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Harnessing the power of
machine learning for crop
improvement and
sustainable production
Seyed Mahdi Hosseiniyan Khatibi and Jauhar Ali*

Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
Crop improvement and production domains encounter large amounts of

expanding data with multi-layer complexity that forces researchers to use

machine-learning approaches to establish predictive and informative models

to understand the sophisticated mechanisms underlying these processes. All

machine-learning approaches aim to fit models to target data; nevertheless, it

should be noted that a wide range of specialized methods might initially appear

confusing. The principal objective of this study is to offer researchers an explicit

introduction to some of the essential machine-learning approaches and their

applications, comprising themost modern and utilizedmethods that have gained

widespread adoption in crop improvement or similar domains. This article

explicitly explains how different machine-learning methods could be applied

for given agricultural data, highlights newly emerging techniques for machine-

learning users, and lays out technical strategies for agri/crop research

practitioners and researchers.
KEYWORDS

artificial intelligence, machine learning, deep learning, precision crop improvement,
prediction model
1 Introduction

Naturally, humans’ learning procedure is carefully or randomly monitoring

surrounding events, grasping some experience and then predicting the next event,

mainly occurring without human awareness. For instance, consider a human child who

is learning how to talk. Basically, children do not know language learning techniques,

procedures, or linguistics. Nevertheless, by listening to surrounding sounds, experimenting,

and making mistakes, children gradually adjust their listening skills and simultaneously

learn to talk and communicate in different situations. These procedures will continue until

children feel confident enough to speak. Technically, they are learning how to talk by

establishing a sound and an adequately accurate model of a whole set of procedures

automatically and by testing the developed model again and again with surrounding voice
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data and improving it to build a more precise model. The term

“machine learning” typically refers to the procedures of finding

relevant groups within data or fitting prediction models to a target

dataset. In essence, machine learning aims to mimic or resemble

human capacity and the ability to identify patterns using

computation approaches. Machine learning is especially handy

when the dataset being analyzed is huge or sophisticated beyond

human ability to analyze it or when we want to build an automated

platform for analyzing a target dataset by considering it to be time-

efficient and repeatable. Agricultural data often have these

characteristics. Over the past few decades, agricultural databases

have experienced remarkable growth in quantity and multi-layer

complexity. Having a solid grasp of the methods being employed

and some valuable tools for interpreting this wealth of data is

becoming increasingly crucial. Although machine learning has been

engaged in the crop domain for many years, its usage in agriculture

and crop improvement has now become so widespread that it is

used in almost every discipline. Only recently, though, has the field

started to examine the various strategies more closely to determine

which ones work best in certain situations or whether they are

suitable at all. This review aims to offer compact, sufficient, and

explicit information and details on how to use machine-learning

techniques for agricultural and crop improvement researchers. We

do not seek to provide a comprehensive analysis and investigate the

literature on machine-learning applications for crop improvement

problems nor to get into the specific mathematical details of

different machine-learning techniques (Liakos et al., 2018; Sharma

et al., 2020). We focus on connecting specific machine-learning

methods to various kinds of agricultural data. In addition, we will

try to explain some best practices for approaching training and

modeling improvement in real-world scenarios. The intrinsic

intricacy of agricultural data poses opportunities and challenges

for analytical methods in machine learning. We highlight common

problems that undermine the validity of research and offer advice

on how to overcome these challenges. The discussion of several

machine-learning methods takes up most of this review, and we also

provide explicit examples of how to use the strategy appropriately

and understand the outcomes in each case. Traditional machine-

learning techniques are included in the discussion as, in many

situations; they continue to be the best options to apply. Our

discussion covers techniques of deep learning, which shows

satisfactory performance and is the best option for various

machine-learning responsibilities. We also cover federated

learning as a robust technique for having a machine-learning

global crop improvement model to deal with future challenges

such as climate change. We conclude by outlining the prospects for

integrating machine learning into agricultural data analysis

pipelines. When using machine learning in agriculture, there are

two primary objectives. First, even though the collected data are

sufficient or deficient, precise predictions should be made and used

to direct further research endeavors. Since scientists are interested

in understanding mechanisms, the other objective is to apply

machine learning to enhance and increase the comprehension of

crop improvement mechanisms, including several types of

phenotypical, genotypical, biological, agronomic, and climatic
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mechanisms. We also summarize some of the limitations

and applications of machine-learning approaches along with

some data-related concerns for researchers in the crop

improvement domain.
2 Shortlist of machine-learning
applications for crop improvement
and production

With emerging new technologies and approaches, large datasets

are generated from different agricultural domains, particularly from

the crop production domain. These vast datasets can easily feed into

machine-learning approaches to help all beneficiaries optimize crop

improvement systems. Even though machine-learning applications

are extensive, their subcategories, mainly in crop quality (Elbasi

et al., 2023; Attri et al., 2024), crop phenotyping (Gano et al., 2024),

crop weed identification (Hu et al., 2021; Modi et al., 2023;

Venkataraju et al., 2023), disease detection (Kulkarni and Shastri,

2024; Srinivas et al., 2024), crop recognition (Tian et al., 2021; Fu

et al., 2023; Gafurov et al., 2023), crop-related microbiome

improvements (Chang et al., 2017; Aguilar-Zambrano et al.,

2023), and yield prediction (Van Klompenburg et al., 2020;

Morales and Villalobos, 2023), were separated into crop

development, production, and improvement, as shown in Figure 1.
3 Essential concepts

We discuss several fundamental ideas in machine learning and,

whenever possible, present examples from agricultural literature to

clarify these concepts.
3.1 Basic terms in machine learning

A dataset consists of several instances, or data points, that are

conceptualized as individual experimental observations. Several

fixed features describe each data point. Phenotype, genotype

(SNPs), product price, and climatic parameters are a few

examples of these features. Whatever we aim to do with a

machine-learning model is specified objectively by a machine-

learning task. For instance, we could predict the rate of price

fluctuation at a particular point in time for a specific agricultural

product with an experiment examining the cost of the crop product

over time. In this instance, the features “cost of crop product” and

“time” could be referred to as input features. The conversion rate,

which would represent the anticipated output of the target model at

a specific moment, is the quantity we are interested in forecasting.

Input and output features of a model can be as many as desired.

Features could be either categorical (accepting just discrete values)

or continuous (continuous numerical values are used). Technically,

categorical features are usually binary in nature, meaning they can

be 1 (true) or 0 (false).
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3.2 Concept of supervised, unsupervised,
semi-supervised, and
reinforcement learning

Supervised machine learning describes how a model can be

fitted to data or part of target data that distinct labels have received

for which a ground truth attribute exists; this quality is often

determined by experimentation, researchers, or data collectors. In

contrast to knowledge derived from inference, ground truth is

information verified via direct observation and measurement,

thus known to be accurate or real (Kondermann, 2013). Among

the examples are high-yield prediction (Panigrahi et al., 2023) and

water quality prediction (Ahmed et al., 2019; Ghosh et al., 2023;

Chatterjee et al., 2024) using supervised learning for crop

improvement. Laboratory or experimental observations ultimately

serve as the source of ground truth in both cases. Contrary to

supervised learning, patterns in unlabeled data can be found using

unsupervised-learning techniques (James et al., 2023). This

approach does not require predetermined labels with ground

truth information (Sindhu Meena and Suriya, 2020). For example,

plant image data can be analyzed using an unsupervised machine-

learning technique (Davis et al., 2020; Bah et al., 2023). Semi-

supervised learning, in which a significant quantity of unlabeled

data is paired with tiny quantities of labeled data, occasionally
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combines the two methodologies (Ouali et al., 2020; Ahfock and

McLachlan, 2023); for example, weed distribution and density

estimation (Liu et al., 2024). When obtaining tagged or labeled

data is expensive, this can dramatically enhance performance.

Another component of machine learning known as reinforcement

learning (RL) teaches an agent how to behave and react in a given

environment by having it carry out specific tasks and then watching

the rewards or outcomes. This technique is already employed in

different agricultural domains, such as crop yield prediction

(Elavarasan and Vincent, 2020; Iniyan et al., 2023) and a

completely autonomous precision agricultural aerial scouting

technique (Zhang et al., 2020; Elango et al., 2024).
3.3 Concept of classification, clustering,
and regression problems

In machine learning, a task is referred to as a classification

challenge when it requires allocating data points to a collection of

discrete classes such as varieties emitting high or low methane, and

a classifier is any algorithm that carries out this kind of classification

(Sen et al., 2020), such as cassava disease detection and classification

(Bian and Priyadarshi, 2024). Contrary to classification, regression

models produce a collection of values that are continuous
FIGURE 1

This schematic illustrates key applications of artificial intelligence and machine learning for crop development and improvement, including crop
diseases, crop quality, crop species recognition, crop development, crop yield prediction, crop-related microbiome improvement, water
management, soil management, etc. Farmers and researchers still encounter numerous obstacles due to employing traditional methods in the crop
sector. Artificial intelligence and machine learning are used extensively to address these issues. Also, this figure shows possible data types and
collection zones from crop fields to feed different machine-learning models to improve and develop different crops.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1417912
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khatibi and Ali 10.3389/fpls.2024.1417912
(Pardoe, 2020; Panigrahiet al., 2023), such as the prediction of yield

before the harvest of very early potato cultivars by using a regression

model (Piekutowska et al., 2021). Regression problems can

frequently be reformulated as classification problems since

continuous values can be discretized or thresholded (Greener

et al., 2022). Typically based on some metric of data point

similarity, in a target dataset, clustering algorithms are applied to

predict and group similar data points (Ghosal et al., 2020). These

techniques are unsupervised and do not necessitate labeling the

instances inside a dataset. For example, according to images of

soybean, clustering could predict seed weight (Duc et al., 2023).
3.4 Concept of classes and labels

When a classifier returns a discrete collection (set) of mutually

exclusive values, such values are referred to as classes. These values

are called labels when they do not have to be mutually exclusive.

Typically, an encoding is used to represent classes and labels. One

essential step in preparing data for machine-learning tasks is

encoding categorical variables. It is essential to convert categorical

data into a numerical format to make them compatible with

machine-learning algorithms. Categorical data are not numerical

values, such as categories or text. For example, a place variable with

the values first, second and third or a color variable with the values;

red, green, and blue is categorical data, which every value denotes a

distinct category. There might be an inherent ordering or link

between some categories. There is a natural ordering of values for

the aforementioned place variable. There is a natural ordering of

values for the aforementioned place variable. Due to the fact that the

values can be ranked or ordered, this kind of categorical variable is

known as an ordinal variable. There are several popular category

encoding methods, each combining benefits and drawbacks such as

label encoding, ordinal encoding, and one-hot encoding methods.

One-hot encoding is one of these techniques, which is most

frequently employed (Yu et al., 2022b). When there is no innate

link or order among the categories, this encoding performs well

with nominal categorical variables (Rodrıǵuez et al., 2018). The

distinctiveness of every category is maintained by one-hot

encoding. It guarantees that no ordinal link between the

categories is assumed by the method. Also, one-hot encoding

eliminates the possibility of unintentionally adding biases based

on the sequence of categories because each category is represented

independently. But when working with categorical variables that

have a large number of distinct categories, one-hot encoding can

dramatically increase the dataset’s dimensionality. This may result

in the curse of dimensionality and have an adverse effect on the

performance of the model. Ordinal encoding is used when the

categorical feature is ordinal. Every distinct category value in

ordinal encoding is given an integer value. For example, in the

color categorical data, red is 1, green is 2, and blue is 3. Maintaining

the order is crucial in this method and encoding should so take the

sequence into account. Equal intervals between categories are

assumed by ordinal encoding, yet this may not always be the case

in real-world situations (Dahouda and Joe, 2021). Unlike one-hot

encoding, ordinal encoding does not increase the dimensionality of
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the dataset and It saves space and processing time by substituting

integers for categorical variables. Label encoding assigns a unique

integer value to each category in a categorical feature. This is an

easy-to-use strategy that can be helpful when the categories’ order

matters. However, because of the allocated integer values, it could

create unintentional linkages between categories. For instance, label

encoding could assign the values 0, 1, and 2 correspondingly if a

categorical feature is small, medium, and large. This would suggest

that “large” is twice as significant as “small”, which is probably

incorrect. Important point is that the type of categorical variable

and the issue those researchers are trying to solve will determine

which encoding techniques should be used.
3.5 Concept of cost or loss functions

Machine-learning models never produce perfect results; they

always deviate from the ground truth or the real world (Ho and

Wookey, 2019). Cost or loss functions are the mathematical

functions that compute this deviation or, more broadly, the

degree of disagreement between the actual and ideal outputs

(Uma et al., 2021). Mean squared error loss for regression

problems is one example, and, for classification-related problems,

binary cross entropy (Nar et al., 2019). A mean squared error loss

function calculates the average squared difference between the

anticipated value and ground truth. Binary cross entropy is a

binary classification problem that must divide observations into

one of two labels according to specific criteria [such as healthy leaf

and infected leaf (Sarkar et al., 2023)].
3.6 Concept of parameters
and hyperparameters

In essence, models are mathematical functions that take a

collection of imported features and return one or several features

or values as an output. Models include adaptable and flexible

parameters that can be adjusted throughout the training process

to optimize the models’ performance, allowing them to learn from

training data (Yu and Zhu, 2020). In a simple regression model, for

instance, each feature has a particular parameter that is being

multiplied by the value of the feature; these are then integrated

and combined to provide a forecast. Hyperparameters are tunable

values that are not changed during training and are thus not

regarded as a model component. But this nonetheless affects the

performance and training model. The learning rate, which regulates

the pace at which the model’s parameters are changed during

training, is a standard description of a hyperparameter. To

simplify it, hyperparameters control a structure and training

procedure of machine-learning models, and they might be the

number of clusters in K-means clustering, the learning rate in a

neural network, or the depth in a decision tree. Hyperparameters, in

contrast to model parameters, need to be predefined and cannot be

learned during training. A model’s ability to perform well or poorly

can be determined by selecting the appropriate collection of

hyperparameters. Therefore, choosing the set of hyperparameters
frontiersin.org
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that result in the best possible model performance is known as

hyperparameter tuning. Depending on the type of model being

trained, different sorts of hyperparameters may be employed

including learning rate, number of epochs, batch size, number of

hidden layers and units, regularization parameters, momentum,

and activation function. Several tools are developed for model

tuning and hyperparameter optimization such as Ray Tune (Shin

et al., 2020), Optuna (Akiba et al., 2019), HyperOpt (Bergstra et al.,

2015), and AWS Sage Maker (Das et al., 2020).
3.7 Splitting target data into training,
validation, and testing sets

Models need to be trained, which is the process of automatically

modifying model parameters to enhance performance before they

can be used to generate predictions (Mathai et al., 2020) This means

altering the parameters in a supervised learning setting to minimize

the average value of the loss or cost function and improves model

performance with a training dataset. Typically, a separate validation
Frontiers in Plant Science 05
dataset tracks but does not alter the training process to detect any

overfitting (Twomey and Smith, 1997). Even if a cost function does

not run on ground truth outputs in unsupervised scenarios, it is

nonetheless decreased. After training, the model can be evaluated

using data not used during training (Figure 2A) (Eelbode et al.,

2021). For a general overview of the training procedure and

instructions on how to divide the target dataset into training set

and testing set. Figure 2 illustrates the principal notions for the

training of models and displays a flowchart to aid in the

whole procedure.
3.8 Concept of overfitting and underfitting

For a model to be predictive of unobserved (non-training) data,

it must be fitted to training data to grasp the entire connection

among all possible variables inside the dataset. The common

reasons that a machine-learning model performs poorly are

challenges, two key concepts in the field of machine learning

(Figure 2B). An overfitted model (often caused by having too
B C

D

A

FIGURE 2

ML approaches for training. (A) Target data for machine learning should be split into training, validation, and testing sets. The training set is used to
train the model directly. With the validation set, the training set is monitored. Test data are used to assess the performance of the model. The k-fold
cross-validation approach is also used for validation. (B) Concept of underfitting and overfitting. (C) One-hot encoding is a process by which
categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction. (D) Numerical data can be
represented in a way that machine-learning algorithms can understand using continuous encoding. In the given example, the RGB (R: red, G: green,
and B: blue) are shown as the specific values of pixels in the targeted images.
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many parameters) can generate outstanding output on trained data

but will produce adverse outcomes on unobserved data. High

variance and low bias might lead to overfitting. The training

dataset will have zero prediction error since the overfitted model

goes through each training point perfectly, as shown in Figure 2B.

Conversely, an underfitted model cannot accurately represent the

connections between the data variables. This can result from an

improper model type selection, inaccurate or inadequate data

assumptions, a high bias, or a low variance procedure (Figure 2B).
3.9 Concept of the bias-variance tradeoff

The inductive bias of the model is the collection of assumptions

made by the learning algorithm that leads it to prefer one solution to a

learning problem over another (Baxter, 2000). This could be

understood as the model favoring one learning solution over

another. This choice is frequently encoded into the model by using

a specific loss function and/or its particular mathematical form.

Various model types have distinct inductive biases that make them

more appropriate and they often perform better for specific categories

of data. The tradeoff between variance and bias is another crucial

concept in machine learning. The general argument is that a model
Frontiers in Plant Science 06
with a large bias places more restrictions on the trained model.

Conversely, the low-bias model decreases the number of assumptions

about the model property, and it is theoretically capable of modeling a

large range of function kinds (Neal, 2019). The amount that the

trained model varies when it is trained on various training datasets is

indicated by the variance of the model. Ideally, models should have

low variance and bias, but these goals frequently conflict with each

other, given that a model with low bias will learn distinct signals on

separate training sets. To prevent either overfitting or underfitting, it

is essential to manage the bias-variance tradeoff.
4 Overview of ML procedures and
required concepts

This section is a concise survey of the procedures that should be

followed for training an ML model (Figure 3). Surprisingly, little

advice is given for the selection of specific models and methods of

training (Bengio, 2012; Greener et al., 2022). The first step is to

understand the problem, the nature of the imported data, and the

final goal of the prediction, which should come before writing any

ML algorithms. This step is essential to have a comprehensive

understanding of the crop improvement aspect of the problem or
FIGURE 3

The graphic illustrates the general process for data collection, training, testing, and validation of machine-learning and model evaluation methods.
Data collection: collecting data from various data sources related to crop improvement and development. Data processing: the most important step
in the ML space is data cleaning and pre-processing. Before beginning the analysis of the best algorithm for the provided data set, we must
comprehend the data set and select the cleaning or pre-processing procedures to obtain the best possible outcomes. Learning (Model building and
selection of ML algorithm): This is a crucial stage that will soon bring the process to an end. Thus, we must choose our models carefully because we
will select one as the ultimate model to solve the provided business challenge. Model evaluation: Model evaluation validates a target model with
some standardized mathematical formulae or methodology. Deployment and monitoring: the selected ML model is authorized for deployment in
the production environment after its performance satisfies the requirements, and the performance and behavior of the selected model in the real
world are continuously observed, analyzed, and assessed through the process known as model monitoring.
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question: for example, knowing the sources of noise and the origin

of the target data. Understanding the computational storage of the

inputs and outputs is also crucial. The following questions could be

addressed: Are they adjusted (normalized) to avoid an excessively

high effect of one attribute on prediction? Do they have continuous

or binary encodings? Are some entries repeated? Are some data

pieces missing (NaN)?

In the following step, the collected data (target dataset) must be

divided into the first training dataset, the second for validation, and

finally the testing dataset (Figure 2A). The training dataset is used for

training an ML algorithm. In contrast, the test dataset (holdout set) is

used to evaluate the resulting model (to estimate how well the model

performs on unseen data). This idea is further used in the model

selection part of the training procedure, which might lead to

allocating a part of the training dataset as a validation set while the

rest of the training data are used for training proper. Using the

training set, the parameters of the specific model are updated during

the training procedure. Usually, 10% of the available data are split and

considered validation data to oversee instruction (training)

performance, thus avoiding overfitting of the target model, and

select hyperparameters (previously explained) based on datasets for

training. Frequently, k-fold cross-validation is used in this step.

Typically, 10% to 20% of the total dataset is dedicated as a test

dataset to evaluate the expected real-world performance of the target

model by assessing how well it performs on data that were not used

for training or validation. To prevent adjusting the model to match

the test set, there should be only one-time use of the test set in the

later stages, if possible (Hastie et al., 2009; Bzdok et al., 2018).

Selecting a model comes next, depending on the dataset type

(nature of data) and the kind of anticipation being formed. This is

conceptualized and made concise in Figure 3. To raise the overall

accuracy of the undertaken model, the ensemble model averages the

outputs of several comparable models that could be considered.

Finally, evaluating the model’s accuracy in the dedicated test

dataset is crucial.
5 Conventional machine learning

This section investigates several essential and traditional

machine-learning techniques, focusing on their advantages and

disadvantages. Table 1 presents a comparison of several machine-

learning techniques along with some applications for crop

improvement and production. Figure 4 illustrates a few of the

conventional machine-learning techniques. To train these models,

several software programs have been available, such as Caret in R

(Kuhn, 2008; Dege and Brüggemann, 2023), MLJ in Julia (Blaom

et al., 2020), and scikit-learn in Python (Pedregosa et al., 2011;

Rajamani and Iyer, 2023). When developing machine-learning

algorithms for crop improvement-related data, conventional

machine learning is typically the first area to investigate to find the

most appropriate solution for a given problem. Deep learning is

currently prevalent and has the potential to be a robust and valuable

method. It is still restricted to the application domains where it

performs well, though, such as when a vast quantity of data are

accessible, such as extreme data points, when there are several
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features on each data point or when the features have a lot of

structure (Greener et al., 2022). Drone images from crop fields

(Killeen et al., 2024; Sahoo et al., 2024) and genotypic data (SNPs)

(Uppu et al., 2016) are two examples of agricultural data for which

deep learning could be effectively used. Even when the other two

conditions are satisfied, deep learning may not be the best option

because of the need for vast volumes of data. Technically,

conventional approaches build and evaluate solutions for a

particular problem far more quickly than deep learning. When

compared to more conventional models such as random forests

and support vector machines (SVMs) (Hastie et al., 2009), creating

the architecture and training a deep neural network might be a

computation-intensive and costly process (Sejnowski, 2018). For a

given agricultural prediction problem, even if deep learning seems

theoretically doable, it is usually wise to train a conventional

technique and evaluate it against a model based on neural

networks such as ANN (artificial neural network), if at all possible

(Smith et al., 2020). Conventional approaches usually assume that

every sample in the collection has the same number of characteristics,

which is not always feasible. Using SNP data with varying lengths for

each case is a clear illustration of this problem. The data can be

adjusted using basic techniques such as windowing and padding to

make them all the same size and employing standard ways with them.

Padding refers to the process that can add zero value to each example

up to making the size of each of them equal to the most prominent

example in the target dataset. Conversely, the windowing approach

condenses each sample to a specific size (Chrysostomou et al., 2011).
5.1 Application of regression and
classification models

Regarding regression problems such as those depicted in

Figure 4A, ridge regression (a type of linear regression) is

frequently a valuable place to start when building and developing a

model since it could offer a quick and clear baseline for a particular

responsibility. The value of one variable can be predicted by using

linear regression analysis according to the value of another variable

(Su et al., 2012). On the other hand, when a model relies on as few

features as possible from the given data, then other variations of linear

regression, such as elastic net regression (Zou and Hastie, 2005) and

LASSO regression (Tibshirani, 1996), are also worthy of

consideration. Since the correlations between the characteristics in

the data are frequently non-linear, using a model such as an SVM is

usually a better option in these situations (Noble, 2006), as shown in

Figure 4B. SVMs are a practical kind of classification and regression

model that convert non-separable problems into easier-to-solve

separable problems by using kernel functions. A kernel function is

a technique for transforming input data into the format needed for

data processing. Both non-linear (a statistical method called non-

linear regression is used to model non-linear relationships between

independent and dependent variables) and linear regression could be

carried out with SVMs based on the kernel function that was applied

(Ben-Hur et al., 2008; Ben-Hur and Weston, 2010; Kircher et al.,

2014). To quantify, the best idea is to train an SVM through a kernel

of a radial basis function and a linear SVM can be used from a non-
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TABLE 1 Comparison of different machine-learning methods.

Method Data types Advantage Disadvantage Agricultural example

Support
vector
machine
(SVM)

- Supervised learning
(labeled)
- Definite number
of features

Capable of doing regression and
classification both linearly and
non-linearly

Large dataset scaling is
frequently challenging

- Land suitability
- Crop yield prediction (Lingwal
et al., 2024)
- Classification of weeds and crops
based on digital images (Ahmed
et al., 2012; Agarwal, 2024)

Ridge
regression

- Supervised learning
(labeled)
- Definite number
of features

- Prevent overfitting
- Simple to train
- A decent reference point (benchmark)

- Unable to understand the
sophisticated relationship between
features
- Having overfits with an excessive
number of features

- Genotype-specific grain yields of
wheat (Herrera et al., 2018)
- Predicting soil nutrition (Sudha
et al., 2022)

LASSO
regression

- Supervised learning
(labeled)
- Definite number
of features

-Prevent overfitting
-Remove highly inter-correlated features
in data

- Chooses just one feature from a
set of related features
- Certain features might have
significant bias

- Forecasting crop yield (Kashyap
et al., 2024)
- Wheat yield prediction (Shafiee
et al., 2021)

Random
forest

- Supervised learning
(labeled)
- Definite number
of features

- Effective with big datasets
- Discover how crucial each feature is to
the forecast
- More accessible for training and
adjusting since it is less susceptible to
feature normalization and scaling

- Not as suitable for regression
- Interpreting several decision trees
might be challenging.

- Crop yield predictions (Jeong et al.,
2016; Basha et al., 2020; Dhillon
et al., 2023)

Gradient
boosting
(such
as XGBoost)

- Supervised learning
(labeled)
- Definite number
of features

- Discover how crucial each feature is to
the forecast
- Easier to train and adjust since it is less
susceptible to feature normalization
and scaling

- Not as suitable for regression
- Might find it difficult to learn
information when there is noise

- Yield estimation (Huber et al.,
2022)
- Maize variable-rate seeding
decision (Du et al., 2022)

Clustering - Unsupervised learning
(unlabeled)
- Definite number
of features

- Performance could be evaluated using
accessible cluster validation metrics
- Good clustering for low-dimensional
data is readily observable

- Results from noisy datasets could
occasionally be contradicting
- Certain techniques have trouble
scaling to huge datasets

- Crop yield predictions (Vani and
Rathi, 2023)
- Better energy use in crop
production (Khoshnevisan et al.,
2015; Wu et al., 2024)

Reduction
of dimensions

- Unsupervised learning
(unlabeled)
- Definite number
of features

- Gives clear ideas through visualization
of datasets
- Evaluations of goodness-of-fit are often
provided to evaluate performance

- For specific techniques, scaling to
vast numbers of samples is
challenging
- Preserving both local and global
data differences is challenging

Dimensional reduction from
genotypic data (SNPs) (Heffner et al.,
2009; Evamoni et al., 2023)

Multi-layer
perceptron

- Supervised learning
(labeled)
- Definite number
of features

- Applies to intricate non-linear issues
- Performs well with considerable data
input
- Quickly makes predictions following
training
- Even with fewer data, the same
accuracy ratio can be attained

- The degree to which the
dependent variable impacts each
independent variable is unknown
- Completing computation takes a
lot of effort and time
- Training data quality is critical to
the correct operation of the model

- Predicting maize yield (Ahmed,
2023)
- Predicting soil electrical
conductivity (Mosavi et al., 2021)

Convolutional
neural
network
(CNN)

- Grid-based spatial
data arrangement

- High precision
- Specifically made to handle image
datasets
- Able to derive spatial characteristics
from a hierarchical matter

- Hefty computational expenses
- Needs a huge dataset
- Huge parameter size makes it
challenging to optimize

- Crop classification (Mazzia et al.,
2019; Kavitha et al., 2024)
- Crop yield prediction (Nevavuori
et al., 2019; Kolipaka and
Namburu, 2024)

Recurrent
neural
network
(RNN)

Data in sequential format
(genotype data or
time series)

- Capable of handling input of any length
- For lengthier input, the model size
would not increase
- Sequence data format is seen in many
agricultural domains

- Recurrent processing is time-
consuming
- High memory needs
for computing

- Crop improvement (Gopi and
Karthikeyan, 2024)
- Crop yield prediction (Gopi and
Karthikeyan, 2024)

Graph
convolutional
network

Connections and
relationships between
entities define the data

- Observes graph connection to identify
patterns, allowing the predictor to use
the most pertinent links

- More complex designs are
challenging to train
- High memory needs
for computing

- Weed and crop recognition (Jiang
et al., 2020; Pandey et al., 2024)
- Crop recommendation systems
(Ayesha Barvin and
Sampradeepraj, 2023)

(Continued)
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linear model, if any. Numerous models that are often employed in

regression could be used in classification as well. Another acceptable

default starting point for a classification problem is to train an SVM

based on the kernel function and a linear SVM. k-nearest neighbors

classification (also known as k-NN or KNN) is a further technique

that could be used (Bzdok et al., 2018). A non-parametric supervised-

learning classifier, the k-nearest neighbors method employs closeness

to classify or anticipate how a single data point will be grouped

(Peterson, 2009). XGBoost (Figure 4C) (Chen and Guestrin, 2016;

Olson et al., 2018) and random forests (Wang and Zhang, 2017) are

examples of ensemble-based models, which provide another family of

resilient non-linear techniques. These techniques are effective non-

linear models offering feature significance estimations and frequently
Frontiers in Plant Science 09
just need minor adjustments to the hyperparameters. There are often

an overwhelming number of variations among the several models

available for regression and classification. It can be misleading to try

to forecast how well-suited a specific method will be to a given issue

in advance; instead, it is usually wiser to use an empirical approach to

identify the optimum model via trial-and-error methods. Swapping

out these model versions often involves only one line of code change

thanks to a novel and robust machine-learning library such as scikit-

learn (Pedregosa et al., 2011), which can efficiently run in a Python

environment. To find the best approach overall, it is an excellent

strategy to optimize and train several of the previously described

techniques, and then compare the results on a different test set to see

which method performed the best on the validation set.
TABLE 1 Continued

Method Data types Advantage Disadvantage Agricultural example

Autoencoders Supervised and
unsupervised data (labeled
and unlabeled data format)

- Noise identification ability
- Effective in extracting features

- Restricted ability
- The challenge of interpreting the
outcome
- Other datasets might not benefit
from using latent space unique to
the training set’s data
- Uses more memory resource

- Plant disease detection (Boukhris
et al., 2024)
-Crop classification (Guo et al., 2020;
Cui et al., 2023)
B C

D E

A

FIGURE 4

(A) Regression is the link between a single and/or several independent variables, also known as features, and a dependent variable (the observable
attribute) is determined by using regression. A straightforward example is the prediction of crop yield based on one or some of the phenotypic
features. (B) SVM: a support vector machine divides the original input data into several categories by creating a gap as large as feasible between the
data in each converted version. One example is a prediction of whether a variety of a specific crop is a low- or high-yield variety. (C) Gradient
boosting makes predictions by combining several weak prediction models, most often decision trees; for example, the prediction of sugarcane yield
grade. (D) Clustering: using one of several algorithms, based on related objects; for example, better energy use in crop production. (E) t-distributed
stochastic neighbor embedding (t-SNE), for example, dimensionality reduction of crop genotypic (SNP) data.
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5.2 Application of clustering models

Like many other clustering algorithms (Figure 4D), k-means is a

powerful multi-purpose clustering technique that requires the

number of clusters to be specified as a hyperparameter (Jain,

2010). An alternate method that is not necessary for a

predetermined number of clusters is DBSCAN (Ester et al., 1996).

For datasets with plenty of features, dimensionality reduction can

also be done prior to clustering to enhance performance.
5.3 Dimensionality reduction

High-dimensional data can be transformed into a lower-

dimensional format while preserving the different connections

and interactions between the data points and pieces using

dimensionality reduction techniques. Although more dimensions

could be used in machine learning, two or three dimensions are

often selected to enable data visualization on several axes. These

methods include data transformations that are both linear and non-

linear. Principal component analysis (PCA) (Jolliffe and Cadima,

2016) and t-distributed stochastic neighbor embedding (t-SNE)

(Van der Maaten and Hinton, 2008) are some of the examples

common in the agriculture domain for dimensionality reduction.

The circumstance determines which technique to apply. PCA is

based on a linear combination of input features; each component

preserves the global connections between the data points and could

be explainable, implying that it is simple to identify the

characteristics that contribute to data diversity. t-SNE is a

versatile technique that can uncover structure in complicated

datasets and more robustly maintain local links between data

points (Figure 4E).
6 Concept of artificial neural networks

The mathematical principle of artificial neural networks (ANN)

has been conceptualized by following and understanding the

behaviors and connectivity of human neurons in the human

brain. It was created initially to study the workings of the brain

(Crick, 1989). The significant advances in deep neural network

training and architecture over the past few decades have increased

interest in neural network models (LeCun et al., 2015). The

following section covers the fundamentals of neural networks and

common varieties used in research on crop improvement. Figure 5

displays some of these concepts.
6.1 Concept of neural
network fundamentals

The capacity of neural networks to approximate functions

universally is one of their primary characteristics; this implies

that, with minimal presumptions, any mathematical function can

be accurately approximated to any degree by a neural network that

is set up appropriately. The fundamental units of every neural
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network model are artificial neurons. A mathematical function that

translates (converts) inputs to outputs in a certain way constitutes

an artificial neuron (Wu and Feng, 2018). Any number of input

values can be fed into a single artificial neuron, which then uses a

predetermined mathematical function to produce an output value.

Artificial neurons are layered and the output of one layer is the

input of the next, which forms a network. In the following

subsections, we present several methods for configuring artificial

neurons, sometimes called neural network architectures.

Combining several architectural styles is also popular. For

instance, fully linked layers are typically used to provide the final

classification output in a CNN (convolutional neural network) used

for classification.
6.2 Concept of multi-layer perceptrons

A feed-forward ANN (artificial neural network) having several

layers, comprising an input layer, one or several hidden layers, and

an output layer, is called a multi-layer perceptron (MLP)

(Figure 5A). Every layer is wholly interconnected with every other

layer. The term “perceptron” was initially established by Frank

Rosenblatt (Seising, 2018). The fundamental building block of an

artificial neural network, the perceptron, specifies the artificial

neuron inside the network. Activation functions, node values,

inputs, and weights are all used in this supervised learning

technique to determine the output. The forward direction is

supported by the MLP neural network. Every node has complete

network connectivity. Only in the forward direction does each node

transmit its value to the next node. Back-propagation is a method

used by the MLP neural network to back propagate the error in

order to optimize the weights and unit values.
6.3 Concept of convolutional
neural networks

CNNs are developed mainly to use image data format, and the

fundamental component of a CNN is the convolutional layer

(Figure 5B). Three things are needed: a feature map, a filter, and

input data (Li et al., 2021). Suppose the input will consist of a color

picture, a 3D matrix of pixels. As a result, the input will have three

dimensions: height, width, and depth, which match the RGB color

space of a picture. CNNs are equipped with a feature detector,

which could also be called a kernel or filter. This detector traverses

the receptive fields of the image and determines (Bouvrie, 2006). A

convolution is the name given to this procedure. CNNs can be set

up (configured) to function well with various spatially structured

datasets. A 1D CNN, for instance, would contain filters that move in

only one way. Data with one spatial dimension would be a perfect fit

for this kind of CNN (Tang et al., 2020), such as genotypic (SNP)

data from rice varieties. Digital images are examples of data with

two spatial dimensions that 2D CNNs can process (Hara et al.,

2018). Volumetric data, such as multi-temporal remote-sensing

images, are what 3D CNNs use to function (Ji et al., 2018).

Significant progress has been made in crop improvement for
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various datasets using CNNs (Jiang and Li, 2020). Crop

classification (Durrani et al., 2023), crop yield prediction (Nejad

et al., 2022), and maize seedling recognition (Diao et al., 2022; Wei

et al., 2024) are some examples of CNN models for crop

improvement, and they now frequently surpass skilled

human performance.
6.4 Concept of recurrent neural networks

RNNs are the most suitable approach with data organized into

sequences, where each point in the series has some semblance of

dependence or connection with the previous one (at least

conceptually) (Greener et al., 2022), as seen in Figure 5C. The

primary use of this approach is probably in NLP (natural language

processing), which considers text a succession of characters

(Medsker and Jain, 2001). One kind of RNN that can retain the

outputs of each node for extended periods is called long short-term

memory (LSTM) (Goodfellow et al., 2016). In other words, RNNs

are modified to build LSTM networks, which provide better recall of

previously learned data. Using back-propagation, they train the

target model. When dealing with time delays of undetermined

length, LSTM is a robust tool for classifying, processing, and

predicting time series. Thus, once data are presented in an

orderly structure, such as time sentences, LSTM can frequently be
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employed in different fields such as NLP and time-series analysis

(Abdel-Nasser and Mahmoud, 2019). In the crop domain, RNNs

are used extensively for crop improvement, such as land cover

classification (Sun et al., 2019), prediction of crop biomass (Masjedi

et al., 2019), and land cover and crop classification (Mazzia et al.,

2019; Abidi et al., 2023; Moharram and Sundaram, 2023).
6.5 Principle of graph neural networks

Graph neural networks (GNNs) are especially well-suited for

data that lack a clear apparent structure, such as a picture. Still, they

are made up of things connected by randomly determined

interactions or relationships (Battaglia et al., 2018). Such

applications relevant to crop improvement include weed and crop

recognition in smart farming (Jiang et al., 2020; Pandey et al., 2024)

and crop recommendation systems (Ayesha Barvin and

Sampradeepraj, 2023; Ge et al., 2024). In computer language, a

graph is merely a representation of this kind of data, and every

graph has a collection of nodes or vertices and a collection of edges

that show different types of relationships or connections between

the nodes. As seen in Figure 5D, when each feature of the nodes is

updated across the network, neighboring nodes are considered. The

node features in the final layer are then used as the output or

merged to generate an output for the entire graph. Graphs
B

C D E

A

FIGURE 5

Neural network approaches. (A) MLP comprise nodes, which are represented by circles and can be either internal (hidden) values or output values.
Layers of nodes are created by connecting each node in one layer to every node of other layers, signifying that the links represent learned parameters.
For instance, the maize crop has been used for predicting yield (Ahmed, 2023). (B) To compute the values in the subsequent layer, a CNN employs filters
that traverse the input layer. Since the filters work throughout the layer, parameters are shared, making it possible to identify related things wherever
they may be. Although 1D and 3D CNNs are also used in crop improvement, 2D CNNs demonstrated operating on images of crops. 1D and 3D CNNs
have been used for crop and crop-land classification (Ji et al., 2018; Liao et al., 2020; Liu et al., 2023). (C) An RNN is a deep-learning model trained to
interpret and translate a given set of sequential data inputs into a predetermined set of sequential data outputs. It is used for weed detection for crop
improvement (Brahim et al., 2021). (D) A GNN uses data from linked nodes of graph format data. It can be used for genomic selection in crops, and it
has been used for predicting crop variety yield (Yang et al., 2023). (E) An autoencoder is composed of an encoder neural network that transforms an
input into a latent representation with lower dimensions, and this hidden representation is transformed back into the original input by using a decoder
neural network. This method has been used in crop disease detection for crop improvement (Abinaya and Devi, 2022).
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illustrating various correlations could use data from several sources

to make predictions. Graph Nets (Gao and Ji, 2019) and PyTorch

Geometric (Fey and Lenssen, 2019) are some of the most popular

programs used to train GNNs.
6.6 Autoencoder networks

Autoencoder is used for unsupervised learning or the efficient

coding of unlabeled input (Bank et al., 2023). The autoencoder

method can learn two tasks: transforming input data by using an

encoding function and recreating the input data from the encoded

representation by a decoding function (Figure 5E). An alternative

perspective is that the encoder attempts to compress the input and

the decoder attempts to decompress it. Concurrent training is applied

to the encoder, latent representation, and decoder (Doersch, 2016).

Predicting the imposing of a structure on the latent space and the

degree of similarity between two data points helpful for prediction

tasks are two examples of applications. This approach has been used

in several domains of crop improvement, such as crop classification

(Bhosle and Musande, 2022; Cui et al., 2023) and crop mapping

(Hamidi et al., 2021; Madala and Prasad, 2023; Hamidi et al., 2024).
6.7 Neural network improving and training

Several issues are unique to neural networks as they are far more

sophisticated than conventional machine-learning techniques. It is

frequently a good idea to train a neural network on a single training

sample after deciding that it is the best model for the desired

application for instance, a single image. The trained model is not

helpful in forecasting, whereas it is adequate for exposing

programming flaws (errors). As the network retains only the

input, the training loss function ought to rapidly approach zero.

If not, either the algorithm is not sophisticated enough to represent
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the input data or there is probably a mistake in the code. The

network can begin with training on the whole training set after

passing this fundamental debugging test when there is a minimum

in the training loss function. It might be necessary to adjust

hyperparameters such as the learning rate for this, as shown in

Figure 6A. Overfitting of the network can be identified by tracking

loss on the training dataset and validation dataset, where loss on the

training set starts to rise and loss on the validation set keeps

becoming less. At that moment, training is often discontinued, a

procedure called early stopping, as shown in Figure 6B. A neural

network overfitting indicates that the model’s capacity to generalize

to new data is beginning to wane as it starts to memorize only the

features of the training set. Although early stopping is an intelligent

strategy for avoiding this, other training approaches could be

employed, such as dropout methods or model regularization.

Nodes within the network are arbitrarily disregarded to compel

the network to discover a more reliable prediction method

incorporating more nodes. TensorFlow (Abadi et al., 2016) and

PyTorch (Paszke et al., 2019) are well-liked neural network training

programs. Neural network training is computationally intensive

and often calls for a tensor processing unit or graphics processing

unit with enough RAM (random-access memory) because using

these devices could accelerate work 10 to 100 times faster than using

a regular CPU (central processing unit). This acceleration is

necessary for training massive datasets and for the larger models

that have demonstrated success in recent years. Nevertheless, using

a model that has already been trained is typically much quicker and

this could frequently be accomplished with a simple CPU. For

researchers without access to a GPU (a graphics processing unit is

on-demand computing services) for training, cloud computing

options are available from popular suppliers, and thus it is

essential to remember that for simple tasks. Python code could be

freely tested on graphics or tensor processing units using

Colaboratory (Colab). A practical method to get started with deep

learning based on Python is to use the Colab environment.
BA

FIGURE 6

(A) The learning rate concept is that, when training a neural network or other conventional techniques such as gradient boosting, the learning rate of
the model controls how quickly parameters that are learned are changed. (B) Early stopping is a regularization technique that helps prevent
overfitting when training learners using gradient descent or other iterative methods.
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7 Challenges of machine learning for
crop improvement and production-
related data

The enormous diversity of agricultural and crop domain data is

one of the significant challenges in modeling, and these data are also

generated from different nature domains. Crop improvement-

related data can be yield-related data, land-related data, crop-

development-related data, crop-disease-related data, or even

microorganism data. Most of them can be along with genotypic

and transcriptomic data such as SNPs or RNA-seq data and/or

high-resolution images, 3D structures, or gene expression profiles

over time, and different interactions of networks are some examples

of these data formats and natures. A summary of recommended

techniques and crucial factors for several crop-improvement data

kinds is provided in Table 2. Because of the variety of data formats

encountered, processing crop-improvement-related data frequently

calls for customized solutions. Because of this, it is challenging to

provide ready-made solutions or even broad suggestions for
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applying machine learning in various fields of study. However, for

machine learning to be used successfully in crop improvement and

agriculture, as well as more broadly, a few common challenges must

be considered.
7.1 Availability of high-quality data

Since data quality directly affects the functionality, precision, and

dependability of ML models, it is essential to the field of artificial

intelligence. Models that use high-quality data are more predictive

and yield more consistent results. There are somemain challenges for

insuring data quality in ML including Data collection; the problem

facing crop research institutes is obtaining high-quality data from a

variety of sources. Ensuring that every data point followed to the

same criteria for collecting data and getting rid of redundant or

contradicting data is difficult. Data labeling; for training purposes,

machine learning algorithms require labeled data; yet, manual

labeling is error-prone and time-consuming. Accurate labels that

accurately represent real-world conditions are the difficult part. There
TABLE 2 Suggestive strategies for applying machine-learning techniques to varied datasets related to crop improvement.

Input
data

format

Recent instances of prediction tasks Suggested models Challenges for implementing

Images - Crop disease monitoring (Bouguettaya et al., 2023; Zhang et al.,
2024)
- Crop protection (Gauriau et al., 2024)
- Yield prediction (Zanella et al., 2024)
- Stress detection (Butte et al., 2021; Gholap et al., 2024)
- Crop growth (Memon et al., 2021; Attri et al., 2024)
- Species detection (Picon et al., 2022)
- Water management for crop improvement (Jain et al., 2021;
Meenal et al., 2024)

- Autoencoders
- 2D CNNs
- Conventional techniques
based on image features

- Difficult to have reliable dataset
- Produces massive amount of data, which are
difficult to maintain
- Prediction could be affected by systematic
variations in data collection
- Expensive to provide the dataset
- Data collection is an expensive process

Phenotypic
data

- Yield prediction (Cao et al., 2021; Dhaliwal and Williams, 2024)
- Crop productivity (Mochida et al., 2019)
- Species recognition (Chen et al., 2023; Rangarajan et al., 2023) -
Crop seed germination (Colmer et al., 2020; Duc et al., 2023)

- SVM
- KNN
- ANN/SNKs
- 1D CNNs
- K-means clustering
- Conventional machine-
learning models
- Deep feed-forward multi-
layer perceptron

- Lack of access to reliable datasets
- Lack of uniform protocol for data collection
- High noise

Geographic and
climatic data

- Crop production (Alif et al., 2018; Dhillon et al., 2024)
- Forecasting crop yield (Veenadhari et al., 2014; Kheir et al., 2024)
- Crop yield change projections (Li et al., 2023)
- Crop modeling with machine learning (Zhang et al., 2021b;
Mousavi et al., 2024)
- Crop selection (Yesugade et al., 2018; Kamatchi and
Muthukumaravel, 2024)
- Crop evapotranspiration (Yamaç and Todorovic, 2020; Du
et al., 2024)

- SVM
- ANN
- 1D CNNs
- LSTM RNN

- Different performance of the trained model in
unknown regions
- High noise

Genotypic data - Crop improvement (Tong and Nikoloski, 2021; Guo and Li, 2023)
- Identifying true single nucleotide polymorphisms (Korani et al.,
2019; Sehrawat et al., 2023)
- Phenotype prediction (Danilevicz et al., 2022)
- Uncovering QTL (Yoosefzadeh-Najafabadi et al., 2022)
- Introducing new candidate genes for specific traits (Mora-Poblete
et al., 2023)

- Autoencoders
- 1D CNNs
- SVM
- ANN
- CNN
- GNN
- Graph embedding

- Because datasets are dispersed and stored in
different places, they are difficult to obtain
- Data leaks might make validation challenging
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are some tools and software to generate ground truth data for ML

specifically for certain domain such as ROOSTER (image labeler and

classifier) (Tang et al., 2023), Bounding boxes (Osman et al., 2021),

Polygons (Li et al., 2012), and Polylines (Opach and Rød, 2018). Data

security and storage; preserving the integrity of data also entails

shielding it from potential corruption and unwanted access. Also, it is

essential for agricultural research institutions to have reliable and

secure data storage. Data governance; it is difficult for many research

facilities to put in place data governance structures that adequately

handle problems with data quality. Errors, inconsistent data, and

segregated data can result from improper data governance. Also,

there is a need for more open-access datasets and standardized data

collection protocols to facilitate ML research It is essential to develop

more reliable and accurate data collection methods to ensure high-

quality data for ML research for crop development improvement.
7.2 Accessibility of data

Compared to other domains, agricultural and crop-related data

have little publicly available data. The selection of strategies that

could be applied successfully is significantly influenced by the

amount of data available for a particular import data format.

Technically, researchers are effectively compelled to employ more

conventional machine-learning techniques when limited quantities

of data are available because the accuracy of these approaches is

more reliable in these particular cases. Deep neural networks and

other highly specified models can be explored once more significant

quantities of data are available. For supervised machine-learning

approaches, it is essential to take into account the relative quantities

of every ground truth label included in the dataset. If some labels are

insufficient, more data will be needed for machine learning to

function (Wei and Dunbrack, 2013; Alzubaidi et al., 2023).
7.3 Model interpretability

Researchers often aim to determine why a particular model

predicts some subjects in a certain way and why this particular

model works in certain situations and is not accurate in other

conditions. Putting it in another way, rather than focusing just on

correct modeling, agri-researchers are typically interested in

identifying the mechanisms and causes accountable for modeling

output. The machine-learning technique and the input data

determine how well a model can be interpreted. Non-neural

network approaches typically contain fewer learnable parameters

and feature sets that are more accessible to meaningful

interpretation, making interpretation easier. For example, in a

simple linear regression model, the parameter allotted to every

input feature indicates how that variable influences the prediction.

Because non-neural network approaches are inexpensive to train,

ablation research in which the impact of eliminating certain input

features on performance is quantified is recommended. One

approach to potentially finding more reliable, effective, and

understandable models is through ablation experiments, which can

highlight which aspects are most helpful for a particular modeling
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job. Because a neural network often has many input parameters and

features, interpreting one is often significantly more difficult.
7.4 Challenges in
transdisciplinary partnerships

The main concern for data-driven crop improvement and

production programs is standardized data collection protocol to

prevent noisy data and the availability of high-resolution data. On

the other hand, it is uncommon for one research organization to be

aware of specific resources and knowledge to collect data in

machine-learning research and adequately employ the most

suitable machine-learning algorithms unless publicly available

data are being used. Computer scientists and experimental agri-

institutes frequently collaborate, and the outcomes of these

collaborations are often outstanding. However, in these kinds of

partnerships, each party must understand the other. In particular,

agri-institutes and researchers should be aware of the constraints of

the machine-learning algorithms being applied, and computer

scientists should understand thoroughly the nature of the data,

including the anticipated repeatability and level of noise.

Developing such awareness takes time and work, but it is crucial

for halting the frequent accidental spread of below-standard models

and false conclusions.
8 Federated learning and gossip
learning as recommendation
approaches for global crop
improvement and
production programs

When leveraging datasets frommany institutions, the model could

be trained centrally, combining data from silos of various institutions

onto a single server. However, different legal, ethical, and

administrative restrictions exist on publicly exchanging crop-based

data. In many countries, crop-based data must remain in the group,

company, or institution. Machine-learning models are trained using a

decentralized method called federated learning, often called

collaborative learning. Federated learning (FL) is an approach for

building machine-learning models where distributed data are used

cooperatively by a central server (McMahan et al., 2017; Kairouz et al.,

2021), as illustrated in Figure 7. FL allows the data to remain at the

original site to protect the safety and intellectual privacy of data, in

contrast to centralized training, which transfers data from produced

locations to a central server to train the model. Once a new training

cycle begins, the most recent version of the model is transmitted to

every storage site where the training data are stored (Greener et al.,

2022). Each copy of the model is then trained and updated using the

data that belong to each unique site. The revised models are then

returned to the central server from each site, where they are merged to

create a universal model. After that, the freshly revised universal model

is released for distribution once more, and the cycle continues until

either the model training or convergence is completed. Only those
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people directly related to that institution have direct access to the data,

which means that the data are never virtually transported from the

originating location or institution. In an FL approach, the risks of data

ownership violations are decreased, data aggregation costs are kept to a

minimum, and training datasets can quickly increase in size and

variety. Optimum use of the FL approach can lay the groundwork

for training deep-learning models for universal crop-based data.
8.1 FL taxonomy

The data matrix is the foundation of FL (Li et al., 2022). FL is

categorized into three groups according to the various distribution

patterns of the sample space and feature space of the data: federated

transfer learning (FTL), vertical FL (VFL), and horizontal FL (HFL),

which partition datasets non-dimensionally, longitudinally (i.e.,

dimension of features), and horizontally (i.e., dimension of users),

correspondingly, as shown in Figure 8.
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8.2 General workflow for employing the
FL approach

Data holders and central servers are the usual components of FL

systems (Li et al., 2022). Not enough local data or feature counts

from individual data holders may be available to enable effective

model training. As a result, cooperation from other data owners is

needed. The FL procedure for the architecture of the client-server is

shown in Figure 7. To safeguard data privacy, the data holders

exclusively train their data locally in a standard cooperative

modeling procedure of FL. After desensitization, the gradients

produced by the iterations are used as interaction information

and sent to a trustworthy third-party server in place of local data

and, to update the model, the server should return the aggregated

parameters. The stages involved in FL can be summed up in detail

below. The first step is system initialization. In this step, the central

server sends out the modeling work and tries to engage with the

client. Local calculation is the second step. Upon opening the joint
FIGURE 7

General pipeline constructing-silo for crop-improvement data to use in FL approaches. Several universities or institutes cooperatively train an ML
model via federated learning (FL). In phase (A), the central server provides the institution with the most recent model version. In phase (B), each
organization uses its data to train the model locally. In phase (C), each institution transmits its trained model to the central server. In phase (D), the
central server combines all of the models that have been locally trained by the various universities into a single updated model. In phase (E), each
training cycle involves repeating this procedure till the training of the model is complete. Crop data never leave the institution during any of the
training phases. Institutions need access to essential resources such as powerful hardware and specialists to conduct FL successfully.
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modeling job and initializing the system settings, it will be necessary

for each data owner (holder) to initially carry out local

measurements and calculations based on the data locally.

Eventually, the third step is central polymerization. The central

server compiles the estimated values after obtaining the

computation results from various data owners (holders). Security,

privacy, efficiency, and other concerns are considered and checked

during the aggregation process in this step. Significantly, the FL

central server’s functioning is comparable to that of a distributed

machine-learning server, which gathers each data holder’s gradient

and then produces a new gradient via server aggregation processes.
8.3 FL applications in agriculture and
relevant work in some crops

Since FL allows datasets to be analyzed even when the raw data

are either not readily available or the data owners are not ready to

share target data, this opens tremendous opportunities to use the

mentioned approach in different domains. In the medical field, FL

has been used to recognize COVID-19 disease during the pandemic

through an image analysis approach from chest-computed

tomography (Lai and Yan, 2022). According to their findings,

their network’s communication cost decreased by using the

federated averaging model. Additionally, to lessen Byzantine

assaults in their federated learning test bed, researchers suggest a

modified federated learning model in which the edge nodes are

randomly split into groups, each assigned a separate transmission

time slot (Sifaou and Li, 2022). Because edge devices have a wide

range of capabilities and resources, researchers have developed a

federated learning framework that analyzes the models without

jeopardizing data security or privacy while reaching convergence

(Kevin et al., 2022). Agri-researchers, agri-institutes, and agri-

companies also frequently gather private data and information

that they prefer to keep private, as presented in Table 3. FL uses

machine learning to train a shared model across several devices

without requiring data exchange. It is perfect for agricultural

applications. The FL applications in agriculture are categorized

below to create a global model based on data-partitioning

techniques, architecture, aggregation algorithms, and scale of

federation. In one effort, researchers use a horizontally distributed
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dataset placed on several client devices to train the yield prediction

model using FL (Manoj et al., 2022). To demonstrate the efficacy of

agricultural data under decentralized learning, the FedAvg

algorithm is used to build deep regression models such as

ResNet-16. In another effort, to classify crops (chickpea, maize,

and rice), the federated averaging approach has been employed

(Idoje et al., 2023). Compared to the stochastic gradient descent

(SGD) optimizer, the Adam optimizer model converged more

quickly in this research. The study using the farm dataset has

shown that decentralized models outperform centralized network

models in terms of accuracy and convergence speed.
8.4 Federated learning challenges
and limitation

Like other systems, FL also has some limitation and challenges

for users which can categorized in four main groups include high-

cost communication, heterogeneity of systems, heterogeneity in

statistics, and privacy issues (Mammen, 2021; Moshawrab et al.,

2023). The first challenges are raised in FL system is high-cost

communication. Network communication in federated systems can

be many orders of magnitude slower than local computing because

these models consist of a large number computing devices.

Compared to traditional data center facilities, communication in

these networks can be substantially more expensive. It is also

required to design communication-efficient approaches that

iteratively send short messages or model updates as part of the

training process, instead of sending the complete dataset over the

network, in order to fit a model to data supplied by the devices in a

federated network. The second challenge is heterogeneity of

systems. Due to variations in hardware (memory, CPU), power,

and network connectivity, each device in federated networks may

have different computing, storage, and communication capabilities.

Furthermore, only a small percentage of the devices are usually

active at any given time due to the scale of the network and limits

imposed by individual systems on each device. For instance, in a

network with millions of devices, only hundreds of devices might be

in use. It is also possible for any device to be unreliable, and it

happens frequently for an active device to stop working during a

particular cycle. Problems like stragglers and fault tolerance are far
B CA

FIGURE 8

The FL data partition categories: (A) horizontal FL, (B) vertical FL, and (C) federated transfer learning.
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more common due to these system-level features than they are in

standard data center settings. The third challenge od FL system is

heterogeneity in statistics in the system. Across the FL network,

devices typically produce and gather data in non-identically

dispersed ways. Furthermore, there may be a large variation in

the quantity of data points amongst devices. And finally, the last

challenge of FL system is privacy concerns. In contrast to learning in

data centers, privacy is frequently a primary problem in FL systems.

FL only shares model updates rather than raw data, which is a step

in the right direction towards preserving user data. Sensitive and

important information may still be revealed to the central server or

a third party by sharing model changes during the training phase.

Although there have been efforts recently to improve FL privacy

through the use of techniques like differential privacy or secure
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multiparty computing, these strategies frequently sacrifice system

efficiency or model performance in order to achieve privacy (Zhang

et al., 2021a; Wen et al., 2023).
9 Gossip learning can be alternative to
federated learning

To tackle the same issue, gossip learning has also been suggested

as an alternative to federated learning (Ormándi et al., 2013;

Hegedűs et al., 2016, 2019). There is no need for a parameter

server because this method is completely decentralized. Nodes

immediately share and combine models. Undoubtedly, there are

seveal advantages to using gossip learning because there is no single
TABLE 3 Agricultural applications of the federated learning method in some crops.

Target area
in agriculture

Issue Number
of

customers

Challenges Data used Aggregation
approaches

Trained
model

Ref

Smart farming and
crop classification

Data security in
intelligent farming

6 Usage of FL in
intelligent
agriculture

The dataset
included rainfall,
pH, humidity, and
temperature of
independent
variables

Model of
federated averaging

CNN (Idoje
et al., 2023)

Production from
the agricultural
sector

Directing the
production
of agriculture

10 Inexpensive
transmission,
quick
convergence rate,
and precise
modeling with
limited resources

Soybean iron
deficiency chlorosis
(IDC) photos from
the real world

A greedy algorithm
and suggested a
collaborative FL
framework for the
Edge-IoAT
(Internet of
Agriculture Things)
framework to
identify the best
course of action

GA (greedy
algorithm)

(Yu
et al., 2022a)

Detection of
various pests
and diseases

To prevent
imbalanced and
inadequate orchard
data, expensive data
storage and
transmission,
various pests and
diseases, and
challenging
detection situations
for typical cloud-
based deep-
learning solutions

6 Prevent the
communication
costs that arise
from uploading a
lot of data to
address the
problem of
imbalanced and
inadequate data

445 images of
orchard apples, of
which only 152
images include
five diseases

FedAvg approach Improved faster
region
convolutional
neural network
(R-CNN)

(Deng
et al., 2022)

Using FL for
amendable
multi-function
control method for
smart sensors for
enhanced
agricultural
production

Enhancing
efficiency

47 FL is derived
from sensor
information

Soil and crop data Amendable multi-
function sensor
control method
(AMFSC)

AMFSC (Abu-Khadrah
et al., 2023)

Disease detection
in food crops

Anticipating
leaf diseases

4 Privacy of data Data from
plant-village

FedAvg approach Five CNNs:
ShuffleNet,
SqueezeNet,
AlexNet,
VGG-11, and
ResNet-18

(Antico
et al., 2022)
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point of failure and gossip learning has far cheaper scalability and

better resilience because no infrastructure is needed. The term

“gossip” describes the information-sharing process that occurs

over the network in a manner akin to that of gossip within a

social group. In this approach, through information sharing with

other nodes in the network, each node in the network updates its

model parameters in this distributed machine learning technique.

The theory is that any node can rapidly converge to the global

optimum by exchanging information with other nodes. In large-

scale distributed systems where node-to-node communication is

unreliable or expensive, gossip learning is very helpful.
10 Conclusions and future direction

Future predictions display significantly greater use of AI and

ML approaches in crop science, which could open a new horizon for

integrated and valuable solutions in this area. We have undertaken a

thorough review of the essential elements, concepts, applications,

and machine-learning definitions required for agri-crop

improvement. Nowadays, crop science is leveraging tons of

available data to obtain deeper insights through AI and ML and

offer the best suggestions for following actions and decisions for

enhancing crop productivity or for other necessary tasks. Crop

improvement and forecasting are made more accessible by

combining computer science and agriculture. Offering broad

recommendations and guidance for machine learning in

agriculture is challenging because of the diversity of agricultural

data. Therefore, our article aimed to provide agricultural and crop

science researchers with an overview of the many accessible

approaches, as well as some suggestions for conducting efficient

machine learning through available data. It is vital to recognize that

machine learning is inappropriate for all problems and to know

when to avoid it: when the available data are insufficient, when it is

necessary to comprehend rather than anticipate, or when it is not

apparent how to fairly evaluate performance. Also, here we

highlighted the application of federated learning in agriculture

along with the definition, procedures, and structure, which can be

beneficial for researchers in the agricultural sector. Even though

there has been huge progress in machine learning in agriculture,

many challenges still need to be addressed to mark ML territory in

agricultural science. There is no denying that machine learning

has influenced and will continue to influence agricultural

research significantly.
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Gauriau, O., Galárraga, L., Brun, F., Termier, A., Davadan, L., and Joudelat, F. (2024).
Comparing machine-learning models of different levels of complexity for crop
protection: A look into the complexity-accuracy tradeoff. Smart Agric. Technol. 7,
100380. doi: 10.1016/j.atech.2023.100380

Ge, W., Zhou, J., Zheng, P., Yuan, L., and Rottok, L. T. (2024). A recommendation
model of rice fertilization using knowledge graph and case-based reasoning. Comput.
Electron. Agric. 219, 108751. doi: 10.1016/j.compag.2024.108751

Gholap, P. S., Sharma, G., Deepak, A., Madan, P., Sharma, R., Sharma, M., et al.
(2024). IoT enabled stress detection based on image processing with ensembling
machine learning approach. Int. J. Intelligent Syst. Appl. Eng. 12, 760–768.

Ghosal, A., Nandy, A., Das, A. K., Goswami, S., and Panday, M. (2020). “A short
review on different clustering techniques and their applications,” in Emerging
Technology in Modelling and Graphics: Proceedings of IEM Graph, Vol. 2018. 69–83.

Ghosh, H., Tusher, M. A., Rahat, I. S., Khasim, S., and Mohanty, S. N. (2023). “Water
quality assessment through predictive machine learning,” in International Conference
on Intelligent Computing and Networking.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (MIT press).

Gopi, P., and Karthikeyan, M. (2024). Red fox optimization with ensemble recurrent
neural network for crop recommendation and yield prediction model. Multimedia
Tools Appl. 83, 13159–13179. doi: 10.1007/s11042-023-16113-2

Greener, J. G., Kandathil, S. M., Moffat, L., and Jones, D. T. (2022). A guide to
machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55. doi: 10.1038/
s41580-021-00407-0

Guo, J., Li, H., Ning, J., Han, W., Zhang, W., and Zhou, Z.-S. (2020). Feature
dimension reduction using stacked sparse auto-encoders for crop classification with
multi-temporal, quad-pol SAR Data. Remote Sens. 12, 321. doi: 10.3390/rs12020321

Guo, T., and Li, X. (2023). Machine learning for predicting phenotype from genotype
and environment. Curr. Opin. Biotechnol. 79, 102853. doi: 10.1016/j.copbio.2022.102853

Hamidi, M., Homayouni, S., Safari, A., and Hasani, H. (2024). Deep learning based
crop-type mapping using SAR and optical data fusion. Int. J. Appl. Earth Observation
Geoinformation 129, 103860. doi: 10.1016/j.jag.2024.103860

Hamidi, M., Safari, A., and Homayouni, S. (2021). An auto-encoder based classifier
for crop mapping from multitemporal multispectral imagery. Int. J. Remote Sens. 42,
986–1016. doi: 10.1080/01431161.2020.1820619

Hara, K., Kataoka, H., and Satoh, Y. (2018). “Can spatiotemporal 3d cnns retrace the
history of 2d cnns and imagenet?,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. doi: 10.1109/CVPR.2018.00685
Frontiers in Plant Science 20
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements
of statistical learning: data mining, inference, and prediction, 2 (Springer). doi: 10.1007/
978-0-387-84858-7

Heffner, E. L., Sorrells, M. E., and Jannink, J. L. (2009). Genomic selection for crop
improvement. Crop Sci. 49, 1–12. doi: 10.2135/cropsci2008.08.0512
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Ormándi, R., Hegedűs, I., and Jelasity, M. (2013). Gossip learning with linear models
on fully distributed data. Concurrency Computation: Pract. Exp. 25, 556–571.
doi: 10.48550/arXiv.1109.1396

Osman, Y., Dennis, R., and Elgazzar, K. (2021). Yield estimation and visualization
solution for precision agriculture. Sensors 21, 6657. doi: 10.3390/s21196657

Ouali, Y., Hudelot, C., and Tami, M. (2020). An overview of deep semi-supervised
learning. arXiv preprint arXiv:2006.05278. doi: 10.48550/arXiv.2006.05278

Pandey, S., Yadav, P. K., Sahu, R., and Pandey, P. (2024). “Improving crop
management with convolutional neural networks for binary and multiclass weed
recognition,” in 2024 2nd International Conference on Intelligent Data
Communication Technologies and Internet of Things (IDCIoT). Bengaluru, India.
doi: 10.1109/IDCIoT59759.2024.10467501

Panigrahi, B., Kathala, K. C. R., and Sujatha, M. (2023). A machine learning-based
comparative approach to predict the crop yield using supervised learning with
regression models. Proc. Comput. Sci. 218, 2684–2693. doi: 10.1016/j.procs.2023.01.241

Pardoe, I. (2020). Applied regression modeling (John Wiley & Sons). doi: 10.1002/
9781119615941

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf.
Process. Syst. 32, 8026–8037. doi: 10.48550/arXiv.1912.01703

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia 4, 1883. doi: 10.4249/
scholarpedia.1883

Picon, A., San-Emeterio, M. G., Bereciartua-Perez, A., Klukas, C., Eggers, T., and
Navarra-Mestre, R. (2022). Deep learning-based segmentation of multiple species of
frontiersin.org

https://doi.org/10.3390/rs16040683
https://doi.org/10.1038/ng.2892
https://doi.org/10.1007/s11042-023-16612-2
https://doi.org/10.1145/2501105
https://doi.org/10.3835/plantgenome2018.05.0023
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.61808/jsrt81
https://doi.org/10.1109/ICFTIC57696.2022.10075165
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s00500-021-06496-5
https://doi.org/10.1016/j.agee.2012.02.007
https://doi.org/10.1016/j.agee.2012.02.007
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1016/j.eja.2023.126917
https://doi.org/10.1016/j.eja.2023.126917
https://doi.org/10.3390/s18082674
https://doi.org/10.3390/rs12050832
https://doi.org/10.1080/0952813X.2022.2062458
https://doi.org/10.1080/0952813X.2022.2062458
https://doi.org/10.3390/rs15194797
https://doi.org/10.1002/ps.7959
https://doi.org/10.1007/s11042-023-17327-0
https://doi.org/10.48550/arXiv.2101.05428
https://doi.org/10.1109/DELCON54057.2022.9752836
https://doi.org/10.1109/CVPRW47913.2019
https://doi.org/10.1093/bib/bbz026
https://doi.org/10.3390/app10010238
https://doi.org/10.3390/app10010238
https://doi.org/10.7324/JABB.2024.155791
https://doi.org/10.1109/ICECube53880.2021.9628197
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.1016/j.cropro.2023.106360
https://doi.org/10.1016/j.neucom.2023.03.025
https://doi.org/10.3389/fpls.2023.1128388
https://doi.org/10.3389/fpls.2023.1128388
https://doi.org/10.3389/fpls.2023.1153040
https://doi.org/10.1016/j.gexplo.2020.106639
https://doi.org/10.3390/electronics12102287
https://doi.org/10.3390/electronics12102287
https://doi.org/10.3389/fpls.2023.1309171
https://doi.org/10.48550/arXiv.1901.08360
https://doi.org/10.48550/arXiv.1912.08286
https://doi.org/10.1109/JSTARS.2022.3223423
https://doi.org/10.1016/j.compag.2019.104859
https://doi.org/10.1016/j.compag.2019.104859
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1142/10864
https://doi.org/10.1142/10864
https://doi.org/10.1177/1473871617693041
https://doi.org/10.48550/arXiv.1109.1396
https://doi.org/10.3390/s21196657
https://doi.org/10.48550/arXiv.2006.05278
https://doi.org/10.1109/IDCIoT59759.2024.10467501
https://doi.org/10.1016/j.procs.2023.01.241
https://doi.org/10.1002/9781119615941
https://doi.org/10.1002/9781119615941
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.3389/fpls.2024.1417912
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khatibi and Ali 10.3389/fpls.2024.1417912
weeds and corn crop using synthetic and real image datasets. Comput. Electron. Agric.
194, 106719. doi: 10.1016/j.compag.2022.106719

Piekutowska, M., Niedbała, G., Piskier, T., Lenartowicz, T., Pilarski, K.,
Wojciechowski, T., et al. (2021). The application of multiple linear regression and
artificial neural network models for yield prediction of very early potato cultivars before
harvest. Agronomy 11, 885. doi: 10.3390/agronomy11050885

Rajamani, S. K., and Iyer, R. S. (2023). “Machine Learning-Based Mobile
Applications Using Python and Scikit-Learn,” in Designing and developing innovative
mobile applications (IGI Global), 282–306.

Rangarajan, A. K., Purushothaman, R., Prabhakar, M., and Szczepański, C. (2023).
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