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Leveraging transcriptomics-
based approaches to enhance
genomic prediction: integrating
SNPs and gene networks for
cotton fibre quality improvement
Nima Khalilisamani1†‡, Zitong Li1‡, Filomena A. Pettolino1,
Philippe Moncuquet1, Antonio Reverter2

and Colleen P. MacMillan1*

1Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia, 2Livestock and
Aquatic Genomics, Agriculture and Food, CSIRO, St Lucia, QLD, Australia
Cultivated cotton plants are the world’s largest source of natural fibre, where yield

and quality are key traits for this renewable and biodegradable commodity. The

Gossypium hirsutum cotton genome contains ~80K protein-coding genes, making

precision breeding of complex traits a challenge. This study tested approaches to

improving the genomic prediction (GP) accuracy of valuable cotton fibre traits to

help accelerate precision breeding. With a biology-informed basis, a novel approach

was tested for improving GP for key cotton fibre traits with transcriptomics of key

time points during fibre development, namely, fibre cells undergoing primary,

transition, and secondary wall development. Three test approaches included

weighting of SNPs in DE genes overall, in target DE gene lists informed by gene

annotation, and in a novel approach of gene co-expression network (GCN) clusters

created with partial correlation and information theory (PCIT) as the prior

information in GP models. The GCN clusters were nucleated with known genes

for fibre biomechanics, i.e., fasciclin-like arabinogalactan proteins, and cluster size

effects were evaluated. The most promising improvements in GP accuracy were

achieved by using GCN clusters for cotton fibre elongation by 4.6%, and strength by

4.7%, where cluster sizes of two and three neighbours proved most effective.

Furthermore, the improvements in GP were due to only a small number of SNPs,

in the order of 30 per trait using the GCN cluster approach. Non-trait-specific

biological time points, and genes, were found to have neutral effects, or even

reducedGP accuracy for certain traits. As theGCNclusterswere generated based on

known genes for fibre biomechanics, additional candidate genes were identified for

fibre elongation and strength. These results demonstrate that GCN clusters make a

specific and unique contribution in improving the GP of cotton fibre traits. The

findings also indicate that there is room for incorporating biology-based GCNs into

GP models of genomic selection pipelines for cotton breeding to help improve

precision breeding of target traits. The PCIT-GCN cluster approach may also hold

potential application in other crops and trees for enhancing breeding of

complex traits.
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Introduction

Cotton (Gossypium spp.) is one of the most economically

significant crops, providing fibre and oilseed products worldwide.

In recent years, there has been an increasing demand for cotton

with improved agronomic traits, including for textile quality.

Traditional phenotype-based cotton breeding approaches have

been limited by the time-consuming and labour-intensive nature

of phenotypic evaluation, significant costs, and the underlying

genetic complexity of major traits such as yield and quality traits.

For example, a cotton variety typically takes 10 years of traditional

breeding, and large numbers of plants and field sites. Furthermore,

the cotton genome is large and very complex as it is an allotetraploid

with a long evolutionary lineage of divergence and domestication

spanning before that of hexaploid wheat and tetraploid canola (Li

et al., 2015; Chen et al., 2020). These issues make breeding of

complex multi-genic traits difficult and slow. To help accelerate

breeding, genomic prediction (GP) is a relatively recent strategy

being researched in cotton (Conaty et al., 2022) and also in breeding

of a wide range of crops and trees that utilise genome-wide data to

estimate breeding values. GP enables genomic selection (GS) of

valuable germplasm with desirable traits early in the breeding

process based on genetic information, and consequently helps to

significantly shorten the breeding cycle, reduces resource intensity

associated with large amounts of phenotyping, and facilitates

acceleration of genetic gain and precision of target traits

(Budhlakoti et al., 2022). Furthermore, advancements in high-

throughput sequencing technologies have raised many

possibilities for the integration of omics-based approaches,

particularly transcriptomics, to help accelerate the potential of GS

and GP strategies in cotton breeding for accelerating genetic gain

for a range of significant phenotypes such as fibre quality traits of

elongation, strength, length, disease resistance against verticillium

and fusarium wilts and other fungi as well as insect pests such as

silver-leaf white fly, and water and sodium stress tolerance (Conaty

et al., 2022).

Cotton seed fibre quality traits are important considerations in

the global commodity market. These economically important traits

include fibre length, strength, and elongation, among others, such as

micronaire, short fibre index, uniformity, and colour. A key

component of fibre quality is the cell wall whose composition

plays a pivotal role in determining the fibre’s physical properties

(Pettolino et al., 2022). Although thousands of genes are expressed

during fibre development and some important genes were identified

(MacMillan et al., 2017; Wang et al., 2017; Ma et al., 2018; Li et al.,

2020; Gallagher et al., 2020; Li et al., 2021a; Yang et al., 2023), the

majority of all the contributors to fibre traits remain largely

unidentified. Known cell wall genes that affect the strength and

elongation properties of the cell walls of a range of angiosperm

fibres include fasciclin-like arabinogalactan proteins (FLAs)

(MacMillan et al., 2010, 2015; Ma et al., 2022), as well as cellulose

synthases and cell wall biosynthetic enzymes that affect fibre quality

traits such as length, strength, and elongation (Liang et al., 2015;

Huang et al., 2015). Understanding the regulatory mechanisms of

and the interaction among these genes is crucial for unravelling the

genetic basis of these desirable traits.
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Transcriptomics allows for the quantification of gene

expression levels across different tissues, developmental stages,

and environmental conditions. By utilising differential expression

(DE) analysis, many researchers have identified the possibility of

identifying genes that are differentially regulated in response to

favourable traits, thus using a biological basis for precision breeding

approaches. This information, in turn, has been flagged as useful to

guide the development of precise breeding strategies using

biological understanding. Transcription-wide association studies

is a relatively new approach that is being explored in studies for

tackling human diseases (Mai et al., 2023) and in different plant

species to determine accurate gene-level association mapping (Li

et al., 2021a). Moreover, transcriptomic data have been providing

valuable insights into the molecular mechanisms underlying these

traits, aiding in the discovery of candidate genes and potential

regulatory networks involved in their development (Zhang et al.,

2015). In cotton, transcriptomics studies have identified large

numbers of genes associated with a range of fibre traits by using

genome-wide association studies (GWAS) and QTL approaches

identifying genes for strength and maturity in cotton fibres (Wang

et al., 2017; Ma et al., 2018; Li et al., 2021b).

Gene network analysis further enhances our understanding of

the complex interactions between genes, proteins, and regulatory

elements, and how they contribute to the expression of desirable

traits in cotton. By constructing gene co-expression networks

(GCNs), it is now possible to identify highly interconnected gene

networks that may be functionally related and potentially associated

with the phenotypic traits of interest, using computational graphical

learning approaches such as those with their origin based on partial

correlation and information theory (PCIT) (Reverter and Chan,

2008; Watson-Haigh et al., 2009). Groups of genes as clusters within

these networks can serve as key regulators or biomarkers of the

traits of interest, offering opportunities for targeted manipulation or

marker-assisted selection (Xu et al., 2011; Deng et al., 2012; Gu

et al., 2020; Zhang et al., 2022).

Integrating omics-based data, in particular the transcriptome

data, with GP approaches is becoming an increasingly popular

strategy considered to hold potential for enhancing plant breeding

including for cotton (e.g., Hu et al., 2019; Azodi et al., 2020; Liu et al.,

2020, 2022; Wang et al., 2023; Yang et al., 2023). Furthermore, single-

nucleotide polymorphisms (SNPs) are commonly used as molecular

markers in GS, capturing the genetic variation responsible for

phenotypic variation. By incorporating transcriptomic information,

which is more directly linked to phenotypes than SNPs, there could

be potential to increase the accuracy of GP (Hu et al., 2019). One

strategy for this is to measure the transcriptome data for the lines

available for the GP study and then integrate the transcriptome and

SNP data to jointly conduct prediction analysis (e.g., Hu et al., 2019;

Perez et al., 2022). Alternatively, DE analysis can be conducted using

transcriptome data alone, and then the DE genes detected from the

analysis can be used as knowledge in the GP model, e.g., by adding a

specific weight to the effects of SNPs that are linked to the DE regions.

The potential value of weighting genes in co-expression networks has

been flagged for cotton breeding in a study of exploring gene function

of fibre development (Zhang et al., 2022). Innovative approaches

taken in this research outlined here include using not only DE genes,
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but also outputs from gene network analysis based on PCIT, as well as

inclusion of biologically relevant developmental time points.

Biologically relevant transcriptomes can be important for

identifying the DNA elements involved in a trait. For this study, a

key element is the capture of synchronous single-cell

transcriptomes across biologically relevant developmental stages

(Figure 1A). The cotton seed fibre is a single cell, and its

development follows a clear sequence, from seed fibre cell

initiation just before the day of flowering, rapid cell growth to >3

cm long with a soft primary cell wall (PCW) over ~2.5 weeks, a

transition phase, a secondary cell wall (SCW) deposition phase

during which cell extension ceases and a thick secondary cell wall is

deposited on the inner surface of the cell’s primary wall, a cell

maturation and programmed cell death phase, and then finally

yielding a dry mature fibre cell after ~2 months that is harvested for

trade on the global natural fibre commodity market.

In this study, we aimed to investigate the potential of integrating

transcriptomic information obtained through RNA-seq analysis as

a pre-knowledge in GP models in cotton breeding. We determined

whether targeted enrichment of SNPs from groups of genes that

affect a fibre quality trait could provide better GP than random

SNPs. Such an approach would identify subsets of specific genes

from across the large suite of ~80K genes in the cotton genome that

contribute to the formation of a desired trait, thus taking a biology-

informed approach to GP where RNA expression is used in GP as

compared to only DNA markers. This would hold benefit to zoom

in to the specific genes for a trait, thus accelerating the precision of

GP. By leveraging developmental time course DE and gene network

analysis, we identified candidate genes associated with fibre length,

elongation, and strength. Next, these genes were considered as prior

information in a well-known Bayesian GP model (i.e., Bayes C

model), where a small number of SNPs located within or near the

relevant gene regions were assigned with a different prior, which

weighted their genetic effects more heavily than others. We then

evaluated whether this weighted Bayesian model provided

enhanced prediction accuracy compared to the standard Bayes C

model, on a previously published cotton genome selection data set

collected from the CSIRO breeding program (Li Z. et al., 2022). This

research has the potential to advance cotton breeding strategies by

providing a more comprehensive understanding of the genetic

architecture underlying desirable traits and enabling the

identification of superior genotypes at an earlier stage. This could

extend to additional fibre traits such as yield, additional quality

traits such as micronaire, maturity, uniformity, short fibre index,

and colour as well as disease resistance traits such as against fungal

wilts and against insect/arthropod pests.

The foundation of the workflow undertaken in this study is the

biology of the cotton seed fibre. This framework—”Fibre Gene-

network Guided Genomic Prediction” (FibreGGP)—is outlined in

Figure 1. Gene expression at specific fibre developmental points was

determined with RNA extracted at key points in the primary,

transition, and secondary cell wall stages of the cell’s development

(Figure 1A). In this study, we interrogate the expression of all the genes

expressed at each of these developmental points (Figure 1B). To

examine potential improvements in GP accuracy of cotton fibre

quality traits, a Bayesian regression approach using various summary
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statistics derived from transcriptome data analysis as prior information

was tested in targeted genes from the cotton genome (Figures 1C–E)

across three scenarios. Scenario 1 tested all the DE genes arising from

pairwise comparisons. Scenario 2 tested select DE genes that were

considered biologically relevant to the trait of interest. Scenario 3 tested

a highly targeted set of DE genes derived from PCIT-based GCNs

based on particular key genes, and their first, second, and third network

neighbours. In this scenario, we tested key genes linked to the

biomechanical properties of strength and elasticity of angiosperm

fibre secondary cell walls, i.e., a sub-class of FLAs. Ultimately, our

framework’s aim is to enhance the precision breeding of cotton for

select traits (Figure 1F).
Materials and methods

Transcriptomics, genomics, and
phenomics data

The transcriptome data used in this study were retrieved from

MacMillan et al. (2017). Briefly, the authors grew G. hirsutum

Coker 315-C11 plants in natural summer light in a glasshouse at 31°

C (day; 16 h) and 26°C (night; 8 h) in Canberra, Australia. The

RNA-seq experiment was designed to capture fibre gene expression

at key fibre developmental time points, i.e., at 7 days post-anthesis

(DPA) (PCW stage), 14, 15, and 16 DPA (labelled here as “16

DPA”; transition to SCW stage), and 25 DPA (SCW stage) (see

Figure 1). Three biological replicates as different plants were

harvested. Fibre was hand-separated from the seed of each boll

under liquid nitrogen, then ground to a fine powder before RNA

extraction (Qiagen) and sequencing via Illumina HiSeq2000 to

generate the raw transcriptome data (see exact details in

MacMillan et al., 2017). Genomic and phenotypic data were

obtained from Li Z. et al. (2022), representing 1,907 samples

collected from 1994 to 2017 and 12,296 informative SNPs. All the

samples were collected from the CSIRO cotton breeding program to

mimic the real breeding practice. The genetic diversity of the study

population has also been investigated in Li Z. et al. (2022), using

both pedigree and genomic data (referring to Supplementary

Figures S1, S2 in Li Z. et al., 2022). Our focus was six fibre

quality traits, i.e., fibre length (upper half-mean length of sample),

strength (the breaking point force of a bundle of fibres of a given

weight and fineness, g/tex), elongation (fibre bundle extension force

up to its breaking point, expressed as a % increase over its original

length), micronaire (a measure of air permeability of compressed

fibre samples, which is a composite indication of fibre linear density

and maturity, unitless), uniformity (the ratio of the mean fibre

length to the upper half-mean length, expressed as %), and short

fibre index (the proportion by weight of fibre shorter

than 12.7 mm).
RNA-seq, PCIT, and gene network analyses

RNA-seq analysis was conducted on the raw transcriptome data

(above). FastQC software (Andrews, 2010; default parameters) was
frontiersin.org
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FIGURE 1

Cotton fibre development and the FibreGGP workflow undertaken in this study, and its links to cotton breeding. (A) Fibre genes expressed in key points of
development are identified through targeted harvesting and RNA sequencing. A fibre cell emerges on the surface of the cotton seed (ovules) on the day post
anthesis (flowering; i.e., 0 DPA); this fibre cell has a thin expanding primary cell wall. The fibre cell grows to several centimetres long over a period of 2–3
weeks. Towards the end of its growth phase, the fibre cell wall starts its transition to deposition of the secondary wall that continues for several weeks until a
very thick secondary wall has been formed, and the cell matures, dehydrates, and dies. The mature fibre is typically harvested for commercial purposes once
the cotton boll has fully opened ~60+ DPA. Fibre-expressed genes were obtained at three points in development (shown in grey bars), i.e., primary growth
phase at 7 DPA, a transition point at an average of 16 DPA, and during secondary cell wall formation once fibre cell growth had largely ceased at 25 DPA.
(B) The fibre-expressed genes are sequenced via RNA-seq. (C) Fibre-expressed genes are analysed in two ways to create target gene lists, via “PCIT gene
networks”, i.e., that generate specialist gene networks using PCIT and up to three node neighbours in key gene networks, and via “DE lists”, i.e., differential
gene-expression top lists via expert domain knowledge. (D) The target gene list networks guide the identification of SNPs based on the expressed fibre
genes. (E) The fibre-guided SNPs are weighted in GS algorithms and tested for improved prediction accuracy of key fibre traits. (F) How the target SNPs are
integrated into the breeding pipeline (dashed line; not part of this study). Long and short lists of desirable target SNPs yielding positive results are potentially
fed into the cotton breeding pipeline. GEBV, Genetic Estimated Breeding Values. FibreGGP, Fibre Gene-network guided Genomic Prediction.
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employed to assess the quality of the RNA-seq data. The Gossypium

hirsutum TM-1 v3.1 (Phytozome Genome ID 578, NCBI taxonomy

ID 3635; Sreedasyam et al., 2024) was used as the reference genome

and indexed using HISAT2 (Kim et al., 2015; default parameters;

version V2.1) to facilitate the sequence alignment. Afterwards,

HISAT2 was used to align the RNA-seq files to the reference

genome, generating a Sequence Alignment/Map (.sam) file

format. The.sam files were converted to Binary Alignment/Map

(.bam) files using SAMtools (Kim et al., 2015; default parameters;

V1.12) for further analysis. The mapped files were merged using

Cuffmerge (Trapnell et al., 2012; default parameters; V2.2.1), and

the resulting merged map file was compared to the reference

genome using Cuffcompare (Trapnell et al., 2012; default

parameters; V2.2.1). Next, Stringtie (Pertea et al., 2015 default

parameters; V2.2.0) was used to estimate the abundance of genes/

transcripts in the mapped file. This step resulted in the construction

of a gene count matrix for DE analysis. Fragments Per Kilobase of

transcript per Million mapped reads (FPKM) was used to measure

and normalise expression levels in the analyses. Consequently, the

DE analysis was performed using the DESeq2 package (Love et al.,

2014; default parameters; V1.44.0), with DE genes identified using a

false discovery rate (FDR) threshold of 0.001 p-value.

Overexpressed and underexpressed genes were identified using a

log2foldchange threshold of 1.5 to capture transcription factors

(TFs) as well as structural and more abundantly expressed genes.

The DE analysis was performed for independent pairwise

comparison of three stages of fibre, e.g., fibre 07 vs. 16, fibre 07

vs. 25, and fibre 16 vs. 25.

After DE analysis, PCIT (Reverter and Chan, 2008; Watson-

Haigh et al., 2009) was used to estimate the pairwise correlation

between DE genes. The PCIT algorithm has two distinct steps: (1)

first-order partial correlation coefficients are computed through a

defined code sequence that determines the strength of the linear

relationship between the expressed genes, and (2) the Data

Processing Inequality, a theorem in Information Theory, is used

to capture significant associations between the expressed genes

where the approach determines significance between node pairs

post accounting for all other network nodes (Reverter and Chan,

2008; Watson-Haigh et al., 2009; Fernandes et al., 2024). PCIT

produced an output table in the form of a correlation matrix among

genes, which was used to produce a GCN. Next, GCNs were

generated using Cytoscape 3.9.1 using the PCIT correlation

matrix as the input table and then the network was analysed with

Cytoscape default network analysis settings. The PCIT-based

network was used to identify clusters of genes (GCN clusters)

potentially linked to specific fibre quality traits. Each GCN cluster

was generated by identifying a key fibre-trait gene, and then

identifying a cluster containing that gene’s either 1st, 1st, and

2nd, or 1st, 2nd, and 3rd neighbours by using Cytoscape’s

function to display neighbours in a list, and then the said list is

exported. The various PCIT-based GCN clusters were generated for

Scenario 3 (see below) where the central gene of each cluster was the

biomechanics-focussed FLA7, FLA11, or FLA12. The criteria used

for selecting the key genes central for each GCN cluster were

biology-informed. This was based on demonstrated functional

biology and provides a knowledge-based entry point into the
Frontiers in Plant Science 05
large GCN to then determine additional genes of unknown/

known function involved in the trait, here determined as GCN

clusters. We tested known fibre biomechanics genes—SCW FLAs

(MacMillan et al., 2010, 2015, 2017; Ma et al., 2022). The criteria for

selection network neighbours had no limitation—all 1st, 2nd, and

3rd network neighbours of the central gene were selected for the

GCN cluster.
Identification of SNPs in target genes/
gene regions

Various scenarios were used in the identification of SNPs that

were subsequently tested for GP accuracy of various traits. SNPs for

various traits were identified based on DE gene lists, expert domain

knowledge, and via PCIT-based GCNs.

Scenario 1: DE genes were obtained via DESeq2 from three fibre

developmental stages comparing fibre 07 vs. 16, fibre 07 vs. 25, and

fibre 16 vs. 25. Genome coordinates of the DE genes were identified,

followed by identification of SNPs within the DE genes.

Scenario 2: Annotation, i.e., biological information from the DE

gene lists, was used to identify a subset of SNPs associated with

length and strength. Expert domain knowledge of fibre quality traits

was employed to identify target genes for these traits, e.g.,

downregulated genes from the fibre 07 vs. 16 DE gene data set

that were considered to be either involved in length, or upregulated

genes from fibre 07 vs. 25 DE gene set for strength. In addition,

within each data set of this scenario, SNPs were identified either in

the exact gene region, within a 1-kb region, or within a 10-kb

region. This resulted three sets of SNPs for each trait except for

length which did not have SNPs in 1 kb of the DE genes. Using this

scenario, there were seven sub-scenarios: L0, L1, L3, S0, S1, S2, and

S3, where the number 0 represents an unweighted SNP scheme and

numbers 1, 2, and 3 indicate the presence of SNPs in the exact gene

location, within 1 kb, and within 10 kb of the selected DE genes,

respectively. L represents length and S represents strength.

Scenario 3: Three sets of DE genes from the fibre 16 vs. 25 DPA

were identified as crucial for fibre quality. These genes were chosen

based on biological function and they were FLA7, FLA11, and

FLA12 (this was based on known genes closely involved in the

biomechanics of plant fibres; MacMillan et al., 2010, 2015). Each of

these genes was identified in the GCN, and the genes with which

they were co-expressed were identified by generating GCN clusters

that included the primary target gene’s 1st, 2nd, and 3rd network

neighbours. These lists of GCN cluster genes were used to identify

relevant SNPs in those loci followed by analysis of the impact on GP

accuracy for the following traits: strength, length, and elongation.
Bayesian GP model accounting for SNPs
associated with DE gene regions

In a GP model, we aimed to add more on the effects of a subset

of SNPs linked to DE gene regions or their close neighbours in GCN

clusters, which can be done by using specific priors for those SNPs.

This idea is illustrated on the well-known Bayes C linear regression
frontiersin.org
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model (Habier et al., 2011), with its likelihood model form defined

as follows:

P(y│ b ,s 2
e ) =

Yn
i=1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp

−
(yi − b0 −op

j=1xijbj −Wa − Zg)2

2s2
e

 !
,

(1)

where yi is the phenotype record of the ith individual (i = 1,…,

n; n is the total number of individuals), xij are the genotype value of

the individual i and SNP j, coded as −1, 0, and 1 for genotypes AA,

AB, and BB, respectively,W and Z are the design matrix for the year

and experiment, a and g are the associated random effects, b0 is the
model intercept, and ei is the residual error: e = ½e1,…, en� eN(0,

Is2
e ) (mutually independent for i = 1,…, n),  s2

e i s the re s idua l

variance, bj (j = 1, …, p) is the regression coefficient representing

the additive genetic effect of the marker j. The genetic effect bj was
assigned with a spike and slab prior (Ishwaran and Rao 2005) to the

regression parameters as follows:

P(bj│g j) ∝ (1 − g j)I(bj=0) + g jN(bj│0,s
2
b ), (2)

where g j is a binary indicator variable to tell whether the genetic
effect of SNP j should be non-negligible and follow a normal

distribution, or whether the effect is small and assigned with a

zero value. In the standard Bayes C model, the indicator variable g j
and the variance component s 2

b are further assigned with priors of

Bernoulli: Bernðg j│p) and Inverse chi-squared: IG(s 2
b│df , S0),

respectively. In the Inverse gamma prior IG(s 2
b│df , S0), the

parameters df = 5 and S0 = var(y)� R2  �(df + 2)=MSx, with R2

= 0.5, assuming that 50% of the phenotype variance is explained by

the whole set of SNPs. In the Bernoulli prior Bernðg j│p), the
parameter p was further assigned with a Beta prior Beta (p|p0,
p0), with p0 = 50 and p0 = 0.5. The spike and slab prior (13) are

often referred to as the Bayes C model (Habier et al., 2011) in the

GP literature.

To add more weights on the effects of SNPs linked to DE gene

regions, an alternative prior to (2) was specified:

P(bj│g j) ∝ (1 − g j)I(bj=0) + g jN(bj│0,s2
DEb),   j ∈ G

P(bj│g j) ∝ (1 − g j)I(bj=0) + g jN(bj│0,s2
non−DEb),   j ∉ G

8<:
where G represents a specific subset of SNPs linked to a DE gene

region or their neighbours in a GCN cluster, separate variances

s2
DEb and s2

non−DEb were given to an SNP depending on whether it

was presented in G. Those variances were then assigned with

different hyper-priors IG(s2
DEb│df , SDE0), and IG(s2

non−DEb│df ,
Snon−DE0),, respectively, where SDE0 = var(y)� R2

DE  �(df + 2)=MS

x, and var(y)� R2
non−DE  �(df + 2)=MSx :   the choice of R2

DE and

R2
non−DE determined how much weights were assumed for SNPs

within G. We used the following three combinations: (i) R2
DE =

0:125, R2
non−DE = 0:375; (ii) R2

DE = 0:25,R2
non−DE  = 0:25;  ; and (iii)

R2
DE = 0:375, R2

non−DE = 0:125. These settings correspond to the

SNPs within G assumed to explain 25%, 50%, and 75% of the

total genetic variance, respectively. SNPs identified in the DE genes

were weighted at either low (25%), medium (50%), or high (75%)
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levels in the GP calculations to test whether their role in the target

traits were significant for improving GP accuracy. The improved

prediction accuracy would indicate that these SNPs linked to DE

genes or GCN clusters play a more important role than other SNPs,

since they were weighted more in the Bayesian regression model to

predict fibre qualities. Random weightings of loci were also included

in the test scenarios, and these are presented in the results.

The Bayesian C algorithm utilises the Markov Chain Monte

Carlo (MCMC) method to sample from the joint posterior

distribution of the model parameters. MCMC generates a

sequence of samples that asymptotically approximates the true

posterior distribution. It allows for uncertainty quantification and

inference based on the posterior samples. In practice, 10,000

samples were generated as burn-in, and the remaining 20,000

samples were thinned to keep every 20th sample to reduce serial

correlation. Hence, 1,000 samples were collected to approximate

the posterior.

We took the latest 334 new lines collected during the 2017/2018

season as the test population, and the remaining 1,051 lines

collected prior to 2017 made up the training population. This is

based on the comprehensive methodology we have described,

trained, and tested previously with Australian cotton populations

(Li Z. et al., 2022) in which the phenotype data have been processed

and the training set was collected over several years and factors such

as year and sampling batch have been corrected (Equation 1). The

Pearson correlation between the genomic estimated and true

phenotypes of the test population was defined as prediction

accuracy. The prediction method was implemented and repeated

60 times, and the average prediction accuracy was calculated to

reduce the randomness introduced by the MCMC sampling. On the

replicates of these prediction accuracies, a t-test was conducted to

judge whether the model performance is significantly different, with

significant threshold set to be 0.05.
Results

DE results from key fibre RNA-seq analyses
provided a large target gene list and a
range of SNPs

Across the three key developmental stages of Coker315-C11

seed fibre, the pairwise DE analyses found that there were about

3,000 to 8,000 differentially expressed genes (at a stringent p-

adjusted value <0.001) (Supplementary File 1). These findings are

within the ballpark reported in detail regarding gene classes and

pathways using a G. raimondii reference genome available at the

time (MacMillan et al., 2017) and also found here but instead using

the more recent G. hirsutum reference genome.

The identified gene classes span TFs, cell wall biosynthetic

genes, multiple metabolic and structural genes, and unknown

function genes; these have been examined in significant detail in

terms of functional biological significance in terms of cotton fibre

development by MacMillan et al. (2017). The fibre7DPA vs.

fibre16DPA comparison (primary vs. transition wall stage

comparison) identified 2,928 differentially expressed genes, with
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420837
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khalilisamani et al. 10.3389/fpls.2024.1420837
1,487 upregulated and 1,441 downregulated genes, with log fold

changes ranging from 13 to 2. These include NACs, MYBs, and

arabinogalactan proteins including FLAs, auxin response genes, and

many other unknown function genes. The fibre16DPA vs.

fibre25DPA (transition vs. secondary wall stage comparison)

comparison identified 3,917 differentially expressed genes,

with 1,956 upregulated and 1,961 downregulated, with log fold

changes ranging from 16 to 2. These include MYBs, NACs,

phenylpropanoid pathway genes, FLAs, cellulose biosynthetic

genes, auxin response genes, and many others including

unknown function genes. The fibre7DPA vs. fibre25DPA

(primary vs. secondary wall stage comparison) identified 7,678

differentially expressed genes, with 3,931 upregulated and 3,747

downregulated, with log fold changes ranging from 15 to 2. These

include MYBs, NACs, lignin biosynthetic genes, FLAs, cellulose

biosynthetic genes, auxin response genes, WRKYs, and many

unknown function genes.

The Coker fibre DE gene lists enabled the identification of a

suite of SNPs across the 63K SNP chip array of Hulse-Kemp et al.

(2015), and these SNPs ranged in number across DE gene regions

(Supplementary File 2). For the DE genes from the Fibre7DPA vs.

Fibre16DPA comparison (primary vs. transition wall stage

comparison), 85 SNPs were found within the gene-coding

regions, 54 SNPs in the 1-kb gene-coding flanking regions, and

441 SNPs in the 10-kb gene-coding flanking regions. For the DE

genes from the Fibre16DPA vs. Fibre25DPA comparison

(transition vs. secondary wall stage comparison), 87 SNPs were

found within the gene-coding regions, 72 SNPs in the 1-kb gene-

coding flanking regions, and 594 SNPs in the 10-kb gene-coding

flanking regions. For the DE genes from the Fibre7DPA vs.

Fibre25DPA comparison (primary vs. secondary wall stage

comparison), 260 SNPs were found within the gene-coding

regions, 135 SNPs in the 1-kb gene-coding flanking regions, and

1,183 SNPs in the 10-kb gene-coding flanking regions. It should be

noted that while the cotton genome contains ~80K protein coding

genes, and a small subset of ~3K to 7.7K genes were found to be DE

in the fibre development series used here, a small number of SNPs

from the 63K array, in the order of hundreds (not several thousands

or millions), were identified for GP accuracy tests.

The SNPs identified in DE fibre genes (of the variety of Coker

315-C11) were then tested for enhancing GP accuracy of fibre traits

in a large multi-year multi-population GP model. In these tests, the

SNPs were tested in three different scenarios where SNPs were

preferentially weighted, as follows.

Weighted SNPs from DE genes alone did not
enhance GP accuracy for fibre quality traits
(Scenario 1)

The first scenario tested was weighting of SNPs in DE genes

alone (Figure 1B), and with range of SNP weightings, from 0%, 25%,

50%, and 75%, tested. The result of weighting SNPs from the DE

genes alone across three fibre development stages (fibre 07 vs. 16,

fibre 07 vs. 25, and fibre 16 vs. 25) for estimating GP accuracy is

presented in Figure 2; the summary results of the prediction

accuracies are presented in Supplementary File 3. The SNPs used
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in this scenario are the complement of SNPs described above, which

were identified across the DE genes.

Using SNPs in the DE genes alone was largely ineffective for

enhancing the GP accuracy of cotton fibre traits tested. For

example, the accuracy of GP showed little or no improvement for

elongation (Figure 2A), and this was the case whether the SNPs in

the DE genes were weighted at 25%, 50%, or 75%. In fact, for

elongation, a reduction in GP accuracy was found in this DE-alone

test scenario, for example, with the fibre 07 vs. 16 DE genes and to

some extent also the fibre 16 vs. 25 DE genes, and this was evident

for all SNP weightings. The lack of improvement of GP accuracy

using DE genes alone also extended to the trait of length (Figure 2B)

across all the SNP weighting tested. Furthermore, reduction in GP

accuracy with DE genes alone was noticeable for length across all

three developmental comparisons conducted, i.e., fibre 07 vs. 16,

fibre 07 vs. 25, and fibre16 vs. 25, and as compared to the scenario

where no weight was considered; in this case, the results were largely

distributed, representing outliers, which might infer that the results

were not reliable. For the trait of strength, using DE genes alone also

did not enhance GP even when the SNPs in DE genes were weighted

up to 75% (Figure 2C) and irrespective of the time point

comparisons tested. On the other hand, in one instance,

weighting of SNPs enhanced GP accuracy above the base level,

and this was seen for elongation only with the fibre 07 vs. 25 DE

genes and only at 75% SNP weighting; this improvement did not

extend to the GP accuracy of length or strength and across any of

the developmental comparisons tested.
Weighted SNPs based on the annotation of
targeted DE genes affected GP accuracy
only when large gene regions were
included (Scenario 2)

The second scenario tested in our workflow was the accuracy of

GP using DE genes (Figure 1B) in conjunction with their

annotation. The target traits tested were length and strength. The

DE genes were targeted based on known function in relation to

these traits. These include downregulated genes at fibre 07 vs. 16

and upregulated fibre 07 vs. 25 because these time points contribute

to when cotton fibre cells develop some of their quality attributes.

Within this scenario, we also tested whether the proximity of the

SNPs to the target DE genes could increase GP accuracy, including

within the gene-coding regions (i.e., the “exact” location), up to 1 kb

flanking and including the gene regions, and up to 10 kb flanking

and within the gene-coding regions. The results are shown in

Figure 3. There was a small number of SNPs identified in the DE

gene regions, with three to six SNPs in the 1-kb gene-coding

regions, and up to 33 SNPs identified in the largest regions tested,

i.e., the 10-kb regions of the DE genes. A summary statistic of

accuracies and number of weighted SNPs in each sub-scenario is

provided in Supplementary File 4.

The use of DE gene annotation for weighting SNPs changed GP

accuracy only when a large enough region was included and SNPs

were highly weighted (Figure 3). For strength, for instance, a 5.4%
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increase in GP accuracy was found for strength when SNPs in gene

regions up to 10 kb of upregulated DE genes from fibre 07 vs. 25

were used (Figure 3B; Supplementary Figure S3, 75% weighting);

SNPs in the exact or up to 1 kb flanking the gene region had a

neutral effect (no effect) on GP accuracy and weighting of 25% or

50% also had no effect. For length, a very marginal GP enhancement

was seen only when SNPs within and up to 1 kb of the target DE

genes were used and only with 25% and 50% weighting. In fact, a

downward shift of GP accuracy for length using the select DE gene

approach was found if a larger region of SNPs up to 10 kb was used

and particularly if weighted at 75% (Figure 3A).
PCIT-based GCN clusters for SNP
weighting improved GP accuracy across
traits, particularly with FLA-based clusters
of up to 3rd network neighbours
(Scenario 3)

The third scenario tested in our workflow was highly targeted

gene lists for trait-SNP identification generated using PCIT-based

GCN clusters, and these included a nested gene network neighbour

approach centred around key genes informed by biological function

(Figure 1C). The PCIT-based GCN in this scenario was filtered to
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generate GCN clusters centred around the target FLA genes (FLA7,

FLA11, and FLA12), and across their 1st, 2nd, and 3rd network

neighbours for each GCN cluster.

On average, for each FLA GCN cluster generated,

approximately 300 (1st), 1,200 (2nd), and 1,900 (3rd) neighbours

were identified in each GCN gene cluster (Supplementary File 5). In

each case, these specific GCN clusters included an intriguing range

of TFs, cell wall biosynthetic genes, other genes of known and

unknown function, as well as other FLAs (Supplementary File 5,

individual lists); the FLA7, FLA11, and FLA12 GCN clusters with

up to the 3rd network neighbours of each cluster were not identical

and contained unique sets of genes as well as ~2,000 genes in

common, and these included TFs and biosynthetic, cytoskeletal, and

unknown function genes. The number of SNPs identified in the

target genes identified here in scenario 3 was small—in the order of

~30 SNPs.

Improved accuracy of GP was found by using GCN clusters and

weighted SNPs, particularly when including up to the 3rd network

neighbours in each cluster (Figure 4; Table 1; Supplementary File 6).

These results were evident across all three sets of GCN clusters

tested, i.e., clusters centred around FLA7, FLA11, or FLA12. The

increases in GP accuracy with each of the FLA GCN clusters was

evident for elongation and strength as compared to unweighted

scenarios. The use of FLA11 GCN clusters that included 1st, 2nd,
FIGURE 2

Accuracy of genomic predictions for fibre quality traits of (A) elongation, (B) length, and (C) strength using a DE gene approach with variable SNP
weighting (Scenario 1). In this scenario, SNPs were weighted based on their coordinates in DE genes across three different fibre developmental
stages (fibre 07 vs. 16, fibre 07 vs. 25 and fibre 16 vs. 25 DPA). The SNPs were weighted at 0%, 25%, 50%, and 75%, where 0 is unweighted SNPs in
the GP model, or additional levels of weight is given in the GP model to target SNPs. The boxes show GP accuracy for fibre 07 vs. 16, fibre 07 vs. 25,
and fibre 16 vs. 25 DPA in red, green, and blue, respectively. Each box shows 50% of the data range. A horizontal bar within each box shows the
median. Vertical bars extending from each box shows the range of the remaining data. Dots indicate outliers.
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and 3rd neighbours improved GP by 4.6% over that for unweighted

GP for fibre elongation (Figure 4A), whereas inclusion of only the

1st neighbour had no significant effect (Table 1; Supplementary

File 6). A similar result was also seen with the FLA12 GCN cluster

with 4.5% improvement, and FLA7 GCN cluster with 3.4%

improvement, for elongation over unweighted SNPs (Figure 4A).

Increased GP accuracy using the FLA GCN clusters was also found

for strength, and in this instance, up to 4.7%, when up to the 3rd

network neighbours were included. The weighted SNPs in the genes

from the FLA11 GCN cluster gave a 4.7% increase in strength GP

accuracy (Figure 4B). Similarly, the FLA12 GCN cluster gave a 4.6%

increase in strength GP accuracy with weighted SNPs (Figure 4B).

The FLA7 GCN clusters with up to the 3rd network neighbours

gave a 3.6% increase in GP accuracy for strength (Figure 4B). In

general, weighting of the highly targeted SNPs at 50%, or 75% did

not provide additional GP accuracy for elongation over that seen

with the up to 3rd network neighbour approach (Figure 4; Table 1;

Supplementary File 6).

No change in GP enhancement was found for the trait of length

(Figure 4C). In addition, the use of the FLA7, FLA11, and FLA12

PCIT-based GCN clusters also did not improve GP micronaire,

short fibre index, and uniformity (Supplementary File 6). This

indicates how critical biologically relevant genes and time points

are for GP accuracy enhancement. The FLA7, FLA11, and FLA12

genes on their own are not known to be involved in controlling

length, micronaire, short fibre index, or uniformity, i.e., are not
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specific to these traits and so this result was somewhat expected and

also shows the importance of our approach in using important

genes and gene network clusters associated with a particular trait.

Furthermore, the developmental time points used in this scenario

(fibre 16 vs. 25 DPA) are beyond when most of the fibre’s growth to

its final length (~fibre 12 to 14 DPA depending on the species) has

occurred and thus no key genes enriched for controlling the trait of

length would be present in the DE/PCIT analyses.

The computational efficiency of this method was the same as in

the original Bayes C model, since the transcriptome data were

merely used as a prior (Li Z. et al., 2022).
Improvements in GP accuracy across the
three scenarios

Here, three scenarios were tested for improving GP accuracy.

The PCIT-based GCN approach (Scenario 3) provided the best

improvements for GP accuracy, compared to the other approaches

tested (Scenarios 1 and 2). For example, the PCIT-based GCN

approach to weight SNPs improved GP accuracy of fibre elongation

by 4.6%, and strength by 4.7% (Figure 4). This is in contrast to

weighting SNPs using all the DE genes (Scenario 1; Figure 2), which

largely did not improve GP for elongation, strength, or length. In

addition, when targeted DE gene lists were used (Scenario 2;

Figure 3), there was only GP accuracy improvement with the use
FIGURE 3

GP accuracy for fibre quality traits of (A) length and (B) strength, using a select DE gene approach and with SNP weighting (Scenario 2). In this
scenario, SNPs were weighted based on their coordinates in select DE genes. The DE genes were from fibre developmental points of fibre 07 vs. 16
DPA for strength and fibre 07 vs. 25 DPA for length. The results are presented for SNP weights of 0%, 25%, 50%, and 75%. The legends show L and S
for length and strength respectively. The numbers 0, 1, 2, and 3 indicate (0) unweighted SNPs, and where SNPs were available in (1) select DE gene-
coding regions; (2) select gene-coding regions and within 1-kb flanking regions; and (3) select gene-coding regions and within 10-kb flanking
regions, where the select DE genes were associated with down- and upregulated data sets of fibre developmental stages. No unique SNPs were
found in the region L2, and hence no results were reported.
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of a large gene region of 10 kb and only in the case of fibre strength

with a GP accuracy increase of 5.4%; no increases were seen for

elongation or length, or smaller gene regions for strength.

The Bayesian model that incorporated the information of GCN

clusters produced significantly better prediction accuracies

compared to the standard Bayes C model (Table 1, probability

statistics based on t-tests), i.e., by giving more weights in the priors
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to a subset of SNPs that are associated with neighbours of three fibre

development-related genes.

The PCIT-based GCN approach was more effective than the other

methods in improving GP accuracy. Like Scenarios 1 and 2, it also

generated large lists of DE genes—in the order of hundreds to

thousands (Supplementary Files 1, 2, 5). However, the PCIT-based

GCN approach used genes with known biological function related to
FIGURE 4

GP accuracy for fibre quality traits of (A) elongation, (B) strength, and (C) length using PCIT-based GCN clusters (Scenario 3). In this scenario, PCIT
GCN clusters were generated centred on the key plant-fibre biomechanics genes of FLA7, FLA11, and FLA12. Here, for each FLA cluster, the first,
second, and third neighbours of each FLA-based GCN cluster was tested for GP accuracy across the fibre traits of elongation, strength, and length.
SNPs were weighted based on their coordinates in the selected DE genes in the network clusters from the fibre 16 vs. 25 DPA comparison. The
results were presented for SNP weighted at 0%, 25%, 50%, and 75%. Asterisks indicate statistically significant differences at p-values >0.05 compared
to the unweighted GP accuracies, i.e., with the standard Bayes C model; Table 1 provides further details of the exact p-values.
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the trait of interest as the entry point basis of identifying other co-

expressed genes (Supplementary File 7). These co-expressed genes

include genes that either are in known pathways, have no known

function, have not been substantively functionally tested, have

functions potentially linked to the traits of interest, or have functions

beyond what is currently known for the traits of interest. With this

PCIT-based GCN cluster approach, a targeted set of genes for the traits

of interest was identified in a novel way from the large transcriptome

data set, and the very large genome. The other scenarios did not take

such a biology-informed and targeted approach.
GCN clusters for improved trait GP have
known and unknown fibre strength and
elongation genes

The three GCN clusters (with 1st, 2nd, and 3rd neighbours) that

improved GP accuracy for fibre strength and elongation had in

common a suite of TFs, glycoproteins, transporters and membrane

anchored/trafficking, defence signalling, enzymes, and unknown

function (Supplementary File 7). Several MYBs included those with

a known role in the plant SCW pathway such as MYB61, MYB43,

MYB54, and other MYBs (Xiao et al., 2021). Homeodomain TFs

included KNAT7 homeologues and several BEL-1-like 2 and BEL-
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1-like 6, plus additional homeobox proteins. MAD TFs include

AGL8-like and AGL30-like. NACs included NAC58. Other TFs

included tri-helix GT-2s and zinc-finger binding proteins.

Glycoproteins included SCW FLAs, which are known to have

roles in plant fibre biomechanics, lectins such as an F-box phloem

protein 2, other hydroxy-proline rich glycoproteins, an extensin,

and a LEA-2. In addition to transporters, several membrane/vesicle

trafficking proteins included clathrin-related, synaptotagmin, and a

tetraspannin-14-like. Several lipid transfer proteins (LTP-2) also

featured. A leucine-rich-repeat protein and a pathogenesis-related

protein 5 were amongst the defence/stress-pathway genes. Enzymes

involved in polysaccharide synthesis and cell wall polymer

formation included a sucrose synthase, various pectinesterases/

pectinesterase inhibitor-likes, cytochrome P450 monoxygenase

ferulate-5-hydroxylases (F5H), a flavanone 3-dioxygenase, as well

as chitinases and, interestingly, also a cucumisin, a serine peptidase

found in plants.
Discussion

This research explored the potential integration of plant-biology-

based transcriptomic information derived from RNA-Seq analysis into

GP models for cotton breeding (Figure 1). The study focused on
TABLE 1 The p-values of the t-tests to compare the prediction performance between the Standard Bayes C model, and the Bayes C model
incorporating the specific priors (weights) for a subset of SNPs relevant to the GCN clusters centred on the key plant-fibre biomechanics genes of
FLA7, FLA11, and FLA12 for traits including elongation and strength in Scenario 3.

Gene Neighbour Trait Weight = 0.25 vs. baseline Weight = 0.5 vs. baseline Weight = 0.75 vs. baseline

FLA7 1st N EL 0.78 0.79 0.78

STR 2×10-16 7×10-16 2×10-16

2nd N EL 1×10-10 4×10-9 2×10-8

STR 0.37 0.22 4×10-4

3rd N EL 6×10-13 1×10-7 8×10-6

STR 2×10-3 4×10-4 6×10-3

FLA11 1st N EL 0.54 0.07 0.40

STR 5×10-8 1×10-8 1×10-10

2nd N EL 4×10-10 2×10-7 5×10-9

STR 0.01 0.03 2×10-8

3rd N EL 1×10-14 2×10-3 3×10-3

STR 6×10-5 5×10-3 7×10-5

FLA12 1st N EL 0.01 0.33 0.03

STR 0.18 0.40 0.76

2nd N EL 2×10-11 9×10-8 4×10-7

STR 1×10-5 6×10-8 7×10-9

3rd N EL 3×10-14 6×10-8 2×10-7

STR 1×10-4 0.02 8×10-9
Bold values indicate statistically significant differences.
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elucidating key genes and gene networks associated with valuable fibre

traits—such as length, elongation, and strength—to inform more

accurate GP. Leveraging DE analysis across three crucial

developmental stages of seed fibre, numerous genes were identified,

revealing thousands of DE genes across these stages. These genes span

various classes, including TFs, cell wall biosynthetic genes, and

structural genes, shedding light on their crucial roles in fibre

development. Integration of this transcriptomic data with genomic

information allowed for the identification of SNPs located within or

near specific DE genes. However, attempts to directly add more weight

on these SNPs in the GPmodel based on DE genes or their annotations

did not notably improve GP accuracy. In contrast, when incorporating

information from PCIT-based gene networks derived from DE genes

and their 1st, 2nd, and 3rd neighbouring nodes, the GP model

exhibited enhanced accuracy for predicting elongation and strength.

In other words, use of the latter scenario (Scenario 3) led to ~5%

increases, whereas Scenarios 1 and 2 were not as effective. The accuracy

for predicting fibre length showed a reduction, possibly owing to the

nuances of the chosen developmental stage comparison and the genes

used to generate the network clusters. This comprehensive approach

offers insights into potential candidate genes and networks that impact

cotton fibre traits, laying a groundwork framework and a feasible

approach for more refined and accurate GS strategies in

cotton breeding.

PCIT-based GCN clusters were effective in improving GP accuracy

for cotton fibre quality traits. This was evident with a 4.6%

improvement for elongation and a 4.7% for strength GP accuracy for

cotton fibre quality. Inclusion of both the PCIT and the target GCN

approaches together proved valuable and opens up opportunities for

advancing precision breeding in cotton using such an approach. PCIT

as an approach has also been of value in studies of animals and

humans, with key regulator genes being identified as predictors

controlling ~500 genes associated with heifer puberty (Nguyen et al.,

2018), significant suites of bovine fertility genes identified such as

regulatory and functional genes as well as non-coding RNAs (Fonseca

et al., 2022), and pig gut microbiotal changes across intestinal tracts and

their association with energy homeostasis (Crespo-Piazuelo et al.,

2018), and in identifying key target genes in studies of human

cancers (Li D. et al 2022), asthma (Banerjee et al., 2021), and the

SARS-CoV-2/human interactome (Guzzi et al., 2020). In this present

study of cotton and the PCIT-based GCN approach, a small number of

SNPs led to GP improvement: ~30 SNPs. Together, this points to

future opportunities that can be tested for identifying and testing

additional GCN clusters and hence additional valuable gene clusters

and beneficial SNPs for enhancing GP accuracy in crops. For future

work, additional key genes can be explored given the promising

findings here with FLAs. Furthermore, stringent criteria were used in

our DE analysis; in the future, reducing stringency may then include

additional genes in the networks, and this could be tested to see if more

prediction accuracy can be achieved. In addition, large gene regions in

GP accuracy is another area for further exploration. For example,

linkage disequilibrium (LD) is a challenge for GP and GS, and several

studies have explored this challenge especially wheremultiple SNPs can

exist in a large LD block, for example, in cotton (Li et al., 2024). Here, in
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our current study, the finer resolution within large gene regions has

been achieved for identifying SNPs through biology-informed gene

networks and PCIT.

The targeted GCN scenario (PCIT-based) improved GP accuracy

best with up to 3rd neighbours and flags potential utility in cotton

breeding. Such a gene network neighbour clustering approach for GP

in crop breeding is, to our knowledge, not currently being used, but

our findings provide practical evidence and workflows to help achieve

the vision and aspiration for future breeding such as large gene-to-

phenotype networks that others have pointed out (e.g., Powell et al.,

2022). With only three traits tested here across the various scenarios,

our findings open up the possibility for further traits that could be

more accurately predicted for cotton fibre and other traits. Future

improvements for GP accuracy of cotton could include incorporating

additional transcriptomic data from biologically relevant time points,

for example, earlier development time points that enrich for genes

controlling the trait of length. Given the advancement described here

with our approach, future studies could investigate whether giving

specific weighting to non-synonymous SNPs and those within

promoter regions could enhance prediction accuracy; this is

possible with the Bayesian model. In addition, our approach also

points to how large-scale target SNP populations can be identified for

precision breeding.

The suite of FLA GCN clusters linked to fibre strength and

elongation provides further insights into the molecular biology of

the construction unique cotton fibre cell wall for which several

genes and pathways have identified (MacMillan et al., 2017; Wang

et al., 2017; Ma et al., 2018; Li et al., 2020; Gallagher et al., 2020; Li

et al., 2021a; Yang et al., 2023); this also extends potentially to fibre

colour. The SCW pathway TFs such as KNAT-7/BEL-1like

homeodomain TFs in the GCN clusters in this research are

known to modulate cotton fibre cell growth in different ways, and

their expression level may have an impact on increased or decreased

strength and elongation traits (Jia et al., 2024; Li et al., 2011). In

addition to the known plant glycoproteins affecting strength and

elongation such as FLA12 and FLA11 (MacMillan et al., 2010, 2015,

2017; Ma et al., 2022), it is interesting to note that other genes

appear to also contribute. For example, F-box phloem protein 2 type

proteins, which are starting to be functionally characterised in

cotton (Wei et al., 2023), may point to potential recruitment of

these genes to the cotton seed fibre development in addition to roles

in phloem. Similarly, the extensin Pollen_Ole_e_like in the GCN

clusters has been implicated with selenium binding proteins in

Arabidopsis and potentially involved in ROS signalling (Dervisi

et al., 2023) and may contribute to how the cell wall properties of

strength and elongation are formed in the cotton fibre cell. When

the fibre generates its thick highly cellulosic cell wall, multiple

events are in play such as membrane/vesicle trafficking and

signalling. During this process, the glucose required for cellulose

synthesis, extracellular matrix remodelling, and a high energy load

requires sucrose synthases and pectinesterases/pectinesterase

inhibitor-likes that were found in the GCNs here. As cotton seed

fibres are essentially composed of highly cellulosic SCWs without

lignin (MacMillan et al., 2013, 2017), the results here point to
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potential redirection of the flavonol pathway in cotton fibres away

from lignin-specific monomers potentially via cytochrome P450

monoxygenase ferulate-5-hydroxylases and a flavanone 3-

dioxygenase, and potentially also via regulation through NAC58,

which affects suberin deposition in cotton fibres (Nomberg et al.,

2022). Valuable SNPs in these genes in particular populations are

therefore potentially useful for GP for breeding.

Using a DE gene-only approach was not effective in enhancing GP

accuracy in this study even with varying the extent of SNP weighting;

this may point to the complexity of genome to phenome in crop

development and target traits such as in cotton. Based on this, only

using DE genes or their annotation information to weight SNPs may

not be sufficient to enhance GP accuracy, and so future studies for

enhancing GP accuracy only using DE genes may require other

methods or data integration approaches to optimise models. In

terms of DE gene studies for cotton fibre improvement, over the last

5 years, dozens of articles have been published internationally, and

generally, these report substantial sets of DE genes with potential for

impacting fibre quality. For example, these include studies combining

GWAS and eQTLs to identify fibre cell wall development regulatory

networks (Li et al., 2020), co-expression analyses for genes differentially

expressed with high cotton fibre quality (Zou et al., 2019), and high-

density genetic map studies for QTLs and genes for fibre quality and

yield in cotton analysis of vegetative to reproductive transition and

branching genes linked to planting density (Gu et al., 2020) and also

linked to natural colour formation in fibres (Tang et al., 2021). In our

study, weighting of SNPs increased their efficacy for GP accuracy

depending on their location, and this could be due to the fact that

negative and positive SNPs can co-occur across chromosomal regions,

e.g., SNPs in enhancers, suppressor regions, and promoters; when such

SNPs in key genes are important for a trait, then the interplay of

positive and negative SNPs could come into effect. Given the results of

this study, such DE lists likely hold a rich wealth of important insights

into the genes underlying the biology of fibre formation and use in GP

accuracy for traits of interest. In addition, using only trait-specific and

not non-trait-specific genes is important for improving GP accuracy,

and thus, the PCIT-based gene network cluster approach helps identify

trait-specific genes that may not always be known.

The GCN approach on the basis of PCIT or other network

inference approaches holds potential application for accelerating

genetic gain in crops, through the improved GP accuracy, as results

found here for cotton fibre quality traits. This could help with

accelerating genetic gain of complex traits, which remains a

challenge for crops, for example, in cotton (Conaty et al., 2022), and

for which transdisciplinary approaches with other systems like

livestock GS are helping expand this field (Voss-Fels et al., 2019). As

an extension, integration of the GCN approach with GP and GS for

improvements in a range of traits may hold potential for various crop

traits such as yield improvement including grain yield, plant height,

flowering time, and inflorescence traits, in crops such as wheat, maize

canola, rice, and others. This could integrate with existing

transcriptomics data sets and provide a complementary line of

research with transcriptomics-wide associated studies and associated

data sets, especially if there are functionally confirmed genes for a target
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trait that could be used as entry points into GCNs to generate targeted

GCN clusters for testing of GP accuracy for desired traits. Such

research requires broader testing of this GCN approach in additional

traits and a broader range of germplasms. It could also explore testing

the potential integration with genome by environment interactions for

improving GP and GS. The positive findings here were based on multi-

line phenotypic trait data across many years of field data and a

transcriptomics series of an unrelated line grown in a glasshouse

experiment with representative growth conditions. Future research

could examine whether confounding factors may affect improved GP

accuracy using the GCN approach, such as environmental factors and/

or genetic background and population structure; these would require

large data sets and experiments with different environments and

genetic backgrounds. More advanced statistical models might also be

needed to account for those confounding factors in both GCN and

GP analyses.

Our strategy can be easily used in breeding practice. The

transcriptome experiments and data analysis were done

independently from the GP, and the outcome of transcriptome data

analysis was used as prior information in Bayesian prediction models

applicable for any cottonGP data set that targeted fibre qualities. This is

a much simpler and cost-effective approach for a breeding program

compared to current existing omics approaches that rely onmeasuring

both the transcriptome and genomic data for thousands of samples

(e.g., Hu et al., 2019; Azodi et al., 2020). The biology-informed GCN

approach for GP offibre quality traits can now be practically employed

in GP and GS pipelines, as described in Figure 1. Valuable SNPs could

be used in GS-based breeding pipelines for accelerating genetic gain of

target traits and hence incorporation into new varieties. If the

prediction accuracy is higher due to incorporating the gene network

information, then the ranking of lines based on predicted phenotype

scores will be more accurate, and then we have a better chance to find

desired genotypes based on prediction results. As a future direction,

evaluation will be required to determine whether this strategy can also

be beneficial to the multiple environment GP analysis (i.e., prediction

models with G×E interactions), which is essential from the application

point of view in a plant breeding program.

In conclusion, this study found that integration of biology-

informed RNA-seq data using PCIT-based GCNs for weighting

SNPs improved GP accuracy for two important cotton quality traits,

namely, fibre strength and elongation. The study also identified

existing and potentially new genes involved in the formation of

cotton fibre traits. This provides new insights and practical

approaches for enhancing genomic assistance-based cotton

breeding where precise identification of valuable SNPs that

increase GP accuracy of an economic trait can be integrated in

GS pipelines for cotton breeding. This study makes a unique

contribution to cotton breeding by demonstrating the possibility

of successfully integrating fibre developmental biology,

transcriptomics, gene-networks, and GP models for accelerating

the GS kind of knowledge, and future studies with additional time

points and genes could accelerate the development of improved

cotton varieties with enhanced fibre length, elongation, and

strength, meeting the demands of the textile industry and
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ensuring the sustainability of cotton production. Potential areas for

further investigation based on the findings reported here include

functional studies of cotton fibre strength and elongation, SNP

variants and how they affect trait formation, examination of how

the additional “new/unknown” fibre genes may affect fibre

development and traits, and whether/how environmental factors

may be integrated in GCN for GP and GS of fibre traits. Breeding

approaches such as those taken here for cotton remain to be

explored in other crops.
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