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Mapping of dynamic quantitative
trait loci for plant height in a RIL
population of foxtail millet
(Setaria italica L.)
Kangni Han1, Zhilan Wang1,2, Lin Shen2, Xiaofen Du1,2,
Shichao Lian1, Yuxin Li1, Yanfang Li1, Chuchu Tang2, Huixia Li1,
Linyi Zhang1 and Jun Wang1,2*

1Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University,
Changzhi, China, 2College of Agriculture, Shanxi Agricultural University, Taigu, China
Plant height (PH) is a crucial trait for strengthening lodging resistance and

boosting yield in foxtail millet. To identify quantitative trait loci (QTL) and

candidate genes associated with PH, we first developed a genetic map using a

recombinant inbred line (RIL) population derived from a cross between

Aininghuang and Jingu 21. Then, PH phenotyping data and four variations of

best linear unbiased prediction (BLUP) were collected from nine environments

and three development stages. Next, QTL mapping was conducted using both

unconditional and conditional QTL methods. Subsequently, candidate genes

were predicted via transcriptome analysis of parental samples at three

developmental stages. The results revealed that the genetic map, based on re-

sequencing, consisted of 4,360 bin markers spanning 1,016.06 cM with an

average genetic distance of 0.23 cM. A total of 19 unconditional QTL,

accounting for 5.23%–35.36% of the phenotypic variation explained (PVE),

which included 7 major and 4 stable QTL, were identified. Meanwhile, 13

conditional QTL, explaining 5.88%–40.35% of PVE, including 5 major and 3

stable QTL, were discovered. Furthermore, four consistent and stable QTL

were identified. Finally, eight candidate genes were predicted through RNA-

seq and weighted gene co-expression network analysis (WGCNA). Those

findings provide a crucial foundation for understanding the genetic

mechanisms underlying PH development and facilitate molecular marker-

assisted breeding of ideal plant types in foxtail millet.
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1 Introduction

Foxtail millet (Setaria italica L., 2n=2x=18), with a cultivation

history extending over 16,000 years in China (Doust et al., 2009), is

considered an important source of food and fodder globally,

particularly in the arid and semi-arid regions such as India and

China (Singh and Prasad, 2020). Because of its higher resistance to

drought, higher adaptability to infertile soils, and higher water use

efficiency, foxtail millet not only is of immense significance for the

advancement of ecological agriculture (Singh et al., 2024), but also

plays a key role in adjusting cropping structures as a strategic reserve

crop (Diao, 2019; Ramesh et al., 2023). However, increasing yield and

environmental adaptability in foxtail millet, compared to other major

cereal crops like maize, remains a significant potential, by developing

short-statured and lodging-resistant varieties (Diao et al., 2014).

Plant height (PH), a critical agronomic trait, is closely linked to

plant architecture and yield. Ideal PH can improve plant lodging

resistance and photosynthesis–respiration balance as well as increase

stress resistance, thereby contributing to higher yields (Stubbs et al.,

2023).As aquantitative trait, PHis influencedby the intricate interplay

of genetic, hormonal, andenvironment factors.Advances inmolecular

biology technologyhavemade it easier to identifyquantitative trait loci

(QTL) forPHthrough linkage and/orassociationanalysis. So far,more

than 100 QTL for PH in foxtail millet have been identified inmultiple

environments and widely distributed on nine chromosomes. Among

those, 24were identified repeatedly, namely,qPH1–1,qPH1–2,qPH1–3,

qPH2–1, qPH2–2, qPH2–3, qPH3–1, qPH3–2, qPH3–3, qPH4–1,

qPH4–2, qPH4–3, qPH4–4, qPH5–1, qPH5–2, qPH6–1, qPH6–2,

qPH6–3, qPH7, qPH8–1, qPH8–2, qPH9–1, qPH9–2, and qPH9–3

(Mauro-Herrera andDoust, 2016; Fan et al., 2017; Feldman et al., 2017;

Zhang et al., 2017; He et al., 2021). Notably, qPH5–2, located on

chromosome 5, contributed to the highest proportion of phenotypic

variation explained (PVE) (61.5%) (Mauro-Herrera andDoust, 2016).

To date, five QTL or genes, SiD2, SiD3, SiDw1, Seita.1G242300, and

Seita.5G404900, which regulated PH development through gibberellin

synthesis andsignalingpathways, havebeenfinemappedandcloned in

foxtailmillet (Xue et al., 2016; Fan et al., 2017;He et al., 2021; Zhu et al.,

2023). Notably, SiDw1, a GRAS family gene encoding a DELLA

protein, homologous with GAI/RGA in Arabidopsis, SLR1 in rice,

D8 inmaize, andRht-B1b andRht-D1b inwheat, has been functionally

validated (Zhao et al., 2019).

All previously mentioned QTL and genes were identified using a

conventional mapping method to analyze phenotype data at maturity.

However, the development of PH is a complex and dynamic process,

influenced by complex genetic networks and environment factors.

Numerous genes involved in PH development exhibit dynamic

expression patterns across various development stages (Che et al.,

2020; Fu et al., 2022; Wu et al., 2022). To fully understand the

regulatory mechanisms of PH development, it is imperative to

determine the temporal and spatial expression patterns of underlying

genes. Consequently, it is of paramount importance to accurately

identify QTL and how to regulate PH across entire development stages.

Multiple major and stage-specific QTL for PH in crops such as

wheat, cotton, and rice have been identified by dynamic QTLmapping,

indicating that PH is differentially expressed throughout the plant

development process (Che et al., 2020; Fu et al., 2022; Wu et al., 2022).
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In foxtail millet, only Mauro-Herrera and Doust (2016) carried out

dynamic QTL mapping for PH in a RIL population and found that the

QTL H9a, with a PVE ranging from 7.6% to 15.5%, had a significant

and consistent impact during the vegetative growth, flowering, and

harvest stages under varying environmental conditions. However,

research on dynamic QTL mapping for PH throughout the entire

developmental process is still scarce.

In the present study, both unconditional and conditional QTL

mapping methods were employed to identify QTL associated with

PH. This approach will enable us to uncover QTL that are specifically

expressed only under certain conditions and those stably expressed

across different environment conditions and developmental stages.

By further integrating of RNA-seq and weighted gene co-expression

network analysis (WGCNA), we aim to identify candidate genes

potentially involved in regulating PH. These findings will not only

deepen our understanding of the molecular mechanisms underlying

the dynamic development of PH, but also lay a foundation for the fine

mapping and cloning of QTL for PH in foxtail millet.
2 Materials and methods

2.1 Plant materials

To carry out QTL mapping, we developed an F2:7 recombinant

inbred line (RIL) population consisting of 127 lines. This population

was created using the single-seed descent method in a cross between

Aininghuang (female parent, derived from natural variation of

Ninghuang 1) and Jingu 21 [male parent, accession number: GPD

Foxtail millet (2017)140009, obtained from Co60-irradiated Jinfen 52

dry seeds]. Aininghuang is characterized by a dwarf phenotype of

approximately 110 cm, whereas Jingu 21 typically attained a taller

stature, approximately 180 cm. The RIL population, along with two

parents, was cultivated in three distinct experiment sites in Shanxi

Province (China), during three crop seasons (2020–2022). The sites

included Datong (DT, 39.3°N, 113.3°E), characterized by a cold–dry

climate, with growing season temperatures ranging from 15°C to 25°C,

and an annual precipitation of approximately 400 mm; Jinzhong (JZ,

37.6°N, 112.7°E), characterized by a semi-arid climate where summer

temperatures often exceed 30°C and annual precipitation is

approximately 450 mm; and Changzhi (CZ, 36.2°N, 113.1°E), which

has a humid subtropical climate with temperatures ranging from 20°C

to 28°C and an annual precipitation of approximately 550 mm. A

randomized complete block design (RCBD) (Federer, 1955) with three

replications was used. Each experimental block comprised two parents

and all 127 lines of the RIL population. A wide–narrow row planting

pattern, with a wide row of 0.48 m and a narrow row of 0.18 m, was

used to cultivate all plant materials. Each plot was allocated to two rows

with 2 m in length. Thinning was conducted to ensure a density of 25

plants per row once the third leaf emerged.
2.2 Phenotype measurement and analysis

PH was dynamically evaluated at three key development stages:

jointing (T1), heading (T2), and harvest (T3). At T1 and T2, PH
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measurement was taken from the soil surface to the apex of the main

stem; at T3, PH was measured from the soil surface to the tip of the

main panicle. For phenotyping, five well-grown plants from the

middle of one row, randomly selected in each line, were

investigated. Net increases in PH were quantified as DT1–2 and

DT2–3, representing the increases from T1 to T2 and from T2 to T3,

respectively. Generalized heritability (H2) was classified into three

levels: low (less than 20%), medium (between 20% and 40%), and

high (more than 40%) (Wang et al., 2018).
2.3 Re-sequencing

Genomic DNA from leaves of the biparent and RILs was

isolated via the CTAB method (Chen and Ronald, 1999). Re-

sequencing was carried out according to the CASAVA 1.8

(Illumina, Inc., San Diego, CA, USA). Genomic DNA was

sheared into ~350-bp fragments for library construction. Paired-

end reads (150 bp) were sequenced using the HiSeq 2500 system

(Illumina, Inc., San Diego, CA, USA), with the target sequencing

depth for each sample set at 30×. Raw reads were filtered based on

barcode sequences. After trimming, clean reads were aligned to

the Yugu1 genome sequence (Setaria italica v2.2) using the

Burrows–Wheeler Aligner (BWA) software (Li and Durbin,

2009). Duplicate marking was performed using Picard tools

(Picard, http://sourceforge.net/projects/picard/), and Genome

Analysis Toolkit (GATK) (McKenna et al., 2010) was used for

InDel realignment and base recalibration as part of the

preprocessing steps. Subsequently, GATK was utilized again for

the detection and filtering of single-nucleotide polymorphisms

(SNPs) to obtain the final set of SNP sites. Finally, SNPs

identified between two parents were considered polymorphic,

with those exhibiting an aa×bb pattern being selected for

subsequent analysis.
2.4 SNP genotyping and genetic
map construction

To enhance the quality of the genetic map, further filtration

and selection of polymorphic SNP markers from the initial set of

712,243 SNPs were performed. Sliding scans across chromosomes

for genotyping were determined by a window of 15 SNPs and a

step size of 1 SNP. When the count of “aa” or “bb” genotypes

within the window reached or surpassed 11, it was classified as

“aa” or “bb”; otherwise, it was imputed and corrected to “ab”

(Huang et al., 2009). In the RIL population, SNP loci were

compared against parental genotypes for binning. Samples were

organized based on their chromosomal positions, marking

genotype transitions as recombination breakpoints and grouping

corresponding SNPs into bins. Bins shorter than 10 kb and

markers exhibiting significant segregation distortion were

further excluded to minimize bias. Filtered bins were utilized for

genotyping analysis and further segmented into various linkage

groups with HighMap software (Sasaki and International Rice

Genome Sequencing, P, 2005).
Frontiers in Plant Science 03
2.5 QTL mapping

PH data from the RIL population were collected from nine

different environments (20CZ, 20JZ, 20DT, 21CZ, 21JZ, 21DT,

22CZ, 22JZ, and 22DT). In addition, four best linear unbiased

predictions (BLUPs) were calculated to account for environmental

variability. Four BLUPs were designated as follows: BLUP1 for CZ,

BLUP2 for JZ, BLUP3 for DT, and BLUP4 representing a combined

analysis across all nine environments. Each individual test was based

on data from a single year, location, or stage, respectively.

Unconditional QTL referred to the cumulative effects at T1, T2, and

T3 stages under various environmental conditions (Fu et al., 2022;

Meyer et al., 2023), while conditional QTL referred to the net genetic

effects during DT1–2 and DT2–3 (Zhu, 1995; Wu et al., 1997). In total,

65 tests were conducted, consisting of 39 tests for unconditional QTL

mapping and 26 tests for conditional QTL mapping. Among the

unconditional QTL mapping tests, 27 were conducted at T1, T2, and

T3 stages across nine different environments, and 12 were conducted

at T1, T2, and T3 stages using four BLUPs. Correspondingly, in the 26

conditional QTLmapping tests, 18 were carried out duringDT1–2 and

DT2–3 across nine environments, and 8 were performed using four

BLUPs during DT1–2 and DT2–3.

QTL mapping analysis was conducted using the Inclusive

Composite Interval Mapping (ICIM) method of the IciMapping

4.2 software (Meng et al., 2015), with a stepwise distance of 1 cM

and a PIN value set at 0.001. Candidate QTL were identified based

on a threshold corresponding to a 0.995 confidence level through a

permutation test conducted 1,000 times. QTL name was designated

as “q+PH+chromosome number+‘-’+number” (Mccouch et al.,

1997). Unconditional QTL and conditional QTL were

distinguished by prefixes “G” and “D”, respectively. Major QTL

referred to those identified at least in two tests with a LOD score

greater than 3.0 and a PVE greater than 10%. Stable QTL were those

identified in more than three tests (Sun et al., 2012; Fan et al., 2015).
2.6 RNA-seq analysis and prediction of
candidate genes

RNA from two parents was prepared from the penultimate

internode at T1 and T2, and the internode below the panicle at T3,

respectively, with three biological replicates. RNA extraction and cDNA

library construction were conducted by Biomarker Technologies

(Beijing, China) according to standard procedures. The cDNA

libraries were sequenced on the Illumina HiSeq 2500 platform with

paired-end 150-bp reads. After filtering raw reads with Trimmomatic

(Bolger et al., 2014), 116.45 Gb of clean reads were obtained, with the

percentage of Q30 bases in each sample being not less than 92.38%

(Supplementary Table S1). The clean reads were mapped to the Yugu 1

reference genome using Hisat2 (Kim et al., 2015), and alignments were

quantified with StringTie (Pertea et al., 2015).

Gene expression level was calculated using fragments per

kilobase of transcript per million fragments mapped reads

(FPKM) method. Differential gene expression analysis was

conducted using DESeq2 (Love et al., 2014), with criteria set for a

false discovery rate (FDR) < 0.01 and a fold change ≥ 2. Following
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the sequencing of the library preparations on an Illumina platform

and the generation of paired-end reads, a comprehensive data

analysis was undertaken. This processing included quality control,

comparative analysis, functional annotation of genes, SNP calling,

quantification of gene expression levels, and differential

expression analysis.

To elucidate the biological significance of gene expression

changes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were

performed using BMKCloud (www.biocloud.net). KEGG analysis

was used to find the pathways of three stages, then DEGs across

three stages were identified as candidate genes for dynamic PH.

Furthermore, WGCNA was conducted based on PH phenotype and

differential gene expression levels to identify significantly related

modules, and then the functions of the genes within these modules

were then analyzed using BMKCloud.
2.7 Expression analysis of candidate genes
by qRT-PCR

Total RNA was extracted from the penultimate internode at T1

and T2, and the internode below the panicle at T3, using RNAiso

Plus (TaKaRa Bio Inc., Shiga, Japan), following the manufacturer’s

instructions. An equal amount of 2.0 mg of total RNA was reverse-

transcribed to cDNA using oligo dT primers in the PrimeScript II

1st Strand cDNA Synthesis Kit (TaKaRa Bio Inc., Shiga, Japan).

Primer 3.0 (https://primer3.ut.ee/) was employed to design qRT-

PCR primers based on sequences from the S. italica v2.2 genome

(https://phytozome-next.jgi.doe.gov/info/Sitalica_v2_2). The qRT-

PCR reaction was performed on an ABI7500 system in a 10.0-mL
volume containing 1.0 mL of template cDNA, 5.0 mL of TB Green

Premix Ex Tap II (TaKaRa Bio Inc., Shiga, Japan), 2.0 mL of primer

(2 mmol L−1), and 2.0 mL of ddH2O. The reaction conditions were as

follows: 95°C for 3 min, followed by 40 cycles of 95°C for 10 s, 58°C

for 30 s, and 72°C for 30 s, followed by a melt curve at 65–95°C by

increments of 0.5°C/s. The ACTIN of S. italica was used as the

internal reference, and the relative expression levels of interested

genes were calculated using the 2−DDCT method (Kong et al., 2019a,

b). All primer sequences used in the present study are listed in

Supplementary Table S2.
2.8 Statistical analysis

Descriptive statistical analysis for PH of the biparent and RIL

population was conducted using IBM SPSS Statistics 17 (SPSS,

Chicago, USA). Analysis of variance (ANOVA) and H2 were

processed using the QTL IciMapping 4.2 software (Meng et al.,

2015; Ma et al., 2019). BLUPs were estimated using the lme4

package in R software (de Los Campos et al., 2013). The 2−DDCT

of qRT-PCR data were calculated via Microsoft Excel 2013, and

mean calculation, significance analysis, and bar graph creation were

conducted using GraphPad Prism 9.5. Venn diagrams and

heatmaps of differentially expressed genes (DEGs) were drawn

using TBtools (Chen et al., 2023).
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3 Results

3.1 PH variation

The male parent Jingu 21 consistently exhibited taller PH than

the female parent Aininghuang at three stages (T1, T2, and T3) and

during DT1–2 and DT2–3 across nine environments almost in all

tests. The RIL population showed a continuous distribution across

all nine environments, exhibiting relatively small skewness and

kurtosis, and two-way transgressive segregation was observed

almost at all stages (Supplementary Figure S1). Therefore, the PH

of the population followed a normal distribution, making it suitable

for QTL analysis (Table 1; Supplementary Figure S1).

Almost under all environments with the exception of Jingu 21 at

22DT, the growth speed of PH in two parents and RIL population

rapidly increased during DT1–2, with an average growth of 61.99 cm,

and then the speed of increase slowed down during DT2–3, with an

average increase of 27.34 cm (Table 1), indicating that the rapid

growth period of PH occurred before T2. ANOVA revealed that

there were extremely significant differences on PH in the RIL

population at T1, T2, and T3 stages, attributing to genotype,

environment, and genotype × environment interactions

(p < 0.01). Furthermore, H2 was 91.73%, 96.99%, and 97.81% at

T1, T2, and T3 stages, respectively, indicating that PH exhibited high

heritability within the RIL population (Supplementary Table S1).
3.2 Genetic map construction

RAD-seq was conducted on two parents and 127 RIL lines, and

the RAD-seq data were aligned to the Yugu 1 reference genome.

Aininghuang yielded 7.76 Gbp of clean reads with an average

coverage of 31×, while Jingu 21 obtained 7.66 Gbp of clean reads

with an average coverage of 34×. For 127 RIL lines, 88.21 Gbp of

clean reads were obtained, with an average coverage of 2.97×.

Finally, a genetic map was constructed using 4,360 bin markers

from 712,243 SNPs, spanning 1,016.06 cM in length with an average

interval of 0.23 cM between adjacent markers (Figure 1A). The

longest linkage group, Chr. 9, spanned 144.37 cM and included 597

bin markers with an average genetic distance of 0.24 cM, whereas

the shortest group, Chr. 6, spanned 92.48 cM and consisted of 300

bin markers with an average genetic distance of 0.31 cM.

Collinearity analysis revealed an average Spearman coefficient up

to 0.99 between the genetic and physical maps (Figure 1B;

Supplementary Table S3).
3.3 Unconditional QTL mapping

A total of 19 unconditional QTL associated with PH, including

7 major QTL, were identified at three stages under nine

environments and BLUP data (Table 2). Among those, eight,

nine, and eight QTL were identified at T1, T2, and T3,

respectively, of which five were repeatedly identified out at least

at two stages. These QTL were distributed on chromosomes 1, 4, 5,

7 and 9, respectively, characterized by PVE ranging from 5.23% to
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TABLE 1 PH performance of RIL and their parents.

Environment Stage Parents RIL population

Aininghuang Jingu21 MAX MIN MEAN SD CV% Skewness Kurtosis

20CZ

T1 68.32 86.96 101.05 48.52 74.87 10.02 13.38 −0.36 −0.35

T2 138.97 162.91 175.95 84.44 132.14 20.94 15.85 −0.58 −0.58

T3 157.87 194.43 196.41 112.28 158.02 20.26 12.82 −0.53 −0.63

20JZ

T1 61.23 75.91 91.08 48.93 69.3 8.52 12.3 −0.16 −0.31

T2 87.69 158.55 159.09 90.04 124.86 15.35 12.29 −0.09 −0.54

T3 108.79 179.63 180.36 115.84 149.22 15.2 10.18 −0.03 −0.63

20DT
T2 82.26 152.36 150.77 82.37 123.18 15.94 12.94 −0.74 −0.15

T3 99.15 180.81 198.88 108.59 154.86 18.01 11.63 −0.49 0.04

21CZ

T1 59.92 62.94 71.95 46 59.36 5.16 8.69 −0.13 −0.21

T2 109.55 135.17 158.32 88.45 129.66 17.55 13.53 −0.98 −0.15

T3 113.54 190.7 199.51 111.45 158.99 21.49 13.51 −0.48 −0.69

21JZ

T1 44.5 51.97 71.33 39.33 53.94 5.57 10.32 0.04 0.2

T2 95.52 165.99 150.46 89.18 121.43 13.01 10.72 −0.42 −0.19

T3 157.61 191.98 188.16 110.15 153.62 16.34 10.64 −0.22 −0.45

21DT

T1 51.87 60.93 61.34 42.37 51.65 4.13 7.99 −0.02 −0.43

T2 84.74 99.05 131.82 82.87 106.75 10.48 9.81 −0.32 −0.56

T3 134.31 154.88 169.61 101.72 137.55 15.54 11.29 −0.15 −0.57

22CZ

T1 57.67 65.04 102.87 31.83 69.12 16.08 23.27 −0.69 −0.17

T2 93 149.28 185.7 95.26 139.78 18.28 13.08 −0.62 −0.17

T3 110.3 186.64 194.69 116.79 161.4 19.75 12.24 −0.56 −0.67

22JZ

T1 55.52 125.99 98.56 24.24 69.98 14.99 21.42 −0.63 0.06

T2 114.4 162.19 182.45 92.28 140.05 18.12 12.94 −0.56 −0.11

T3 121.97 199.57 206.99 121.25 168.25 19.46 11.57 −0.27 −0.73

22DT

T1 50.92 67.56 100.96 50.83 72.13 10 13.86 0 −0.4

T2 78.37 98.54 135.28 77.86 110.29 12.76 11.57 −0.57 −0.57

T3 89.2 142.55 160.15 94.16 127.57 14.51 11.37 −0.19 −0.58

20CZ
DT1–2 70.65 75.95 93.65 26.79 57.37 15.08 26.28 −0.16 −0.75

DT2–3 18.9 31.52 139.45 20.15 26.77 11.92 44.53 7.12 64.15

20JZ
DT1–2 26.46 82.64 82.77 30.27 55.66 12.34 22.16 −0.09 −0.73

DT2–3 21.1 21.08 139.45 20.04 25.26 11.1 43.93 8.86 90.35

20DT DT2–3 16.9 28.46 68.49 20.22 31.97 9.83 30.74 1.27 1.69

21CZ
DT1–2 35.46 90.37 93.71 31.93 70.31 14.56 20.71 −0.85 −0.1

DT2–3 18.16 37.39 50.92 11.24 29.32 9.26 31.58 0.25 −0.88

21JZ
DT1–2 83.94 83.42 89.6 38.89 67.49 9.29 13.77 −0.51 0.45

DT2–3 29.18 56.59 56.02 17.56 32.19 8.27 25.7 0.51 −0.14

21DT
DT1–2 53 62.3 72.71 34.92 55.1 7.74 14.05 −0.27 −0.27

DT2–3 29.44 31.64 52.31 15.63 30.8 8.4 27.27 0.5 −0.42

(Continued)
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35.36%, and LOD scores spanning from 3.02 to 16.44. Among them,

13 QTL had positive additive alleles contributed by Aininghuang,

and the remaining ones were attributed to Jingu 21. Notably, four

QTL, namely, GqPH5–1, GqPH5–2, GqPH5–3, and GqPH1–1, were

consistently identified at least under three different conditions and

were considered stable QTL (Table 2, Figure 2). Specifically,

GqPH5–2 was identified in 24 different tests, with PVE ranging

from 12.67% to 34.62% and LOD scores ranging from 3.77 to 15.99.

This QTL was consistently identified across two or three

development stages under four BLUPs, exhibiting substantial PVE

(24.91%–34.61%), which further underscores its reliability. In

addition, GqPH5–1 also exhibited notable stability across seven

tests, with PVE and LOD scores ranging from 20.88% to 35.36%

and 7.85 to 16.44, respectively. These results showed that PH was

controlled by different QTL at various development stages.
3.4 Conditional QTL mapping

During DT1–2 and DT2–3, eight and five QTL were identified,

respectively, but no overlapping QTL were identified between them,

which explained 6.5%–40.35% of PVE with LOD values ranging

from 3.01 to 25.11 (Table 3). The positive additive effects of all QTL

were contributed by Aininghuang. In total, five major QTL and

three stable QTL were further identified. Notably, DqPH9–1, one of
Frontiers in Plant Science 06
the three stable QTL, was a major co-localized QTL, and expressed

only during DT2–3, explaining 8.04%–40.35% of the PVE under

various environments. This QTL was consistently identified during

DT2–3 under four BLUPs, with a substantial PVE ranging from

12.3% to 40.35%, which further underscores its reliability.

Additionally, DqPH5–1 was consistently identified during DT1–2

under four BLUPs, proving it is also a stable QTL.
3.5 Consistent QTL mapping

The comparative analysis between 19 unconditional and 13

conditional QTL showed that a total of 4 QTL, namely, qPH5–1,

qPH5–2, qPH5–3, and qPH5–4, were consistent QTL due to their

overlapping confidence intervals (Table 4, Figure 2). These QTL

exhibited PVE ranging from 12.67% to 35.36% and LOD scores

from 3.77 to 16.44. Notably, qPH5–1 and qPH5–2 were highlighted

for stable expression across three experiment sites. Moreover,

qPH5–2 was identified at multiple development stages, indicating

that it played a crucial role throughout the entire developmental

process. In addition, qPH5–1 exhibited stable expression across

multiple environments and development stages, including that it

may be a QTL with a continuous effect. However, qPH5–4 was

identified only in DT, suggesting it may possess environmental

specificity or adaptability.
TABLE 1 Continued

Environment Stage Parents RIL population

Aininghuang Jingu21 MAX MIN MEAN SD CV% Skewness Kurtosis

22CZ
DT1–2 35.33 84.24 89.86 45.09 70.67 8 11.33 −0.43 0.45

DT2–3 17.3 37.36 42.92 1.54 21.62 10.29 47.58 −0.03 −0.88

22JZ
DT1–2 69.85 90.92 88.03 53.35 70.07 7.67 10.95 −0.03 −0.33

DT2–3 7.57 37.38 65.46 1.98 28.2 12.31 43.64 0.13 −0.13

22DT
DT1–2 27.45 30.99 55.02 15.46 38.16 8.28 21.69 −0.05 −0.39

DT2–3 10.84 44.01 38.58 3.82 17.27 6.65 38.52 0.27 0.22
BA

FIGURE 1

(A) Distribution of polymorphic markers in the genetic map constructed from the RIL population. (B) Collinearity analysis between the genetic map
and the physical map.
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TABLE 2 Unconditional QTL of PH identified in different environments.

QTL name Environment Stage Position (cM) Left Marker Right Marker LOD PVE (%) Additive

GqPH1–1

20CZ T2 91.70 Block1346 Block1444 3.84 6.64 5.77

20DT T2 91.70 Block1346 Block1444 4.99 9.04 5.40

21CZ T2 91.70 Block1346 Block1444 3.02 5.78 4.56

21CZ T3 91.70 Block1346 Block1444 3.13 5.82 5.56

21DT T3 91.70 Block1346 Block1444 4.75 11.47 5.51

22YC T3 91.70 Block1346 Block1444 3.20 8.35 5.83

22DT T3 91.70 Block1346 Block1444 3.09 7.52 4.14

GqPH1–2 20DT T3 93.80 Block1521 Block1591 3.75 9.15 5.56

GqPH1–3 20YC T3 89.60 Block1091 Block1102 3.54 8.45 4.73

GqPH1–4 22YC T2 93.10 Block1443 Block1560 3.95 8.48 5.62

GqPH4–1
22YC T1 24.50 Block10555 Block10529 3.16 9.19 4.52

BLUP2 T1 24.00 Block10555 Block10529 3.04 8.28 1.76

GqPH4–2 21DT T2 58.10 Block10802 Block10805 3.02 7.97 2.92

GqPH5–1

20CZ
T2 90.30 Block13191 Block13193 16.44 35.36 13.32

T3 90.30 Block13191 Block13193 13.05 30.88 11.97

20JZ
T2 90.30 Block13191 Block13193 8.44 20.88 7.76

T3 90.30 Block13191 Block13193 8.18 21.59 7.56

20DT T3 90.30 Block13191 Block13193 10.08 27.35 9.62

22JZ T3 90.30 Block13191 Block13193 7.85 21.90 9.45

22DT T3 89.60 Block13191 Block13193 9.63 26.28 7.76

BLUP2 T3 90.00 Block13191 Block13193 9.70 23.67 7.98

GqPH5–2

20CZ T1 88.20 Block13188 Block13191 15.99 34.62 6.34

21CZ

T1 88.20 Block13188 Block13191 5.98 20.09 2.31

T2 88.20 Block13188 Block13191 13.45 31.24 10.67

T3 88.20 Block13188 Block13191 12.67 28.18 12.32

22CZ

T1 88.20 Block13188 Block13191 11.04 29.02 8.86

T2 87.50 Block13188 Block13191 8.48 26.53 9.74

T3 88.20 Block13188 Block13191 8.02 24.91 10.33

20JZ T1 88.20 Block13188 Block13191 3.77 12.67 3.17

21JZ T1 87.50 Block13188 Block13191 6.54 21.48 2.51

22JZ
T1 88.20 Block13188 Block13191 6.74 21.52 6.74

T2 88.20 Block13188 Block13191 10.00 24.79 9.66

20DT T2 88.20 Block13188 Block13191 14.50 30.89 10.05

21DT T3 87.50 Block13188 Block13191 8.93 23.74 7.99

22DT T2 88.90 Block13188 Block13191 9.12 28.48 6.85

BLUP1

T1 88.00 Block13188 Block13191 12.33 34.61 4.50

T2 88.00 Block13188 Block13191 13.88 32.80 11.08

T3 88.00 Block13188 Block13191 12.41 29.69 11.70

BLUP2 T1 88.00 Block13188 Block13191 8.05 24.91 3.01
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3.6 RNA-seq analysis

To further identify the key candidate genes underlying PH, we

conducted a full-length transcriptome analysis. A total of 131.29

Gb of clean reads, with a GC content of 50.67%–53.00%, were

obtained after removing adapter and low-quality reads. The

sequencing quality was high enough (Q20 ≥ 97.81%, Q30 ≥

92.97%) for further analysis (Supplementary Table S4). Upon

mapping the quality-controlled sequencing data from two

parents to the Yugu 1 reference genome, it was found that over

91.5% of the clean reads corresponded to the reference genome

(Supplementary Table S5). Most of the mapped reads were

concentrated in the exon region of genes (Figure 3A;

Supplementary Figure S2), indicating that the sequencing results

were consistent with the characteristics of RNA-Seq. Principal

component analysis (PCA) revealed that two distinct groups

between two parents were clustered with minimal variation

among three biological replicates (Figures 3B, C).

A total of 4,856, 5,715, and 5,759 DEGs were identified at T1, T2,

and T3, respectively (Figure 3D). Among these, 239 upregulated

genes (Figure 3E) and 475 downregulated genes (Figure 3F) were

overlapped and identified across T1, T2, and T3, respectively,
TABLE 2 Continued

QTL name Environment Stage Position (cM) Left Marker Right Marker LOD PVE (%) Additive

T2 88.00 Block13188 Block13191 10.31 25.93 7.14

BLUP3
T2 88.00 Block13188 Block13191 13.06 32.59 6.61

T3 88.00 Block13188 Block13191 11.33 27.36 7.93

BLUP4

T1 88.00 Block13188 Block13191 9.81 28.33 3.57

T2 88.00 Block13188 Block13191 12.35 30.73 8.32

T3 88.00 Block13188 Block13191 11.18 27.87 9.30

GqPH5–3
21JZ

T2 84.00 Block13150 Block13188 9.19 27.13 7.14

T3 84.70 Block13150 Block13188 7.50 25.05 7.98

21DT T2 83.30 Block13150 Block13188 8.09 26.11 5.39

GqPH5–4
22DT T1 79.80 Block13184 Block13185 7.16 22.14 4.70

BLUP3 T1 80.00 Block13184 Block13185 8.48 25.01 1.86

GqPH5–5 21DT T1 74.20 Block13071 Block13107 6.96 19.45 1.90

GqPH5–6 20CZ T3 16.10 Block11617 Block11616 3.52 7.06 -5.81

GqPH5–7 20CZ T2 17.50 Block11616 Block11621 3.15 5.23 -5.23

GqPH6–1
21CZ T2 73.50 Block15848 Block15867 3.70 7.02 -5.03

21CZ T3 73.50 Block15848 Block15867 4.57 8.53 -6.74

GqPH6–2 BLUP1 T1 76.00 Block15945 Block16042 3.08 7.52 -2.09

GqPH6–3 BLUP1 T2 73.00 Block15829 Block15856 3.04 5.86 -4.65

GqPH7–1 21DT T1 56.70 Block18649 Block18650 3.50 9.14 1.33

GqPH7–2 BLUP3 T1 54.00 Block18642 Block18645 3.19 8.63 1.11

GqPH9–1 20CZ T1 14.70 Block23567 Block23570 4.44 7.64 -2.98
f

FIGURE 2

The chromosome-wise distribution of QTL for PH.
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suggesting that a shared group of genes played a continuous and

crucial role throughout the entire process of PH development.
3.7 GO term and KEGG pathway
enrichment analysis

GO analysis of DEGs in four consistent stable QTL regions

showed that DEGs were predominantly involved in cellular

processes and metabolic processes within the biological process

(BP) category, cellular anatomical entity, intracellular and protein-

containing complex in cellular component (CC), and binding and
Frontiers in Plant Science 09
catalytic activity in molecular function (MF) at three stages,

respectively (Figures 4A, C, E). Additionally, the KEGG

enrichment analysis demonstrated that significant enrichment

was present in carbon fixation, photosynthetic organisms and

glycosphingolipid biosynthesis-globo isoglobo series at T1

(Figure 4B), glycerolipid metabolism and biosynthesis of

unsaturated fatty acids at T2 (Figure 4D), and carbon fixation in

photosynthetic organisms and fructose and mannose metabolism at

T3 (Figure 4F).

To predict candidate genes, we analyzed pathways that were

significantly enriched across three stages. A total of 24 pathways

were significantly enriched at T1, T2, and T3 stages, including fatty
TABLE 3 Conditional QTL of PH identified in different environments.

QTL Name Environment Stage Position(cM) Left Marker Right Marker LOD PVE(%) Additive

DqPH1–1
21DT DT2–3 96 Block1594 Block1596 5.80 16.18 3.25

BLUP3 DT2–3 96 Block1594 Block1596 5.99 6.50 1.56

DqPH1–2 21CZ DT1–2 87 Block1084 Block1088 3.25 6.61 4.03

DqPH1–3 22DT DT1–2 90 Block1092 Block1131 3.19 9.00 2.57

DqPH2–1

21CZ DT2–3 107 Block5964 Block5965 4.48 10.40 2.96

BLUP1 DT2–3 107 Block5964 Block5965 7.40 15.14 1.88

BLUP4 DT2–3 107 Block5964 Block5965 5.63 13.08 1.64

DqPH2–2
22JZ DT2–3 108 Block5970 Block5976 3.76 11.42 4.17

BLUP2 DT2–3 108 Block5970 Block5976 4.96 14.29 1.31

DqPH5–1

20CZ DT1–2 90 Block13191 Block13193 9.14 18.10 7.03

BLUP1 DT1–2 90 Block13191 Block13193 9.11 20.74 4.48

BLUP2 DT1–2 90 Block13191 Block13193 6.75 15.96 2.16

BLUP3 DT1–2 90 Block13191 Block13193 9.28 22.34 1.62

BLUP4 DT1–2 90 Block13191 Block13193 10.63 22.84 3.60

DqPH5–2 21CZ DT1–2 88 Block13188 Block13191 11.09 26.90 8.19

DqPH5–3 21JZ DT1–2 85 Block13150 Block13188 6.49 21.40 4.25

DqPH5–4 21DT DT1–2 80 Block13184 Block13185 6.12 20.45 3.53

DqPH5–5 22DT DT1–2 91 Block13197 Block13201 4.89 14.23 3.23

DqPH9–1

20DT DT2–3 14 Block23566 Block23567 6.18 23.26 4.10

21CZ DT2–3 14 Block23566 Block23567 10.09 26.99 4.81

22CZ DT2–3 14 Block23566 Block23567 4.61 8.04 3.58

22JZ DT2–3 14 Block23566 Block23567 3.45 10.48 4.04

22DT DT2–3 14 Block23566 Block23567 5.46 18.77 2.86

BLUP1 DT2–3 14 Block23566 Block23567 10.29 22.85 2.33

BLUP2 DT2–3 14 Block23566 Block23567 4.26 12.34 1.23

BLUP3 DT2–3 15 Block23565 Block23569 25.11 40.35 3.92

BLUP4 DT2–3 14 Block23566 Block23567 10.46 27.09 2.38

DqPH9–2 20CZ DT1–2 22 Block23638 Block23672 3.41 5.88 4.00

DqPH9–3 21CZ DT2–3 78 Block26188 Block26292 3.03 6.77 2.57
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TABLE 4 Consistent QTL of PH identified in different environments.

QTL name Environment Stage Position (cM) Left Marker Right Marker LOD PVE (%) Additive

qPH5–1

20CZ

DT1–2 90 Block13191 Block13193 9.14 18.1 7.03

T2 90.3 Block13191 Block13193 16.44 35.36 13.32

T3 90.3 Block13191 Block13193 13.05 30.88 11.97

20JZ
T2 90.3 Block13191 Block13193 8.44 20.88 7.76

T3 90.3 Block13191 Block13193 8.18 21.59 7.56

22JZ T3 90.3 Block13191 Block13193 7.85 21.90 9.45

20DT T3 90.3 Block13191 Block13193 10.08 27.35 9.62

22DT T3 89.6 Block13191 Block13193 9.63 26.28 7.76

BLUP1 DT1–2 90 Block13191 Block13193 9.11 20.74 4.48

BLUP2
T3 90 Block13191 Block13193 9.7 23.67 7.98

DT1–2 90 Block13191 Block13193 6.75 15.96 2.16

BLUP3 DT1–2 90 Block13191 Block13193 9.28 22.34 1.62

BLUP4 DT1–2 90 Block13191 Block13193 10.63 22.84 3.6

qPH5–2

20CZ T1 88.2 Block13188 Block13191 15.99 34.62 6.34

21CZ

T1 88.2 Block13188 Block13191 5.98 20.09 2.31

T2 88.2 Block13188 Block13191 13.45 31.24 10.67

T3 88.2 Block13188 Block13191 12.67 28.18 12.32

DT1–2 88 Block13188 Block13191 11.09 26.90 8.19

22CZ

T1 88.2 Block13188 Block13191 11.04 29.02 8.86

T2 87.5 Block13188 Block13191 8.48 26.53 9.74

T3 88.2 Block13188 Block13191 8.02 24.91 10.33

20JZ T1 88.2 Block13188 Block13191 3.77 12.67 3.17

21JZ T1 87.5 Block13188 Block13191 6.54 21.48 2.51

22JZ
T1 88.2 Block13188 Block13191 6.74 21.52 6.74

T2 88.2 Block13188 Block13191 10.00 24.79 9.66

20DT T2 88.2 Block13188 Block13191 14.50 30.89 10.05

21DT T3 88.9 Block13188 Block13191 9.12 28.48 6.85

22DT T2 88.9 Block13188 Block13191 9.12 28.48 6.85

BLUP1

T1 88 Block13188 Block13191 12.33 34.61 4.50

T2 88 Block13188 Block13191 13.88 32.80 11.08

T3 88 Block13188 Block13191 12.41 29.69 11.70

BLUP2
T1 88 Block13188 Block13191 8.05 24.91 3.01

T2 88 Block13188 Block13191 10.31 25.93 7.14

BLUP3
T2 88 Block13188 Block13191 13.06 32.59 6.61

T3 88 Block13188 Block13191 11.33 27.36 7.93

BLUP4

T1 88 Block13188 Block13191 9.81 28.33 3.57

T2 88 Block13188 Block13191 12.35 30.73 8.32

T3 88 Block13188 Block13191 11.18 27.87 9.3

(Continued)
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acid biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid

metabolism, homologous recombination, amino sugar and

nucleotide sugar metabolism, glycosaminoglycan degradation, and

glycosphingolipid biosynthesis-ganglio series (Figure 5A). From

these pathways, we identified 61 potential candidate genes for PH

within four consistent stable QTL mapping intervals. Notably, five

specific genes, namely, Seita.5G363400 , Seita.5G372100 ,

Seita.5G394300, Seita.5G402700, and Seita.5G404900, showed

significant expression differences between two parents at three

stages (Figures 5B, 6A).

Compared to Aininghuang, Seita.5G372100, Seita.5G363400, and

Seita.5G404900 in Jingu 21 were upregulated at T1, downregulated at

T2, and upregulated again at T3; Seita.5G394300 was upregulated at
Frontiers in Plant Science 11
T1, then downregulated at T2 and T3. Seita.5G402700 was

downregulated at T1, followed by upregulation at both T2 and T3.

Those expression patterns suggested that the T1 stage was a critical

period for PH development, and these genes may be involved in key

processes such as stem elongation, cell division, and hormone

regulation on PH development (Figure 6A).
3.8 WGCNA

To explore the gene expression network associated with PH,

WGCNA was conducted using a total of 38,494 expressed genes that

were detected. These genes were divided into 14 modules, of which 2,
TABLE 4 Continued

QTL name Environment Stage Position (cM) Left Marker Right Marker LOD PVE (%) Additive

qPH5–3
21JZ

DT1–2 85 Block13150 Block13188 6.49 21.40 4.25

T2 84 Block13150 Block13188 9.19 27.13 7.14

T3 84 Block13150 Block13188 7.50 25.05 7.98

21DT T2 83.3 Block13150 Block13188 8.09 26.1 5.39

qPH5–4

21DT DT1–2 80 Block13184 Block13185 6.12 20.45 3.53

22DT T1 79.8 Block13184 Block13185 7.16 22.14 4.70

BLUP3 T1 80 Block13184 Block13185 8.48 25 1.86
B C

D

E F

A

FIGURE 3

Transcriptome analysis of 18 samples. (A) Reads mapping. (B) Correlation analysis. (C) PCA. (D) DEGs at T1, T2, and T3 stages. (E, F) Venn diagrams of
upregulated (E) and downregulated (F) DEGs at T1, T2, and T3 stages.
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lightsteelblue and salmon2, significantly correlated with PH

(Figures 7A, B). Scatter plot analysis revealed that there was a

positive correlation between module membership (MM) and gene

significance (GS) in the two modules (Figures 7C, E).

KEGG enrichment analysis revealed that the lightsteelblue module

was significantly enriched in photosynthesis, photosynthesis-antenna

proteins, carbon metabolism, biosynthesis of amino acids, and

thiamine metabolism pathways, and the salmon2 module was

significantly enriched in starch and sucrose metabolism, DNA
Frontiers in Plant Science 12
replication, glycosaminoglycan degradation, protein processing in

endoplasmic reticulum, and glycosphingolipid biosynthesis-ganglio

series, among others (Figures 7D, F). Based on the KEGG enriched

pathways in both modules, four genes, namely, Seita.5G350500,

Seita.5G356600, Seita.5G399300, and Seita.5G394300, were identified

as candidates for PH. Through the integration of KEGG enrichment

analysis of DEGs in RNA-seq with WGCNA, three genes, namely,

Seita.5G350500, Seita.5G356600, and Seita.5G399300, were consistently

identified, underscoring their potential significance in modulating PH.
B

C D

E F

A

FIGURE 4

GO term and KEGG pathway enrichment analyses of DEGs obtained by RNA sequencing in four consistent stable QTL regions. (A, C, E) GO terms
enriched for three aspects of all DEGs at T1 (A), T2 (C), and T3 (E) stages, respectively, in which MF represents molecular function, BP represents
biological processes, and CC represents cellular components. (B, D, F) The top 20 terms for KEGG pathway enrichment analyses of DEGs at T1
(B), T2 (D), and T3 (F) stages, respectively.
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3.9 Expression analysis of candidate genes
by qRT-PCR

To clarify the precise expression level of candidate genes, we

randomly selected four candidates, namely, Seita.5G350500,

Seita.5G356600, Seita.5G363400, and Seita.5G372100, to carry
Frontiers in Plant Science 13
out expression analysis using qRT-PCR in the two parents

(Figure 6B). The results demonstrated that almost all genes

were differentially expressed between two parents at three

development stages, which were consistent with the results of

RNA-Seq (Figure 6A), indicating that these genes were

key candidates.
BA

FIGURE 5

(A) KEGG pathway enrichment analyses of DEGs at T1, T2, and T3 stages in four consistent QTL regions. (B) Expression heatmap of 61 DEGs.
BA

FIGURE 6

(A) Expression heatmap of eight candidate genes related to PH at three stages. (B) Expression analysis of four candidate genes in biparent via qRT-
PCR at three stages. *statistically significant at p < 0.05; **statistically significant at p < 0.01; ns, not significant.
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4 Discussion

4.1 BLUP of quantitative trait

BLUP significantly improved predictive accuracy in both animal

and plant populations (Macedo et al., 2020; VanRaden and Cole,

2020). Considering the significant influence of interactions between

genes and environment on quantitative traits, phenotype data were

typically collected from diverse environments to mitigate

environmental impacts and enhance predictive accuracy through

phenotype regression analysis of numerous genetic variants (de Los

Campos et al., 2013; Ankamah-Yeboah et al., 2020). In this study,

BLUP values for three experiment sites (CZ, JZ, and DT) as well as for

overall were calculated. The results demonstrated a high degree of
Frontiers in Plant Science 14
agreement between the data and the model, thereby establishing a

solid foundation for QTL mapping.
4.2 Combination analysis of unconditional
and conditional QTL mapping

Traditional QTL mapping provided information on cumulative

effects at specific growth stages (Fu et al., 2022; Meyer et al., 2023).

However, this approach, which focused on the final values of

quantitative traits, neglected the net or incremental genetic effects

of QTLs across different development processes (Zhu, 1995; Wu

et al., 1997). By integrating unconditional and conditional QTL

mapping, it was possible to acquire the genetic loci that affected
B

C D

E F

A

FIGURE 7

Identification of candidate genes via WGCNA. (A) Cluster dendrogram. (B) Module–trait relationships in WGCNA. (C, E) Correlation between MM
(Module Membership) and GS (Gene Significance) in the lightsteelblue (C) and salmon2 (E) modules, respectively. (D, F) KEGG enrichment of genes
within consistent QTL in the lightsteelblue (D) and salmon2 (F) modules, respectively. GS represents the correlation of each gene within the module,
and MM represents the correlation between a single gene and its module.
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quantitative traits at various development stages and, further, to

clearly elucidate the expression patterns and effects of underlying

loci throughout the developmental process (Yang et al., 2006; Cui

et al., 2011; Wu et al., 2022).

In the present study, we identified eight, nine, and eight

unconditional QTL at T1, T2, and T3 stages, and eight and five

conditional QTL during DT1–2 and DT2–3, respectively, indicating

selective expression at different development stages. Among those,

GqPH5–3, GqPH5–5, GqPH6–1, GqPH1–1, and DqPH9–1

overlapped with prior studies (Zhang et al., 2017; He et al., 2021),

suggesting that those QTL may exhibit consistent functions or

effects across different studies. Remarkably, QTL occurrence was

more pronounced in the early stages of PH development, indicating

that QTL expression was particularly vigorous during the initial

stages, which was consistent with previous studies (Wang et al.,

2019; Che et al., 2020; Wu et al., 2022).

Meanwhile, we identified four stable unconditional QTL,

GqPH5–1, GqPH5–2, GqPH5–3, and GqPH1–1, and three stable

conditional QTL, DqPH2–1, DqPH5–1 , and DqPH9–1.

Furthermore, four consistent QTL, namely, qPH5–1, qPH5–2,

qPH5–3, and qPH5–4, were found to exert both net genetic and

cumulative effects on PH via a combination analysis of

unconditional and conditional QTL mapping. Notably, qPH5–1

was stably expressed across three environment sites (CZ, JZ, and

DT) during DT1–2 and the subsequent T2 and T3 (Table 3). The

region of qPH5–1 was consistent with that reported by Ni et al.

(2017), indicating its stability and reliability.
4.3 Prediction of candidate genes via
integration of transcriptome and WGCNA

Transcriptome analysis was effective in identifying genes that

responded significantly to specific conditions, and WGCNA

focused on identifying gene sets that may not show significant

changes in expression individually but work together in biological

processes (Yao et al., 2023; Xie et al., 2024). In the present study, we

identified 61 DEGs associated with PH from RNA-seq, among

which five genes, namely, Seita.5G404900, Seita.5G363400,

Seita.5G394300, Seita.5G372100, and Seita.5G402700, were

continuously differentially expressed throughout the development

stages and considered as candidates. Furthermore, three genes,

Seita.5G350500, Seita.5G356600, and Seita.5G399300, were

identified to be differentially expressed through WGCNA. In

summary, through the integration of transcriptome analysis and

WGCNA, we identified eight candidate genes potentially

influencing PH.

Notably, the “Green Revolution” gene SD1 in rice, the

homology of Seita.5G404900, has been proven to play an essential

role in regulating PH (Phillips et al., 1995; Huang et al., 1998;

Hedden and Phillips, 2000; Sakamoto et al., 2001; Yamaguchi, 2008;

Zhu et al., 2023). Also in rice, OFP2, the homology of

Seita.5G363400, decreased PH by interacting with KNOX and

BELL genes to suppress gibberellin biosynthesis (Schmitz et al.,

2015). RBOHH, the homology of Seita.5G372100, influenced PH by

regulating reactive oxygen species (ROS) levels mediated by DELLA
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proteins in response to both biotic and abiotic stresses in

Arabidopsis and rice (Achard et al., 2008; Zhu et al., 2024).

Therefore, we randomly selected four candidates, namely,

Sei ta .5G350500 , Sei ta .5G356600 , Sei ta .5G363400 , and

Seita.5G372100, to carry out expression analysis using qRT-PCR.

The results showed that all of them exhibited differential expression

between the two parents at three development stages (Figure 6B),

which was consistent with the RNA-Seq, indicating that those

candidates played a significant role in the development of PH in

foxtail millet.
5 Conclusion

PH is a critical trait influencing lodging, stress resistance, and

yield in foxtail millet. In the present study, a total of seven major

unconditional QTL and five major conditional QTL for PH were

identified using a high-density genetic map with 4,360 bin markers

based on a RIL population, of which four QTL were simultaneously

identified via unconditional and conditional QTL mapping. Within

the four consensus QTL intervals, eight candidate genes were

predicted through RNA-seq and WGCNA. This study laid the

foundation for fine mapping and cloning of QTL for PH in

foxtail millet.
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