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Gamma-aminobutyric acid
treatment promotes resistance
against Sogatella furcifera in rice
Rahmatullah Jan1,2*, Saleem Asif1, Sajjad Asaf3, Lubna3,
Zakirullah Khan1, Waleed Khan1 and Kyung-Min Kim1,2*

1Department of Applied Biosciences, Graduate School, Kyungpook National University,
Daegu, Republic of Korea, 2Coastal Agriculture Research Institute, Kyungpook National University,
Daegu, Republic of Korea, 3Natural and Medical Science Research Center, University of Nizwa,
Nizwa, Oman
The Sogatella furcifera (Horváth) (Homoptera: Delphacidae) is a white-backed

planthopper (WBPH) that causes “hopper burn” in rice, resulting in severe yield

loss. Gamma-aminobutyric acid (GABA) is a well-known neurotransmitter that

inhibits neurotransmission in insects by binding to specific receptors. In this

study, we investigated the potential role of GABA in modulating rice resistance to

WBPH and evaluated possible defense mechanisms. The experiment was

conducted in green house in pots consist of four groups: control, GABA-

treated, WBPH-infested, and WBPH-infested treated with GABA. Among the

various tested concentration of GABA, 15 mM GABA was applied as a single

treatment in water. The treatment was administered one week before WBPH

infestation. The results revealed that 15 mM GABA treatment strongly increased

WBPH resistance. A plate-based assay indicated that direct application of 15 mM

GABA increased the mortality rate of WBPH and increased the damage recovery

rate in rice plants. We found that GABA treatment increased the activation of

antioxidant enzymes and reduced the reactive oxygen species content and

malondialdehyde contents, and reduced the damage rate caused by WBPH.

Interestingly, GABA-supplemented plants infested with WBPH exhibited

increased phenylalanine ammonia-lyase and pathogenesis-related (PR) genes

expression levels. GABA induced the accumulation of abscisic acid (ABA) and

salicylic acid (SA) and enhanced the stomata closure and reduced leaf vessels to

reduce water conductance during WBPH stress. Furthermore, we found that

GABA application to the plant induced the expression of Jasmonic acid (JA)

biosynthesis genes (LOX, AOS, AOC, and OPR) and melatonin biosynthesis-

related genes (TDC, T5H, ASMT, and SNAT). Our study suggested that GABA

increases resistance against WBPH infestation by regulating antioxidant defense

system, TCA cycle regulation, phytohormonal signaling, and PR gene regulation.
KEYWORDS

antioxidant, gamma-aminobutyric acid, melatonin, phytohormone, Sogatella furcifera,
tricarboxylic acid cycle
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1 Introduction

In Asia, the white-backed planthopper (Sogatella furcifera;

WBPH) is the most abundant and detrimental pest found in rice

fields (Horgan et al., 2020). This insect ingests plant cell sap, causing

“hopper burn” and severely infests paddy fields and reduces yield

(Suri and Singh, 2011). In plants, WBPH infestation causes

dwarfism and is marked by a reduction in leaf area, dry matter,

nitrogen concentration in stems and leaves, and photosynthesis rate

(Prasad et al., 2010). WBPH can also indirectly damage rice by

acting as a vector for viruses such as rice black streak dwarf virus-2

and southern rice black streak dwarf virus (Zhang et al., 2008; Zhou

et al., 2008). The WBPH has emerged as a significant threat to rice

yields, capable of causing considerable damage and reducing crop

yield significantly, with reported losses in Japan ranging from 10 to

90% depending on the severity of infestation (Khatri et al., 1983). It

has been reported in 1983 that the infestation of WBPH at levels

ranging from 15 to 200 insects per rice hill resulted in percentage

losses of paddy rice ranging from 11-37% across different growth

stages and exposure periods, with the lowest population level of 15

insects per hill causing 13-37% loss depending on the growth stage

and duration of exposure (Khatri et al., 1983). In South Korea,

WBPH migrates from Southern China between the end of June and

beginning of July, when rice is at the seedling stage and most

susceptible (Kim et al., 2021). This pest induces stress in plants

through generation of reactive oxygen species (ROS), which leads to

cellular damage, programmed cell death, and reduced plant yield.

Gamma-aminobutyric acid (GABA) is a non-proteinogenic

amino acid found in all plants. It is a four-carbon amino acid

synthesized by decarboxylation of glutamate in the cytosol and

plastid and plays an important role in plant growth and

development (Scholz et al., 2015; Jalil et al., 2019; Du et al., 2020).

It synthesized from glutamate through a series of reactions (GABA

shunt), catalyzed by glutamate decarboxylase (GAD) followed by

conversion to succinate through two reactions catalyzed by GABA

transaminase (GABA-T) and succinic semialdehyde dehydrogenase

(SSADH) (Khan et al., 2021b). Succinic acid is not involved directly

in stress resilience, however studies have shown that it is involved in

TCA cycle and enhance plant energy during environmental stress. It

is reported that exogenous GABA enhanced indigenous GABA level

which is metabolize to succinic acid and fed into the TCA cycle (Hijaz

and Killiny, 2019). GABA is involved in plant defense systems against

both abiotic and biotic stress. Commonly, plants induce calcium ion

(Ca2+) production in response to stress, resulting in the formation of

a Ca2+/calmodulin complex. This complex is recognized by GAD in

the cytosol, triggering accumulation of GABA. GABA can then enter

into the tricarboxylic acid (TCA) cycle and maintain carbon and

nitrogen equilibrium, or it can inhibit ROS generation via activation

of antioxidant enzymes (Li et al., 2021b). GABA may also act as a

signaling molecule for activation of biomolecules in plants against

various stresses. Briefly, abiotic and biotic stress induces GABA

accumulation in plants, which enhance tolerance to stress.

The stresses that induce GABA accumulation are; low O2, low

and high temperature, drought stress, salt stress, heavy metal stress,

pests infestation, bacteria, and fungi infection (Shelp et al., 2021).

Therefore, some studies propose that GABA might control various
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pathways in cell metabolism and stress responses simultaneously

however, these mechanisms are not fully understood yet (Kumar

et al., 2017). Several studies have reported that both genetic

manipulation of endogenous GABA and application of exogenous

GABA modulate plant stress tolerance. For instance, tobacco and

Arabidopsis with endogenously elevated GABA display enhanced

tolerance to attack by Agrobacterium, Pseudomonas, insect larva,

and root-knot nematode compared to wild plants (Lancien and

Roberts, 2006; Eisenach et al., 2017; Van Kleeff et al., 2018; Saito and

Uozumi, 2019; Kar et al., 2021). However, tomato plants with low

GABA levels showed reduced tolerance to Ralstonia infection

(Chen et al., 2013). A recent study also reported that GAD

mutation, which reduces GABA, glutamine, and alanine levels in

Arabidopsis resulted in Pst and Pst-avrRpt2 susceptibility (Deng

et al., 2020). Many studies have reported that GABA accumulates in

plants during mechanical stimulation and tissue damage, which is

likely a component of the plant defense system against herbivorous

insects (Wallace et al., 1984; Ramputh and Bown, 1996; Bown et al.,

2006; Huang et al., 2011; Mithöfer and Boland, 2012). GABA is

known to target the nervous system of invertebrates; therefore, high

concentrations could inhibit the neuronal transmission of insect

nervous system and act as a defense tool against herbivorous insects

(Huang et al., 2011; Tarkowski et al., 2020). It has been reported by

Irving et al., 1979, that GABA inhibit the neuromuscular junction of

the insects and causes insect paralysis (Irving et al., 1979). They

injected different compounds including GABA into Lucilia sericata

larva by using specialized Agla syringe fitted with a Gillette 26G

hypodermic needle. However, there was a lack of specific

concentrations for each compound mentioned. Nevertheless, it

was noted that the effective concentration of the injected doses

was sufficiently low to be physiologically relevant. Additionally,

Casida and Durkin, 2015 explained that, GABA helps regulate

muscle activity. When a pesticides act as GABA agonists, they

mimic GABA and activate the Cl- channels, causing an excessive

flow of chloride ions. On the other hand, when a pesticides act as

GABA antagonists, they block the Cl-channels, preventing chloride

ions from moving. Both actions disrupt the normal muscle activity

of the pests, which can lead to insect paralysis and death (Casida

and Durkin, 2015). Exogenous application of GABA also increases

endogenous GABA levels in plants and enhances tolerance to

several abiotic stresses (Shelp et al., 2021). Plant generates ROS in

the form of free radicle during stress condition which causes

oxidative stress. Previous study demonstrated that GABA has the

capability to scavenge the free radicle and reduce the ROS which

results into reduced oxidative stress (Smirnoff and Cumbes, 1989).

GABA on the other hand reduces ROS indirectly by enhancing

antioxidant enzymes such as SOD, glutathione (GSH) and GPX.

These enzymes also scavenge free radical and reduce oxidative

stress. Another study demonstrated that increased endogenous

GABA accumulation regulates non-enzymatic antioxidants

(ascorbic acid, reduced glutathione, and phenol), enzymatic

antioxidants (superoxide dismutase, ascorbate peroxidase,

glutathione reductase, glutathione peroxidase, glutathione

S-transferase, and catalase), and osmolytes including amino acids

(Shelp et al., 2021). Furthermore, studies have shown that

application of GABA to tomato and pear plants reduces biotic
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stress from fungal pathogens via induction of catalase and

peroxidase antioxidant enzymes and inhibits plant cell death

caused by ROS (Yu et al., 2014; Fu et al., 2017; Yang et al., 2017).

Several studies have also reported that GABA increases nitric oxide,

which is linked with the antioxidant defense system and regulation

of gene expression (Kalhor et al., 2018; Tang et al., 2020; Ageeva-

Kieferle et al., 2021). GABA induces stress tolerance through

regulation of hormonal pathways, such as abscisic acid (ABA),

salicylic acid (SA), and jasmonic acid (JA), which control expression

of stress related genes and transcriptional factors (Renault et al.,

2011; Scholz et al., 2015; Li et al., 2019; Podlesá̌ková et al., 2019).

Overall, the existing literature suggests that GABA reduces ROS

generation, lipid peroxidation, and electrolytic leakage (restoring

ion homeostasis), and that it enhances membrane stability.

Therefore, there is strong evidence supporting the involvement of

GABA in the plant defense system.

One of many potential pathways by which GABA regulates the

plant defense system is via modulation of melatonin and JA. GABA

is known to enhance the biosynthesis of melatonin in animals,

although it is unclear if this occurs directly or indirectly (Kazula

et al., 1993). In plants, GABA has been shown to have a synergistic

association with melatonin; however, its precise effect on melatonin

biosynthesis is not yet known (Lv et al., 2023). Application of

melatonin to plants increases defense-related enzyme activity,

reduces oxidative stress via antioxidant enzyme activation, and

enhances jasmonate content (Liu et al., 2019). Jasmonates,

including JA, are important hormone regulators of plant growth

and development and are known to enhance resistance against

necrotrophs via regulation of defense-related genes (Norman-

Setterblad et al., 2000; Fonseca et al., 2009; Sherif et al., 2016).

The effect of exogenous GABA treatment on the stress response

induced by WBPH infestation in rice plants has not yet been

investigated. Therefore, the present study aimed to quantify GABA

induced WBPH resistance in rice plants and evaluate its possible

mechanisms. The main focus of the study was to explore the role of

GABA in regulation of the antioxidant defense system, TCA cycle

enzymes, phytohormone signaling, and water conductance in the

setting of WBPH infestation. We hypothesized that exogenous

application of GABA induces melatonin biosynthesis, leading to

production of JA that regulates expression of pathogenesis-related

(PR) genes.
2 Materials and methods

2.1 Plant material and experimental design

Rice cultivar Ilmi (wild type), obtained from the Plant Molecular

Breeding Lab, Kyungpook National University (South Korea) was

used as experimental material in this study. The Ilmi rice population

was maintained in the Gunwi field, a territory of Kyungpook National

University, Daegu, South Korea. All experiments were conducted in

the greenhouse in pots. Greenhouse conditions were maintained at

16/8 h dark/light photoperiod, 28°C/26°C temperature, and 60%

humidity (Park et al., 2022). The greenhouse used in this study was

tent shape, made up of transparent class and the length was 10.2 m,
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width was 6.6 m, height from side was 2.6 m, and at the middle height

was 3.5 m. WBPH, used as herbivorous pest, was provided by the

Rural Development Administration of Jeonju, South Korea. The

WBPH population was maintained in the insectarium at

Kyungpook National University, South Korea. WBPH were kept in

separate room in the greenhouse where they were maintained under

the same environmental and light conditions as the greenhouse itself.

GABA, used as pest stress inhibitor, was obtained from Sigma-

Aldrich, (Steinheim, Germany). Uniformly sized seeds of Ilmi rice

were soaked in Spotak fungicide (Hankooksamgong, Seoul, South

Korea), then placed in an incubator at 33°C for 3 days under dark

conditions, as previously described (Kim et al., 2022). The soaked and

sprouted seeds were transferred to plastic tray of 50 wholes,

(specialized tray for rice growth), and after 30 days, the seedlings

were transferred to pots. The plants were grown in specialized soil

(Doobaena Plus) provided by Nongkyung Co. Ltd, Korea. The

experiment was designed with three biological replicates, each

consisting of four groups: control plants, GABA-treated plants,

WBPH infested plants, and WBPH infested plants treated with

GABA (WBPH+GABA). To identify the optimal GABA

concentration, various concentrations (5 mM, 10 mM, and 15 mM)

were pre-screened for their effects on seed germination and seedling

growth on a plate base. The rice seeds were placed on a three-layered

paper within the petri plate, and 5mL of each GABA concentration in

solutionwere added and then covered the petri plate with lid and grow

the seedling for ten days (Supplementary Figure S1). Plants were

treated with 15 mM GABA (GABA mixed in water and applied as a

solution directly as a single treatment) one week before WBPH

infestation. The WBPH and WBPH+GABA-treated plants were

separately kept in insectarium and infested with100WBPH per plant.
2.2 Histochemical staining and quantitative
H2O2 and O2

•- assays

In situ staining for hydrogen peroxide (H2O2) was performed

by using 3,3-diaminobenzidine (DAB) solution, as described

previously (Jan et al., 2021c). Briefly, leaves were excised after one

week of infestation, immediately submerged in DAB solution, and

incubated for 24 h at 27°C (Chao et al., 2010). The stained leaves

were decolorized in boiling ethanol (95% v/v) until brown spots

were clearly visualized. After cooling, the leaves were transferred to

a solution of lactic acid, phenol, and water (1:1:1, v/v/v) and

photographed immediately. For in situ superoxide anion (O2
•-)

staining, leaves were excised after one week of WBPH infestation,

soaked in the trypan blue solution and incubated for 6 h at 25°C.

The leaves were de-stained in boiling ethanol (95% v/v), transferred

to a solution of lactic acid, phenol, and water (1:1:1, v/v/v) and

photographed immediately. For H2O2 and O2
•- quantification,

excised leaf samples were immediately frozen in liquid nitrogen

and stored at −80°C until further use. H2O2 concentration was

measured based on the change in titanium peroxide complex

absorbance at 412 nm, as described previously (Willekens et al.,

1997). Simultaneously, the O2
•- generation rate was determined on

the basis of nitrite formation from hydroxylamine in the presence of

O2
•- at 530 nm, as described previously (Elstner and Heupel, 1976).
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2.3 Electrolyte Leakage measurement

Rice leaves were collected after one week of WBPH infestation,

and electrolytic leakage was measured as previously described

(Khan et al., 2021a). Briefly, fresh rice leaves (0.2 g) were

collected after one week of infestation and cut into 5 mm pieces

and washed with deionized water to remove surface electrolytes.

Thereafter, the samples were kept in a test tube with 10 mL

deionized water for 6 h at room temperature. The conductivity of

electrolytes (EC1) was measured with a conductivity meter

(HURIBA Twin Cond B-173, Japan). The samples were then

autoclaved for 15 min at 120°C and cooled to room temperature,

at which point electrolyte conductivity (EC2) was measured again.

The leakage of ions was calculated using the formula percent

electrolytic leakage (EL) = EC1/EC2 × 100.
2.4 Relative water and chlorophyll
content measurement

To determine the relative water content (RWC), fully mature leaves

were randomly collected after one week of infestation and the fresh

weight (FW) was measured immediately. Thereafter, the leaves were

submerged in distilled water in petri plates for 3 h, to their full turgidity,

and the weight was measured again (turgid weight; TW). The same

leaves were then dried at 70°C for 48 h and the weight was again

measured (driedweight;DW). The relativewater contentwas calculated

using the formula RWC (%) = [(FW−DW)/(TW−DW)] × 100.

Chlorophyll content was measured after one month of WBPH

infestation using a portable chlorophyll meter (SPAD-502, Konica

Minolta, Japan). The second last fully mature leaf was selected for

chlorophyll measurement, and readings were taken from the leaf base,

middle, and near the tip at the same time. Five leaves were measured

from each treatment group, and measurements were averaged to

obtain the SPAD value, as described previously (Asif et al., 2022a).
2.5 Assays to determine iron, magnesium,
and calcium ion accumulation

To evaluate iron (Fe+), magnesium (Mg+), and calcium (Ca+2)

ion accumulation, leaf samples were collected after one week of

WBPH infestation and immediately lyophilized in freeze drier.

About 0.5 g sample was powdered in liquid nitrogen and

homogenized in 7 mL 65% nitric acid (HNO3) with 1 mL 30%

H2O2, microwaved for 20 min at 180°C, then cooled for 30 min as

described previously (Jan et al., 2022). The solvent was further

quantified for the presence of the ions by using inductively coupled

plasma mass spectrometry (9ICP-MS; Optima 7900DV, Perkin-

Elmer, Waltham, MA, USA).
2.6 Quantification of ABA and SA

Leaf samples were collected after one week of WBPH infestation

and freeze-dried for further use. Dried samples were powdered in
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liquid nitrogen, and SA and ABA were extracted and quantified by

using Sialic Acid (SA) Elisa Kit from LifeSpan BioSciences and Plant

Abscisic Acid Elisa Kit from LifeSpan BioSciences, 2401 Fourth

Avenue, Suite 900, Seattle. Both the SA and ABA were quantified by

using method mentioned in user manual.
2.7 RNA isolation and qPCR analysis

Total RNA was extracted from fresh leaves after 12 h of WBPH

infestation using an RNeasy Plant Mini Kit (Qiagen, Valencia, CA,

USA) following the manufacturer’s instructions. Using RNA as a

template, cDNA was synthesized using an UltraScript 2.0 cDNA

synthesis Kit following the manufacturer’s instructions. To evaluate

selected gene expression levels, qRT-PCR was performed using a

qPCRBIO SYBR Green Kit and an Eco Real-Time (Illumina,

Singapore) machine. The reaction was performed in 20 µL as

previously described (Asif et al., 2022b), and the conditions were

as follows: incubation at 95°C for 2 min, followed by 40 cycles at

94°C for 10 s, 60°C for 10 s, and 72°C for 40 s. Actin was used as a

reference gene and the reaction was performed in three technical

repeats. To validate the actin expression stability, we investigated

the expression of actin under all the treatments using three

independent biological replicates (Supplementary Figure S2). The

data was calculated using the DDCT method.
2.8 Free amino acid quantification

Free amino acids were quantified after one week of WBPH

infestation. About 500 mg of fresh leaf sample was powdered in

liquid nitrogen and homogenized in 70% methanol (10 mL). The

homogenate was shaken at room temperature for 24 h. The free

amino acid content was determined using an EZ: faast amino acid

analysis kit (Phenomex, Santa Clara, CA, USA) following the

manufacturer’s instructions. Further, the amino acid content was

analyzed by GC-MS using a Hewlett-Packard 6890N/5975

instrument (Agilent Technologies, Torrance, CA, USA) and a ZB-

AAA (10 m × 0.25 mm) amino acid analysis column with constant

carrier gas flow and an oven temperature program as previously

described (Pavlıḱ et al., 2012).
2.9 Antioxidant enzyme and lipid
peroxidation analysis

For lipid peroxidation and antioxidant enzyme analysis, fresh

leaves were collected from each treatment group after one week of

WBPH infestation. We used a lipid peroxidation kit from Sigma

Korea for the analysis of lipid peroxidation, and the detailed

protocol is described in our previous study (Jan et al., 2021a).

Meanwhile, ascorbate peroxidase (APX) activity was determined via

evaluation of ascorbic acid oxidation as described in detail

previously (Imran et al., 2021). 2,2-diphenyl-1-picrylhydrazyl

(DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

(ABTS), chloramphenicol acetyltransferase (CAT), glutathione
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peroxidase (GPx), superoxide dismutase (SOD), and peroxidase

POD activity were evaluated according to the recent protocols

(Adhikari et al., 2019; Lubna et al., 2022).
2.10 NADPH quantification

Nicotinamide adenine dinucleotide phosphate (NADPH) was

quantified using a NADP/NADPH quantification kit from Sigma-

Aldrich (Spruce street, St. Louis, USA), following the user manual.

Briefly, 50 mg leaf sample was collected after one week of infestation

with WBPH and washed with cold PBS (Phosphate-Buffered Saline),

then crushed into fine powder in liquid nitrogen. Samples were

homogenized in 500 µL NADP/NADPH extraction buffer by freezing

and thawing. The homogenate was kept on ice for 10 min, and then

centrifuged at 10,000 × g for 10 min. The supernatant (containing

extracted NADP/NADPH) was transferred to another tube. Samples

were de-proteinized by filtration through a 10 kDa cutoff spin filter.

To detect NADP (NADPtotal), approximately 50 µL extracted sample

was transferred into a 96-well plate. To detect NADPH, NADP was

decomposed by aliquoting 200 µL of extracted sample into

microcentrifuge tubes and heating to 60°C for 30 min in a water

bath. Samples were cooled and centrifuged; 50 µL of supernatant

containing the decomposed sample was then transferred into the 96-

well plate. After addition to 100 µL of master reaction mixture (98 µL

NADP cyclin buffer and 2 µL NADP cyclin enzyme mix) to each well,

the plate was mixed well and incubated at 25°C for 5 min to convert

NADP to NADPH. Developer (10 µL) was added into each well and

incubated at room temperature for 1 h. To generate NADPH

standard, wells with 0, 2, 4, 6, 8, and 10 µL of 10 pmole/µL

standard solution were also added to the plate, and the volume of

each was brought up to 50 µL with NADP/NADPH extraction buffer.

The absorbance was measured at 450 nm (A450); readings were taken

five times and reactions were run in three technical replicates. The

ratio of NADP/NADPH in a sample was determined by the formula

ratio = (NADPtotal – NADPH)/NADPH. The concentration of

NADPH was expressed in nmole/mg FW.
2.11 Extraction and derivatization of GABA

ForGABAextraction, plant sampleswere collected after oneweekof

WBPH infestation and analyzed as previously described (Weckwerth

et al., 2004).GABAwasextractedusing300mgof ground leaves in liquid

nitrogen, homogenized in 2 mL chilled solvent containing methanol,

chloroform, andwater (5:2:1, v/v/v), and stored at−20°C overnight. The

homogenatewas then shaken for 30minon ice andcentrifugedat 12,000

rpm for 10 min. The supernatant (1.5 mL) was collected carefully and

dissolved in 2mL deionized water and chloroform (2:1). Thereafter, the

solution was vortexed vigorously and centrifuged at 12,000 rpm for 2

min. The upper phase was vacuum-dried. GABA was further isolated

from the vacuum-dried samples as described previously (Sobolevsky

et al., 2003). Briefly, 100 µL acetonitrile and methyl tert-

butyldimethylsilyl trifluoroacetamide each were added to each dried

sample. Samples were heated for 30 min at 70°C and then 1 µL of each

was subjected to gas chromatography (GC Model 7890 A) with BP-5
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capillary column. The injector and detector temperatures were kept at

280°C; the oven temperaturewasmaintained at 70°C for 2min and then

increased by 5°C/min to 300°C.
2.12 Succinate quantification

Succinate was quantified using Succinate Colorimetric Assay

Kit (Sigma-Aldrich, Spruce street, St. Louis, USA), following the

manufacturer’s instructions. Briefly, the ground rice leaf tissue (10

mg) from each treatment group was homogenized on ice in

succinate assay buffer (100 µL), and then centrifuged at 10,000 ×

g for 5 min. The supernatant was added directly to a 96-well plate. A

final volume of 50 µL per well was maintained by adding succinate

assay buffer. Samples from each treatment group were added to 96-

well plates in five technical replicates to obtain more accurate results.

Wells were mixed by pipetting following addition of 50 µL reaction mix

(seeSupplementaryTable1).Theplatewas incubatedat37°Cfor30minin

dark conditions, and absorbance was then measured at 450 nm (A450).

Wells were prepared with 0, 2, 4, 6, 8, and 10 µL of 1 nmole/µL succinate

standard solution in a total volume of 50 µL succinate assay buffer to

generate a standard curve. The absorbance value of the blank well was

subtracted from all samples and the succinate concentration (C) was

calculated using the following formula: C = (Sa/Sv) × 118.09)]

Where:

C is the concentration of final succinate, where Sa is the amount

of succinate added in the well, Sv is the volume of sample in the well,

and 118.09 is the molecular weight of succinate.
2.13 Statistical analysis

Statistical analysis was performed on all data using GraphPad

Prism software (version 5.01; GraphPad, San Diego, CA, USA). The

dataset underwent analysis with a one-way analysis of variance

(ANOVA) followed by the Bonferroni post-hoc test and DMRT.

Three independent biological replicates were included in the

analysis, and means were subjected to comparison through

Bonferroni post hoc tests. Significance levels were denoted as

follows: *P < 0.05, **P < 0.01, and ***P < 0.001.
3 Results

3.1 GABA promotes plant growth and
reduces WBPH damage

We investigated the effects of GABA on rice plant growth under

normal conditions and when challenged with WBPH infestation. A

plate-based study showed that increasing the concentration of GABA

significantly (P < 0.05) increased germination percentage, as well as

the dry and fresh weight of shoots and roots (Supplementary Figure

S1). The same trend of increased growth and development was also

observed after 45 days of GABA supplementation to the pots

(Supplementary Figure S3). These results show that application of

exogenous GABA generally enhances rice plant growth and biomass
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significantly (P < 0.05). Further, we investigated the growth

parameters of GABA-supplemented rice plants under WBPH stress

after one month (Figure 1). GABA significantly (P < 0.05) increased

the shoot length (15.4%), root length (18.2%), leaf width (32%), and

root weight (23.3%) in rice plants under WBPH stress, compared to

untreated infested plants. These results indicate that GABA reduces

pest stress in rice and promotes plant growth.
3.2 GABA inhibits WBPH infestation effects
and reduces WBPH population

We next evaluated the spread rate of WBPH infestation in the

GABA-treated and non-treated rice plants (Figure 2). The plants were

infested in the insectarium after one week of supplementation of 5, 10,

and 15 mM of GABA. After ten days of infestation, WBPH-damaged

leaves and stems of approximately the same size were collected in

triplicate, and the damaged area was analyzed by ImageJ software

(version 1.8.0). Plants that had been treated with GABA had smaller

areas of total damage compared to untreated infested plants. Leaves of

non-treated plants exhibited 43% total surface area damage, while this

number decreased to 11% in plants treated with 15 mM GABA

treatment (Figure 2A). Meanwhile, 66% of the stem surface area

showed damage in untreated plants, but only 9% of the stem surface

was damaged following 15 mM GABA treatment (Figure 2B). These

results confirmed that GABA supplementation significantly (P < 0.05)
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reduces the effects of WBPH damage in rice plants. To determine the

direct effect ofGABAonWBPH,20 insectswere subjected toGABA(5,

10, or 15mM) on plates after two hours of starvation (Figure 3A). The

GABA was sprayed on tissue paper and put in the plate and then the

insects were put into the plate and covered with cotton cloth and the

mortality rate was determined after three hours. Dosing the insects

directly is not necessarily representative of allowing the insects to feed

on plants treated with these concentrations, However, the result

showed that WBPH mortality increased with increasing

concentrations of GABA (Figure 3B), demonstrating that GABA

application affects WBPH viability directly. We also evaluated the

deterrent effect of GABA on WBPH by applying different

concentrations to plants one week prior to WBPH infestation.

Approximately 15-20 plants per tray were treated with 5, 10, and 15

mMGABA separately in one insectarium and 150 insect were infested

with in the same insectarium and the data related to insect population

in each tray of different concentrations of GABA were collected after

each day until five days, (Figure 3C). Fewer insects were found on

plants treated with 15 mM of GABA followed by 10 mM and 5 mM

treated plants, than on control plants (Figure 3D). The same trendwas

also observed when plants were infested with WBPH after 45 days of

GABA supplementation (Supplementary Figure S4). Moreover, we

investigated plant recovery rate and rate of infestation spread with

different concentrations of GABA supplementation. Overall, we

observed that GABA reduced infestation efficiency and induced

plant recovery after infestation (Supplementary Figure S5). These
A

B D

E

F

G

H

C

FIGURE 1

Application of GABA enhance rice plant growth against WBPH stress. The rice seedlings were first treated with GABA and after one week of
treatment the plants were infested with WBPH for one month. After one month of infestation, the data presented in this figure was recorded.
(A, B) shows pictorial and graphical representation of GABA effects on shoot length under WBPH stress. (C, D) shows pictorial and graphical
representation of GABA effects on root under WBPH stress. (E, F) shows pictorial and graphical representation of GABA effects on leaf width under
WBPH stress. (G, H) shows effect of GABA on shoot and root fresh weight respectively, under WBPH stress. Data represented in graphs were
analyzed as a mean of three independent biological replicates ± SD. Different letters on the bars shows significant differences (p ¾ 0.05) as
evaluated by DMRT test.
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results indicate that GABA enhances the plant defense system in

response to pest stress fromWBPH.
3.3 GABA reduces oxidative stress and
regulates ion homeostasis during
WBPH infestation

To further evaluate the effect of GABA treatment on rice plants

under WBPH stress, we investigated the level of oxidative stress
Frontiers in Plant Science 07
induced by insect infestation (Figure 4). Oxidative stress occurs due

to generation of ROS such as H2O2 and O2
•- under stress conditions.

We quantified H2O2 and O2
•- production by visualizing it via DAB

and trypan blue staining and observed that WBPH infestation

increased their accumulation; this effect was mitigated in the

GABA-treated plants (Figures 4A, B). Quantitative analysis of

H2O2 and O2
•- also revealed that WBPH infested plants showed

significant accumulation of both ROS species (P < 0.05 compared to

un-infested plants), whereas GABA supplementation reduced H2O2

by 12% and O2
•- by 17% (P < 0.05; Figures 4C, D). These results
A B

D
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C

FIGURE 2

GABA reduces WBPH damagein rice stem and leaves. (A, B) shows original picture of leaf and stem respectively. (C, D) shows the ImageJ analyzed
picture of leaf and stem respectively, indicating the damage induced by WBPH infestation. (E, F) shows the quantitative analysis of the leaf and stem
damage induced by WBPH, respectively. ** indicates p < 0.01, and *** indicates p < 0.001.
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indicate that GABA application significantly mitigates oxidative

stress induced by WBPH via reduction of ROS generation.

The generation of ROS in plants is typically accompanied by

electrolyte leakage and programmed cell death. We observed that

electrolyte leakage also reduced by 37% in WBPH+GABA plants

compared with WBPH infested plants (Figure 4E), which strongly

suggest that electrolytic leakage and ROS are correlated. We extended

our investigation to determine changes in accumulation of Fe+, Mg+,

and Ca+ ions with GABA supplementation in response to WBPH

stress (Figures 4F–H). GABA application significantly (P < 0.05)

increased the total concentration of Fe+, Mg+, and Ca+ ions by 237,

100, and 23respectively compared with WBPH infested plants.

Interestingly, Ca+ in WBPH treated plants increased 317%

compared with control plants, which shows that WBPH also

induces Ca+ accumulation in rice plants. These results suggested

that GABA regulates ion homeostasis under WBPH stress in rice

plants. Furthermore, compared to control plants, GABA-treated

plants also showed reduced ROS and electrolyte leakage in normal

condition, while enhancing Fe+, Mg+, and Ca+ ions accumulation.
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These results suggested that in normal situation, GABA reduces ROS

and induces ions (Fe+, Mg+, and Ca+) accumulation in rice plants.
3.4 GABA regulates succinate and NADPH
levels via shunt pathway genes under
WBPH stress

We next evaluated levels of endogenous GABA, succinate,

NADPH, and GABA shunt pathway genes (GAD, GABA-T,

SSADH) in rice plants in response to challenge with WBPH

(Figure 5). We first quantified endogenous GABA content in rice

roots and shoots following WBPH infestation (Figures 5A, B). Our

results showed that a significantly higher amount of GABA

accumulated in roots and shoots in the GABA-supplemented

plants (GABA, GABA+WBPH) compared with control plants.

However, GABA accumulation in the shoots reduced by 34% in

WBPH infested plants compared with control plants and by 51% in

GABA+WBPH plants compared with un-infested GABA-
A

B D

C

FIGURE 3

GABA inhibit WBPH survival and reduces their population in rice plant. (A, B) shows pictorial and graphical representation of effect of direct
application of GABA different concentration on WBPH survival. (A) represent dead insects while red arrow in (C) indicate presence of WBPH on
plants. (C, D) shows effect of WBPH population percentage in plants supplemented with different concentrations of GABA. All the control plants,
5mM, 10mM, and 15mM GABA supplemented plants were grown in the same insectarium and were infested seven days after GABA supplementation.
DATA in the graphs were presented in percentage. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.
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supplemented plants (Figure 5A). The same trend was found in the

roots, whereas GABA was reduced by 27% inWBPH infested plants

compared to control plants and by 51% in GABA+WBPH plants

compared with un-infested GABA-supplemented plants

(Figure 5B). The concentration of succinate and NADPH in both

the roots and shoots of rice plants followed the same trend,

decreasing in response to WBPH infestation but increasing with

GABA treatment (Figures 5C–F). Succinate concentration

increased 356% in GABA-treated plant leaf compared with

control plant and 354% in WBPH+GABA plant leaf compared

with WBPH infested plants (Figure 5C). In the roots, the increase in

succinate concentration with GABA treatment was more

pronounced in infested plants (275%) than un-infested plants

(74%; Figure 5D). NADPH activity was also enhanced by GABA

application and reduced by WBPH infestation in both shoots and

roots (Figures 5E, F).

GABAshunt ismainlycomposedof three enzymes:GAD,GABA-T,

and SSDHA (Bouché et al., 2003). We next evaluated the expression of

genes in the GABA shunt pathway following GABA supplementation

and WBPH infestation in rice plants. We found that the expression of

GAD increased significantly (88%; P < 0.05) by GABA treatment

following WBPH infestation (Figure 5G). The same trend was seen

with expression ofGABA-T and SSADH (Figures 5H, I). The expression

of GABA-T enhanced 172% in GABA+WBPH plants compared with

untreatedWBPH infested plants (Figure 5H).Meanwhile, expression of

SSADH was significantly enhanced (107%) in GABA-supplemented

plants compared with controls, and 16% increased with GABA
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treatment in infested plants compared with control plants (Figure 5I).

Together, these results reveal that application of GABA reducesWBPH

stress via regulation of succinate concentration, NADPH activity, and

shunt pathway gene expression.
3.5 GABA induces pathogen defense-
related genes and ABA and SA hormones

In most plants, pathogenesis-related (PR) genes accumulate in

response to pathogen infection and are used as marker genes for

systemic acquired resistance. Here, we evaluated the expression of

phenylalanine ammonia-lyase (PAL) and some PR genes, together

with ABA and SA (Figure 6). We investigated the expression pattern

of PAL, PR1, PR2, PR3, PR4A, PR8A, and PR8B in GABA-

supplemented rice plants challenged with WBPH stress. The results

showed that, although WBPH infestation decreased expression of

PR1 and PR8A, GABA treatment ultimately increased the expression

of PAL, PR1, PR2, PR3, and PR4A (P < 0.05) during WBPH-induced

stress (Figure 6). We also found that GABA induces PAL, PR1, PR2,

PR4A, and PR8A expression in normal conditions, without pest

infestation. However, GABA had no apparent effect on PR8A and

PR8B in the setting of WBPH stress (Figures 6F, G). Overall, these

results show that GABA application significantly regulates certain PR

genes in response to WBPH-induced stress.

ABA and SA are stress hormones that accumulate under both

abiotic and biotic stress to provide protection (Bharath et al., 2021;
A B D
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C

FIGURE 4

Application of GABA reduces oxidative stress, induced by WBPH infestation in rice plants and regulate ions homeostasis. (A, B) shows in situ
detection of oxidative stress caused by generation of ROS during WBPH stress, using DAB and trypan blue staining respectively. (C-E) shows H2O2,
O2

.−, and electrolytic leakage. (F-H) shows Fe2+, Mg+, and Ca+ contents. Data represented in graphs were analyzed as a mean of three independent
biological replicates ± SD. Different letters on the bars shows significant differences (p ¾ 0.05) as evaluated by DMRT test.
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Nadarajah et al., 2021). Here, we investigated the trend of SA and

ABA accumulation in GABA-treated plants during WBPH-induced

stress (Figures 6H, I). We found that exogenous GABA enhances

ABA and SA accumulation in normal conditions as well as during

WBPH-induced stress. Under normal conditions, GABA increased

ABA and SA accumulation by 413% and 69%, respectively. In

WBPH infested plants, GABA treatment induced respective ABA

and SA increases of 352% and 57%. Overall, our results indicate that

GABA has a more pronounced effect on ABA accumulation.

Maintenance of water content via stomata control and leaf

vessel distribution is an important component of the plant stress

response. Our analysis demonstrated that GABA application

regulates stomata opening and closing and water use efficiency of

the plants. The results showed that GABA inhibit stomata opening

in GABA and GABA+WBPH treated plants (Figure 7A), which is in

line with ABA accumulation (Figure 6H) as ABA induces stomata

closing. Further, we predicted that GABA application could regulate

water use efficiency due to reducing leaf vessel cell size. As expected,

we found that GABA application reduced leaf vessel size under both

normal and WBPH infestation conditions (Figure 7B). It has been
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reported previously that smaller vessel cell size reduces water

conductivity, resulting in less water evaporation (Apgaua et al.,

2017). Overall, these results indicate that GABA application induces

ABA accumulation, ultimately resulting in water conservation that

helps to promote stress resistance.
3.6 GABA reduces WBPH-mediated
oxidative stress via regulation of the
antioxidant system

To understand the mechanism of WBPH-induced stress

inhibition by GABA application in rice plants, we observed the

activity of antioxidant enzymes. First, we used lipid peroxidation,

measured by malondialdehyde (MDA) content, to assess membrane

damage induced by WBPH infestation (Figure 8A). Our results

revealed that GABA application reduced MDA content by 291% in

WBPH+GABA plants compared WBPH infested plants. In

addition, we investigated the activity of antioxidant enzymes

(APX), glutathione peroxidase (GPx), CAT, POD, SOD, ABTS,
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FIGURE 5

Exogenous application of GABA regulate TCA cycle in rice plant. (A, B) shows accumulation of GABA in rice shoot and roots respectively. (C, D) shows
accumulation of succinate in leaf and root respectively. (E, F) shows accumulation of NADPH in shoot and root respectively. (G-I) shows the expression
of GABA shunt genes i.e GAD, GABA-T, and SSADH respectively. (J) shows schematic representation of GABA shunt and TCA cycle pathway. Data
represented in graphs were analyzed as a mean of three independent biological replicates ± SD. Different letters and on the bars shows significant
differences (p ¾ 0.05) as evaluated by DMRT test. Asterisks on bars shown in (G-I) represent significant differences (p ¾ 0.05) as evaluated by Bonferroni
post-hoc test.
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and DPPH. All of these increased significantly (P < 0.05) in the

GABA+WBPH plants compared with untreated, un-infested

control plants. The activities of GPx, POD, and SOD increased

significantly (P < 0.05) by the application of GABA in both normal

and WBPH infested plants, suggesting that exogenous application

of GABA alone upregulates the activity of these enzymes.

Furthermore, our results showed that ABTS and DPPH activity

was significantly higher in WBPH and GABA+WBPH plants

compared with control plants. However, the activity of both the

enzymes increased by 29% and 12%, respectively, in GABA+WBPH

plants than that of WBPH plants. In this study we also found that in

normal condition, GABA application significantly (P < 0.05)
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reduces ABTS activity (about 90%) compared with control plants,

whereas in WBPH stress and WBPH stress supplemented with

GABA showed enhance ABTS activity (Figure 8G). Our results

suggest that GABA reduces ABTS activity in normal conditions, but

increases its activity when plants undergo stress.
3.7 GABA induces melatonin biosynthesis
genes in response to pest stress

GABA and melatonin are plant endogenous molecule that are

synergistically associated to take part in regulation of plant
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FIGURE 6

GABA induces Phenylalanine ammonia-lyase, pathogenesis related genes and phytohormons in rice under WBPH stress. (A) represent PAL gene
expression level. (B-G) represent gene expression of PR1, PR2, PR3, PR4A, PR8A, and PR8B respectively. (H, I) shows the accumulation of ABA and
SA hormones respectively. Data represented in graphs were analyzed as a mean of three independent biological replicates ± SD. Asterisks on bars
shown in (G-I) represent significant differences (p ¾ 0.05) as evaluated by Bonferroni post-hoc test.
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responses to stress conditions. Therefore, we next evaluated the

effect of exogenous GABA application on expression of melatonin

biosynthesis genes tryptophan decarboxylase (TDC), tryptamine 5-

hydroxylase (T5H), acetyl-serotonin methyltransferase (ASMT),

and serotonin N-acetyl transferase (SNAT) in response to WBPH-

induced stress. Generally, TDC and T5H regulate the production of

serotonin from tryptophan, and ASMT and SNAT produce

melatonin from serotonin (Bhowal et al., 2021). Figure 9C shows

the melatonin biosynthesis pathway in plants. We studied

differential expression of all the four genes and found that all

transcript levels were significantly expressed in the plants

supplemented with GABA (Figure 9). TDC and ASMT were

significantly (P < 0.05) reduced, by 52% and 43%, respectively, in

WBPH infested plants compared with control plants (Figures 9A,

C). However, GABA application inWBPH infested plants increased

their respective transcript levels by 186% and 337%. These results

indicate that exogenous GABA application rescues and

overcompensates for decreased transcription of TDC and ASMT

caused by WBPH infestation. Similarly, GABA application

significantly increased the expression of T5H and SNAT in the
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setting of WBPH infestation compared with normal WBPH infested

plants (Figures 9B, D). As all four genes related to melatonin

biosynthesis are significantly upregulated by GABA in the setting of

WBPHstress, enhancementofmelatoninaccumulationbyGABAmay

represent a potential stress protection mechanism.
3.8 GABA regulates JA pathway genes
under pest stress

The transcript levels of genes related to the JA biosynthesis

pathway (LOX, AOS, AOC, OPR) were assessed in WBPH infested

plants (Figure 10). LOX is a marker gene for JA biosynthesis pathway

and express against pest infestation (Shrestha and Huang, 2022). AOS

and AOC play a key role in transforming the product generated by

LOX, specifically hydroperoxyoctadecatrienoic acid (HPOT). This

process leads to the creation of the intermediate known as 12-oxo-

phytodienoic acid (OPDA). This intermediate (OPDA) exhibits

independent signaling activity (Taki et al., 2005). Nevertheless, in

the process of synthesizing jasmonic acid (JA), it undergoes
A B

FIGURE 7

Exogenous application of GABA regulates rice leaf stomata closure and leaf vessels reduction. (A) shows stomata opening and closure and (B) shows
vessels dimeter variations. Red arrows shows stomata while yellow arrows shows vessels in leaf lamina.
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FIGURE 8

GABA application induces antioxidant defense system in rice plant against WBPH stress. (A) shows MDA contents, (B) shows APX activity, (C) shows
GPx activity, (D) shows CAT activit, (E) shows POD activity, (F) shows SOD activity, (G) shows ABTS activity, and (H) shows DPPH activity. Data
represented in graphs were analyzed as a mean of three independent biological replicates ± SD. Asterisks on bars shown in (G–H) represent
significant differences (p ¾ 0.05) as evaluated by Bonferroni post-hoc test.
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FIGURE 9

GABA induces melatonin biosynthesis in response to WBPH stress. (A–D) shows the transcript level of melatonin biosynthesis pathway genes i.e.
TDC, T5H, ASMT, and SNAT respectively. (E) shows the general pathway of melatonin and their genes. Data represented in graphs were analyzed as a
mean of three independent biological replicates ± SD. Asterisks on bars shown in (A–D) represent significant differences (p ¾ 0.05) as evaluated by
Bonferroni post-hoc test.
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transportation from the chloroplast to the peroxisomes. Within the

peroxisomes,OPR facilitates its reduction, followed by a series of steps

involving b-oxidation to shorten the side chain (Shrestha and Huang,

2022). The ultimate outcome within the peroxisomes is JA, and it has

the ability tomove freely into the cytosol. Figure 10E shows the general

pathway of JA biosynthesis in plants. The expression levels of all four

genes showed significant (P < 0.05) increases in the GABA-

supplemented, WBPH infested plants compared with untreated, un-

infested control plants. Expression levels of LOX,AOS,AOC, andOPR

were increased in response to WBPH stress in untreated plants. With

GABA treatment, LOX, AOS, AOC, and OPR expression further

increased by 78%, 17%, 187%, and 21%, respectively. Overall, these

results indicate thatLOX,AOS,AOC, andOPR genes are transcribed in

response to WBPH stress, leading to JA accumulation, and that the

upregulation is enhanced by treatment with exogenous GABA.
3.9 GABA application reduces WBPH stress
via regulation of free amino
acid biosynthesis

Amino acids play a crucial role in pest–plant interaction. They

are important components of plant primary metabolites and
Frontiers in Plant Science 14
function as precursors for the synthesis of important metabolites.

To quantify changes in the free amino acid content of GABA-

supplemented rice plants undergoing WBPH stress, leaf samples

were collected after one week of WBPH infestation and amino acids

were quantified through GC-MS. WBPH infestation and GABA

supplementation both significantly (P < 0.05) affected the free

amino acid content (Supplementary Figure 6). GABA application

to non-infested plants increased the concentration of most amino

acids. However, WBPH infested plants demonstrated overall

reduced free amino acid content compared to control plants, even

when treated with GABA. Compared to control, infested plants and

GABA-treated plants showed an increased accumulation of free

amino acids. Specifically, GABA treatment increased aspartic acid,

alanine, arginine, and proline by 11%, 8%, 24%, and 12%,

respectively, compared to control plants. However, WBPH

infestation significantly (P < 0.05) reduced the accumulation of

aspartic acid, alanine, arginine, proline and total amino acid

approximately to 30%, 34%, 23%, 26%, and 62% respectively

compared to control plants. Comparing free amino acids of

WBPH infested and WBPH+GABA plants, most of them were

significantly enhanced in WBPH+GABA plants. In particular,

aspartic acid, glutamic acid, alanine, leucine, arginine, proline and

total amino acids were increased approximately to 24%, 18%, 25%,
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FIGURE 10

GABA induces JA biosynthesis pathway in response to WBPH stress. (A–D) shows the transcript level of JA biosynthesis pathway genes i.e. LOX,
AOS, AOC, and OPR respectively. (E) shows the general pathway of JA and their genes. Data represented in graphs were analyzed as a mean of three
independent biological replicates ± SD. Asterisks on bars shown in (G–I) represent significant differences (p ¾ 0.05) as evaluated by Bonferroni post-
hoc test.
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27%, 27%, 31%, and 99% respectively, in WBPH+GABA plant

compared to WBPH infested plants. This result revealed that these

free amino acids are inhibited by WBPH stress, whereas they are

induced by GABA to reduce the WBPH-induced stress in

rice plants.
4 Discussion

The data presented here demonstrate a possible mechanism by

which GABA regulates plant tolerance against WBPH infestation

(simplified model presented in Figure 11). We found that GABA

regulates several stress tolerance pathways, including antioxidant

enzyme activity, the TCA cycle, phytohormones, melatonin

biosynthesis-related genes, JA biosynthesis-related genes, ion

concentration, stomata opening and closing, and water conductance.

GABA is known as a metabolic signaling amino acid that

accumulates in response to biotic and abiotic stress in plants

[35,53,54]. To the best of our knowledge, no other study has

explored the potential of exogenous GABA application to

enhance the tolerance of rice against WBPH. The plate and pot-

based results of this study show that increasing concentrations of

GABA significantly improved rice seedling growth parameters

compared to control plants (Supplementary Figure S1,

Supplementary Figure S3). It also enhanced rice growth when

applied exogenously during WBPH infestation, which normally

inhibits plant growth (Figure 1). However, an overall decline in

growth was still observed in GABA+WBPH plants compared to

control plants, indicating an inability for GABA application to fully

rescue plants from infestation. Plants produce very low levels of

GABA at baseline; however, its production increases promptly

when plants are subjected to stress (Kinnersley and Turano,

2000). It has been reported that GABA promotes tomato growth

via regulation of photosynthetic machinery, gas exchange capacity,

chlorophyll biosynthesis, enzymatic and non-enzymatic responses,

and membrane stability during stress conditions (Luo et al., 2011).

Our previous and current studies demonstrated that WBPH

infestation has a severe effect on rice plant growth attributes (Jan

et al., 2021b). This investigation showed that exogenous GABA

reduces the area of WBPH-induced damage, enhances plant

recovery rate after WBPH attack, and discourages WBPH

infestation of rice plants (Figures 2, 3; Supplementary Figure S5).

Presumably, GABA application either increases the insect deterrent

effects of the plant or directly affects insects. Our results are

supported by previous studies reporting that GABA acts as a key

factor in the plant defense against herbivorous insects, and that

insects feeding on GABA show a reduced performance (Scholz

et al., 2017). Additionally, a GABA-supplemented diet reduced the

growth and survival of another herbivorous insect, Choristoneura

rosaceana cv Harris, and delayed its life cycle progression; while its

attack on soybean leaves increased GABA accumulation (Ramputh

and Bown, 1996). A similar study reported recently that Spodoptera

littoralis larvae fed with a GABA-supplemented diet showed

reduced weight compared to control larvae groups, whereas their

infested plants showed increased levels of GABA accumulation

(Scholz et al., 2015). The feeding of S. littoralis larvae on Arabidopsis
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and mechanical wounding of the plant with a robotic caterpillar

both increased endogenous GABA, by two and ten-fold,

respectively (MithoüFer et al., 2005; Scholz et al., 2015). Another

study reported that GABA production was induced locally in

tobacco and soybean leaves when challenged with insect damage

(Bown et al., 2002). In support of previous studies, our results reveal

that GABA is involved in the plant defense system against

herbivorous insects.

In this study, we found that exogenous GABA treatment

induced endogenous GABA accumulation in both roots and

shoots. Non-treated plants infested with WBPH also showed

enhanced levels of GABA accumulation compared to control

plants, showing that WBPH attack induces a GABA biosynthesis

pathway. GABA is mainly produced by decarboxylation of

glutamate, catalyzed by GAD, and degraded by GABA-T in plants

(Shelp et al., 2012b). GAD and GABA-T expression levels were

highest in WBPH+GABA plants compared to WBPH infested

plants; simultaneously, both the genes were also significantly

upregulated in WBPH infested plants compared to controls

(Figure 5). GAD activity is Ca2+ dependent and is induced by

plant cell injury. We found that Ca2+ contents were increased after

the non-treated plants were infested with WBPH and

WBPH+GABA plants showed more Ca2+ contents than the

WBPH infested normal plants (Figure 4), which shows that Ca2+

and GABA has synergistic association. It is reported that GAD is

activated in one of two ways: (i) in intact plant tissue and neutral

pH; GAD activity is stimulated in a Ca2+-dependent manner by the

binding of calmodulin (CAM) to the CAM-binding site, or (ii) after

wounding of plant cells, the vacuolar content is released and the

cytosol is acidified, leading to a Ca2+-independent activation of

GAD (Carroll et al., 1994; Snedden et al., 1995). Our results are at

par with previous studies, suggesting an elevation of Ca2+ under

herbivorous attack in Arabidopsis (Dengler, 2006; Kiep et al., 2015).

Therefore, it is likely that without GABA application, wounding of

rice plant leaves also induces Ca2+ upregulation sufficient for GAD

activation, ultimately resulting in GABA accumulation.

The application of GABA prior to WBPH infestation limited

plant cell death and generation of ROS such as H2O2 and O2
•-

(Figure 4). Here, we demonstrated that GABA application

significantly overcame the oxidative stress induced by WBPH, as

MDA content was greatly reduced in GABA+WBPH plants

compared to untreated plants infested with WBPH (Figure 8A).

The simultaneous increase of antioxidant enzymes (APX, GPx,

CAT, POD, SOD, ABTS, and DPPH) (Figure 8) in the

GABA+WBPH plants suggested that GABA stimulates the

antioxidant system and reduces the generation of ROS during

WBPH stress. To date, there are no known observations reported

showing that GABA treatment induces antioxidant enzymes against

WBPH in rice plants. However, recent studies demonstrated that

tomato and pear plants treated with exogenous GABA prior to

pathogenic fungus infection showed increased antioxidant enzyme

activity and reduced oxidative stress (Yu et al., 2014; Fu et al., 2017;

Yang et al., 2017). Recently, it was reported that exogenous GABA

increases CAT and SOD activity, which results in a significant

reduction in H2O2, O2
•-, and MDA content in response to heavy

metal stress (Seifikalhor et al., 2020). Reduction of ROS by
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exogenous GABA is likely one of the main strategies used to

overcome the oxidative stress induced by WBPH infestation.

Here, our finding of ROS reduction was paralleled by increased

antioxidant enzyme activity after GABA application. Additionally,

our study revealed that the GABA shunt reactions were activated in

response to WBPH stress in rice plants. The expression levels of

GAD, GABA-T, and SSADH were upregulated in WBPH+GABA

plants compared to only WBPH infested plants while only GABA

application alone also led to an increased level of all three genes

(Figure 5). These results were in line with a previously reported

study reporting that exogenous GABA increased the expression of

GABA-T and SSADH in citrus plants (Hijaz and Killiny, 2019).

Furthermore, our study found higher accumulation of NADPH and

succinate in GABA+WBPH plants compared to only WBPH

infested plants, while WBPH infested plants reduced NADPH

and succinate accumulation when compared with control plants
Frontiers in Plant Science 16
(Figure 5). However, we found that succinate was reduced in

WBPH infested plants compared with control plants; however,

the expression level of SSADH was higher in WBPH infested

plants compared to the control plants. There was non-significant

increase in SSADH expression level in WBPH infested-plants

compared to control plants. SSADH provide succinate into TCA

cycle by conversion of succinate semialdehyde (SSA) into succinate

(Shelp et al., 2021). Succinate provides a carbon skeleton and

NADH through the TCA cycle, which produces ATP through an

electron transport chain, which prevents the accumulation of ROS

(Tuin and Shelp, 1994; Fait et al., 2005; Hijaz and Killiny, 2019).

Here, we infer that exogenous application of GABA promotes

GABA shunt activation during stress conditions, maintaining an

adequate ATP supply and reducing ROS generation.

Notably, the accumulation of free amino acids, particularly

proline, arginine, aspartic acid, and glutamic acid, was inhibited
FIGURE 11

Schematic representation of GABA shunt and its associated pathways regulated during WBPH stress in rice plant. ABA, Adenosine triphosphate;
ABTS, Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid; ADP, Adenin di-phosphate; AOC, Allene oxide cyclase; AOS, Allene oxide synthase; APX,
Ascorbate peroxidase; ASMT, Acetyl-serotonin methyltransferase; ATP, Adenin tri-phosphate; Ca2+, Calcium Ion; CaM, Calmodulin; CAT,
Ahloramphenicol acetyltransferase; DPPH, 2,2-diphenyl-1-picrylhydrazyl; EOT, Epoxyoctadecatrienoic acid; GABA, Gamma-aminobutyric acid;
GABA-T, GABA transaminase; GAD, Glutamate decarboxylase; GHB, g-Hydroxybutyric acid; GPx, Glutathione peroxidase; H2O2, Hydrogen peroxide;
HPOT, Hydroperoxyoctadecatrienoic acid; JA, Jasmonic acid; LOX, Lipoxygenase; MDA, Malondialdehyde; NAD+, Nicotinamide adenine
dinucleotide; NADP+, Nicotinamide adenine dinucleotide phosphate; NADH, Nicotinamide adenine dinucleotide+hydrogen; NADK, NAD+ kinase;
NADPH, Nicotinamide adenine dinucleotide phosphate+hydrogen; NADPOX, NADPH oxidase; O2

•−, Superoxide radical; OPC, Oxo-phytodienoic
acid; OPDA, Oxophytodienoic acid; OPR, Oxo-phytodienoic acid reductases; PAL, Phenylalanine ammonia-lyase; POD, Peroxidase; PR, Pathogenesis
related; ROS, Reactive oxygen species; SAR, Systemic acquired resistance; SNAT, Serotonin N-acetyl transferase; SOD, Superoxide dismutase;
SSADH, Semialdehyde dehydrogenase; SSR, Succinic semialdehyde reductase; T5H, Tryptamine 5-hydroxylase; TDC, Tryptophan decarboxylase.
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by WBPH stress but increased by GABA supplementation

(Supplementary Figure S6). These amino acids collectively

reduces oxidative stress in rice plant by enhancing various

biochemical and physiological processes. Proline is an important

osmo-protectant that accumulates in response to various stressors

(Che-Othman et al., 2020). Being an ROS scavenger and an

influencer of ion homeostasis, proline interacts with hydroxyl

radicals and is considered a GABA precursor (Cuin and Shabala,

2005; Kaul et al., 2008; Signorelli et al., 2015). In addition to proline,

there was accumulation of arginine and glutamic acid, which are

glutamate derivatives; their accumulation was consistent with the

induction of GABA shunt. The interaction between proline and the

NADP+/NADPH ratio has also been reported in several studies

(Kohl et al., 1988; Hare and Cress, 1997; Strizhov et al., 1997).

Proline oxidizes NADPH and is reduced by H2O2 for redox

regulation and prevention of H2O2 toxicity (Seifikalhor et al.,

2020). The accumulation of free amino acids induced by

exogenous GABA is likely involved in the control of oxidative stress.

In-depth characterization of the effects of exogenous GABA

treatment can allow for a better understanding of WBPH stress

inhibition mechanisms in rice plant. Regarding gene expression and

phytohormonal regulation induced by GABA, we found that PAL

expression, PR gene expression, and accumulation of ABA and SA

were significantly increased in GABA-supplemented plants (in both

infested with WBPH and non-infested plants) (Figure 6). Recent

reports are in line with our findings, demonstrating that GABA

treatment induces PAL and PR1 gene expression significantly in

plants (Abd Elbar et al., 2021; Mejri et al., 2023). PAL is an

important enzyme of the phenylpropanoid pathway that catalyzes

the transition of phenylalanine into precursors of phenolic

compounds such as flavonoids, lignins, and SA (La Camera et al.,

2004; Vogt, 2010). Furthermore, our investigation showed that

expression of JA biosynthesis-related genes (LOX, AOS, AOC, and

OPR) were significantly induced in GABA-treated plants infested

with WBPH (Figure 10), indicating both SA and JA are important

signals involved in the GABA-mediated WBPH defense response.

Research has shown that the SA and JA pathways can have additive

or synergistic effects, particularly in rice plants infested by pests.

However our results shows that SA and JA some time act in

complementary manner. For instance SA and JA pathways was

observed complementary in rice infested with WBPH (Kanno et al.,

2012). The induction of PR genes by GABA, under the regulation of

SA, might be part of a broader defense mechanism that is also

effective against insect pests like WBPH. This could be due to the

complex interactions between the SA and jasmonic acid (JA)

pathways, which are not exclusively antagonistic but can

sometimes work together to enhance the plant’s resistance to

various stressors. The significance lies in the potential for these

PR genes to contribute to a defense response that is relevant to the

specific stress caused by WBPH, despite the traditional association

of SA with pathogen defense. We further hypothesized another

possible mechanism of GABA-mediated defense against WBPH, via

regulation of melatonin. We found that melatonin biosynthesis-

related genes (TDC, T5H, ASMT, and SNAT) were significantly

induced by GABA in both infested and non-infested plants

(Figure 9). There are two possible ways that the melatonin
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biosynthesis pathway is being induced in this case: either GABA

induces melatonin biosynthesis-related genes directly, or it causes

accumulation of JA that leads to melatonin production. This

inference is based on a previous study, which showed that GABA

and melatonin have a synergistic function in response to multiple

types of stress (Shomali et al., 2021). It has also been reported that

methyl jasmonate induces melatonin biosynthesis in watermelon

(Li et al., 2021a). Additionally, melatonin treatment increases

methyl jasmonate via induction of LOX and AOC expression,

resulting in regulation of antioxidant enzymes and reduction of

H2O2 (Liu et al., 2019). These reports show that melatonin and

methyl jasmonate are part of a positive feedback loop, and work

synergistically in the stress response. Considering these previous

studies, our results suggest that melatonin synthesis, mediated by

GABA and JA, inhibits WBPH -induced stress in rice.

GABA exhibits interactions with phytohormones such as

auxins, cytokinins, abscisic acid, and ethylene, suggesting a

potential contribution to stress tolerance in plants (Podlesá̌ková

et al., 2019). It is reported that, IAA and ABA induced aluminum-

activated malate transporter (ALMT) family genes which is

responsible for GABA regulation under stress condition

(Podles ̌áková et al., 2019). Another study demonstrated the

functional link between GABA and cytokinins in barley, where

transgenic lines overexpressing the Arabidopsis cytokinin

dehydrogenase 1 gene (AtCKX1) resulted in the upregulation of

GABA-related genes GAD and ALMT in roots (Pospıśǐlová et al.,

2016). Exogenous application of GABA also increased ethylene by

regulation of 1-aminocyclopropane-1-carboxylic acid (ACC)

synthase which is an evidence of GABA and ethylene interaction

(Kathiresan et al., 1997). Interestingly, GABA application enhanced

the accumulation of ABA in both normal and infested plants which

regulate stomata closing, and reduced water conductance via leaf

vessel size inhibition (Figure 6, 7). The closing of stomata is

consistent with ABA accumulation, as ABA induces stomata

opening during stress conditions to reduce water loss. We infer

that GABA induces ABA accumulation, which results in closing of

stomata and reduced water conductance under stress conditions.

There is clear evidence from a previous study that GABA

application plays a key role in stomata closure (Mekonnen et al.,

2016). Another study focused on drought stress also demonstrated

that ABA accumulation induces Ca2+ flux and the Ca2+/calmodulin

complex further activates GAD, resulting in GABA synthesis (Shelp

et al., 2012a; Daszkowska-Golec and Szarejko, 2013). The GAD1

mutant of Arabidopsis shows higher transpiration even in drought

stress conditions, but ABA supplementation leads to closing of

stomata and reduced water loss (Ward and Schroeder, 1994; Meyer

et al., 2010). This result supports our finding that GABA plays a

pivotal role in stomata closure and water conductance via induction

of ABA accumulation. In plants, the accumulation of

g-aminobutyr ic acid (GABA) is a rapid response to

environmental stress, and changes in its internal levels impact

plant growth. Applying GABA externally has been found to

enhance stress tolerance by influencing the expression of genes

related to plant signaling, transcriptional regulation, hormone

product ion, react ive oxygen species generat ion, and

polyamine metabolism.
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Undoubtedly, the primary benefit of enhancing the GABA

content in crops and food matrices lies in its significant potential

to positively impact human health, and consumers are already

acquiring tomatoes with genetically enhanced GABA (Ahmar

et al., 2023a, Ahmar et al, 2023b). However, there are pros and

cons of increasing dietary intake of GABA in long term and it is

predicted that it might prevent and alleviate high blood pressure

effects (Gramazio et al., 2020). In term of plants, it is reported that

high accumulation of GABA has the potential to disrupt the balance

of amino acids within cells, resulting in abnormal phenotypes

(Gramazio et al., 2020). Recently, it is reported that transgenic

tomato increased GABA accumulation up to 19 fold but the plants

scarcely produced fruits, with some exhibiting teratogenic effects,

displayed pronounced dwarfism, pale green, and curled compound

leaves, along with necrosis on both leaves and buds (Lee et al.,

2018). In the study conducted by (Koike et al., 2013), the successful

elevation of GABA levels was achieved through the suppression of

SlGABA-T1 using RNA interference. However, the resultant

transgenic plants exhibited dwarf phenotypes, with heights less

than half of the wild type (WT), and infertility, accompanied by

significant flower abscission. Similarly, the GABA-T-deficient

mutant pop2 in Arabidopsis demonstrated deficiencies in pollen

tube growth, as well as impaired cell elongation in hypocotyls and

primary roots, as observed in studies by (Palanivelu et al., 2003;

Renault et al., 2011). According to our knowledge, there is

insufficient information exists on the effect of long-term use of

GABA on agricultural. It is crucial to investigate whether

continuous or extended use of GABA may lead to unintended

consequences, such as altered plant physiology, changes in soil

microbial communities, or potential ecological impacts.
5 Conclusion

The current study concludes that WBPH infestation

significantly inhibits the growth and development of rice plants,

while exogenous GABA application increased WBPH stress

tolerance and enhanced rice growth. GABA application either has

a direct effect on WBPH, or is involved in triggering a downstream

defense reaction in the infested plants. It is evident from our study

that GABA mitigated WBPH stress via regulation of the TCA cycle,

which results in reduction of ROS generated by pest infestation.

Another possible mechanism of GABA-mediated WBPH stress

reduction in rice is associated with PAL gene regulation, which is

responsible for activation of PR genes and SA hormone

biosynthesis. Moreover, GABA induced antioxidant-related

enzyme activity, which increased ROS scavenging and reduced

WBPH-induced stress. Our study also suggests that GABA enhances

ABA accumulation, which results in stomata closure and reduction of

water loss. Additionally, GABA reduces oxidative stress via enhanced

accumulation of melatonin and upregulates JA biosynthesis pathway,

which is a defense signaling pathway in pathogen resistance. Overall,

our study found that GABA inhibits WBPH stress in rice plants

through regulation of several defensive mechanisms, which merit

further molecular evaluation.
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