDR4L’s orthologs in Physcomitrella patens
were used as the outgroup (Lang et al., 2018). (B) A working model of the regulatory symmetry between activators and repressors at shared CREs
upstream of seed maturation genes. CCAAT is bound by the NF-Y activator complex (top) in Arabidopsis or by the repressor complex of LoNF-YA,
LoVIL, and PRC2 in lily (bottom). In Arabidopsis, bZIP/bHLH binding to G-box by itself upregulates the seed maturation genes whereas the G-box
binding by bZIP/bHLH coupled with a repressor module of DIG/AtSDR4L-VAL-VIL-PRC2 downregulates these genes. The RY motif can be bound by
ABI3/FUS3/LEC1 (AFL) and VAL1/2-PRC, for the activation and repression of the downstream genes, respectively. Dashed lines indicated potentially
synergistic effects through protein–protein interaction. Data were summarized from Lumba et al. (2014); Song et al. (2016); Myers and Holt (2018);
Bryant et al. (2019); Chen et al. (2020); Liu et al. (2020); Wu et al. (2022), and Pan et al. (2023b).
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et al., 2001; Lopez-Molina et al., 2002). G-box-mediated

transactivation of gene expression by ABI5 is indicated by the

numerous downregulated genes in abi5 dry seed and the

enrichment of G-box from these repressed genes (Nakabayashi

et al., 2005). Binding to the same RY-containing region upstream

of DOG1, AFL TFs may also upregulate DOG1 expression through

collaboration with bZIP67 during seed maturation (Bryant et al.,

2019). Consistently, G-box and RY motifs are highly enriched in

the regulons of ABI3 and FUS3 (Mönke et al., 2012; Wang and

Perry, 2013), and ABI3 is believed to induce seed maturation

genes via G-box motifs that are in close proximity with RY

elements (Suzuki et al., 2003; Jo et al., 2020).
G-box motif and the repression of the seed
maturation program

Loci with high occurrence of RY and G-box elements are

frequently associated with high occupancy of the repressive

histone mark H3K27me3 in the seedlings (Wang et al., 2016; Liu

et al., 2019; Baile et al., 2021). Because both AFL and VAL possess

the RY-binding B3 domain, AFL may compete with VAL-PRC for

the same RY sites in the regulatory regions of seed maturation

genes. Emerging evidence suggests that G-box might be recognized

by gene repression machinery (Figure 3). Recent studies suggest

that AtSDR4L and its paralogs are important for the G-box-

dependent transcriptional repression of the seed maturation genes

(Song et al., 2016; Liu et al., 2020; Wu et al., 2022). G-box is

enriched in AtSDR4L binding regions (Wu et al., 2022). Since

AtSDR4L is devoid of known DNA binding domains, it is most

likely recruited by bZIP and bHLH family TFs with sequence-

specific binding activities to the G-box (Lumba et al., 2014; Liu et al.,

2020). It is proposed that AtSDR4L physically interacts with

bHLH57 to indirectly inhibit the expression of ABA biosynthetic

genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE6 (NCED6)

and NCED9, thereby downregulating ABA biosynthesis to

counteract seed dormancy (Liu et al., 2020).

Interestingly, the RY motif (CATGCA) is also found in high

frequency in AtSDR4L target sites (Lu et al., 2024). Additionally,

AtSDR4L and its orthologs also harbor abundant G-box and RY

CREs in their own upstream regulatory regions (Figure 2). In

Arabidopsis, ABI3 binds to the AtSDR4L promoter and

upregulates its expression in the developing seeds (Wu et al.,

2022; Zheng et al., 2022). In turn, AtSDR4L represses ABI3 to

shut down the seed maturation program in the seedlings,

promoting the shift to the vegetative phase (Wu et al., 2022).

Intriguingly, AtSDR4L also targets itself, possibly through the G-

box and RY motifs in its own promoter (Lu et al., 2024). Similarly,

the OsSdr4 promoter contains seven RY and six G-box elements,

and one of the RY motifs is in close proximity to a G-box (Sugimoto

et al., 2010). The rice ortholog of ABI3, OsVP1, perhaps in

collaboration with a rice bZIP TF TRAB1, can induce the

expression of OsSdr4 (Sugimoto et al., 2010; Chen et al., 2021).

OsSdr4 expression substantially decreases in Osvp1mutant embryos

at the maturation stage. A similar mechanism is conserved in wheat,

as TaVP1 binds to the RY motifs, and TaABI5, an ortholog of
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Arabidopsis bZIP TF ABI5, binds to the G-box in TaSdr promoter

to transcriptionally activate TaSdr4 (Liu et al., 2024). These

conserved regulatory mechanisms on a key locus of dormancy

control in both the model plant and crop species provide further

elucidation of the mirrored targeting behaviors by activators

and repressors.
Regulatory symmetry in the activation and
repression of seed maturation genes via
CCAAT and GAGA motifs

Symmetry of activator-repressor binding is not limited to the

RY and G-box pairing. The CCAAT motif is a CRE frequently

found in the promoters of many genes and specifically targeted by

the Nuclear Factor Y (NF-Y) factors for gene regulation (Calvenzani

et al., 2012). In Arabidopsis and soybean, the pioneer TF LEC1 (NF-

YB factor) can bind to CCAAT box elements as a trimeric complex

with the NF-YA and NF-YC subunits to activate the embryonic

programs (Yamamoto et al., 2009; Jo et al., 2020) (Figure 3).

Conversely, LoNF-YA7 in lily bulbs has been reported to recruit

LoVIL1-PRC2 machinery to LoCALS3 locus at CCAAT motif for

H3K27me3 deposition, thereby repressing LoCALS3 expression to

promote the release of bulb dormancy (Pan et al., 2023b). Similarly,

GAGA box-binding BPCs can repress LEC2 during germination

(Xiao et al., 2017b) and FUS3 (Wu et al., 2020) in the ovule

integuments and endosperm, but activates LEC2 in the embryo

(Berger et al., 2011). This is in agreement with GAGA-binding

proteins in animals, which function as both activators and

repressors (Berger and Dubreucq, 2012). Collectively, these results

show that transcriptional activation and repression through the

same CREs may be a general mechanism in the activation and

repression of the seed maturation program. Regulatory robustness

and specificity may be determined by functional coordination of

transcriptional regulators that binds to these CREs.
Conclusions and perspectives

Perspectives and challenges to advance
basic knowledge

To date, many players involved in the repression of the seed

maturation program during the seed-to-seedling transition have

been identified. While existing omics data are tremendously useful

to understand the general machinery, they often do not fully

capture the dynamics of the regulation in seed germination and

seedling establishment because many profiling assays were carried

out using 10- to 14-day-old seedlings (Table 1). This mismatch with

the developmental stages might also miss the identification of stage-

specific regulators. For instance, trichostatin A (TSA) treatment to

inhibit histone deacetylase activities in 3- and 16-day-old seedlings

identified distinct sets of DE genes (Chang and Pikaard, 2005; Tai

et al., 2005). Presumably, some regulators of the seed-to-seedling

transition might yet to be discovered due to stage-specific regulation

and functional redundancy of homologous genes. Additionally, cell
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biology and biochemical approaches are not always readily

applicable to seeds because the seed coat serves as a physical

barrier that blocks light and many chemicals. Therefore, tissue-

and cell type-specific datasets are often scarce for mature seeds.

Previously, transcriptome profiling of dissected developing or

germinating seeds (Belmonte et al., 2013; Dekkers et al., 2013)

demonstrated tissue- and stage-specific gene expression in

Arabidopsis. Single-cell and spatial transcriptomics (Yao et al.,

2024) will further advance our understanding of the heterogeneity

of gene expression in seeds, allowing a superior statistical power to

classify genes based on their expression patterns and designate

marker genes to existing and new cell types, thus providing a

foundation for understanding cell type-specific GRN. Additional

advances may come from integrative analysis of histone

modification with omics datasets such as time-course profiles of

transcriptome (Narsai et al., 2017), DNAmethylation (Bouyer et al.,

2017; Kawakatsu et al., 2017), chromatin accessibility and non-

coding RNA (Tremblay et al., 2024) during seed-to-seedling

transition, and changes in chromatin topology. For instance,

histone modifications have been profiled in many epigenetic

mutants (Table 1). Combined with other assays such as Hi-C

(Huang et al., 2021; Yin et al., 2023) and Hi-ChIP (Huang et al.,

2021), these datasets help to reveal how histone marks such as

H3K27me3 and H2AK121ub impact spatial genome organization

by regulating local and long-range chromatin interactions.

Collectively, these data elucidate the unique and shared role of

PRC1 and PRC2 in the co-regulation of gene expression, and may

contribute to a knowledge framework of multi-loci expression

optimization and trait stacking for crop improvement.
Perspectives and challenges for knowledge
transfer from model species in the lab to
crops in the field

Several PRC-controlled traits, such as dormancy, stress responses,

and flowering time, are related to plants’ adaptation to various

environments. Regulators specifically targeting these traits are likely

to have immediate application value in the field. However, several gaps

need to be addressed for knowledge transfer from model species to

crop and from controlled laboratory environment to the field. For

instance, many important crops and oilseeds are polyploid, which

requires additional considerations for homeolog redundancy and

subgenome dominance besides optimizing species- and lineage-

specific regulation (Ramıŕez-González et al., 2018; Xiang et al., 2019;

Khan et al., 2022). Environmental factors and plant–biotic interactions

are prevalent in the field, making trade-offs important considerations to

enhance plant performance. For instance, overexpression and mutant

phenotypes of master TFs and general epigenetic regulators often

reduce fitness, thus requiring more sophisticated engineering of these

factors if increased yield under less water and fertilizer usage is the

ultimate goal for crop improvement. In summary, research on

transcriptional and epigenetic regulation has provided valuable

insights into the phase transition from seed to seedlings, and multi-

omic studies have revealed many target-specific regulations and

crosstalk between regulatory machinery. Further research to identify
Frontiers in Plant Science 15
developmental stage-specific regulators and CREs with minimized

fitness trade-off holds strong potential to engineer crops that can

adapt to the increasingly stressful environments associated with the

increasingly volatile weather patterns from a warming climate.
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LEC1, FUS3, LEC2, ABI3 (LAFL)

LEC1 LEAFY COTYLEDON 1

FUS3 FUSCA 3

LEC2 LEAFY COTYLEDON 2

ABI3 ABSCISIC ACID INSENSITIVE 3

Polycomb Repressive Complex 1 (PRC1) Core

AtRING1A,
1B

Arabidopsis thaliana RING 1A, 1B

AtBMI1A,
1B, 1C

Arabidopsis thaliana BMI1A, 1B, 1C

Polycomb Repressive Complex 2 (PRC2) Core

CLF CURLY LEAF

SWN SWINGER

MEA MEDEA

EMF2 EMBRYONIC FLOWER 2

VRN2 VERNALIZATION 2
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Proteins that Interact with PRC Core
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VAL1/HSI2 VIVIPAROUS1/ABI3-LIKE 1/HIGH-LEVEL EXPRESSION OF
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Arabidopsis thaliana SEED DORMANCY FOUR-LIKE 1/SEED
DORMANCY FOUR-LIKE 1/REVERSAL OF RDO5 1
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FOUR-LIKE 2/ABA-INDUCED TRANSCRIPTION
REPRESSOR 2

DIL1/
SFL3/AITR6
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INDUCED TRANSCRIPTION REPRESSOR 6
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Other Epigenetic Regulators of Seed-to-Seedling Transition
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PKR2 PICKLE RELATED 2
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