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It is crucial for robotic picking fruit to recognize fruit accurately in orchards, this

paper reviews the applications and research results of target recognition in

orchard fruit picking by using machine vision and emphasizes two methods of

fruit recognition: the traditional digital image processing method and the target

recognition method based on deep learning. Here, we outline the research

achievements and progress of traditional digital image processing methods by

the researchers aiming at different disturbance factors in orchards and

summarize the shortcomings of traditional digital image processing methods.

Then, we focus on the relevant contents of fruit target recognition methods

based on deep learning, including the target recognition process, the preparation

and classification of the dataset, and the research results of target recognition

algorithms in classification, detection, segmentation, and compression

acceleration of target recognition network models. Additionally, we summarize

the shortcomings of current orchard fruit target recognition tasks from the

perspectives of datasets, model applicability, universality of application scenarios,

difficulty of recognition tasks, and stability of various algorithms, and look

forward to the future development of orchard fruit target recognition.
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1 Introduction

At present, manual picking is still used in most orchards, which have high labor

intensity and low efficiency, making it difficult to guarantee picking technology and quality.

With the rapid development of the fruit planting industry, the aging of the social

population, and the transformation of the labor force’s employment concepts, the

shortage of rural labor resources has become increasingly prominent, especially the

demand for labor-intensive jobs such as fruit picking is also facing challenges.
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At present, the picking methods in the market mainly include

manual picking and mechanically assisted semi-manual picking, as

shown in Figure 1, which can no longer meet the market demand, a

new picking method is needed to improve the efficiency and quality

of fruit production.

Robotic fruit picking has been the focus of research recently and

is also an important direction for the upgrading of the agricultural

industry. Their widespread use in the facility agricultural

production process can improve the production efficiency and

quality of fruit picking and promote the sustainable development

of the fruit industry. Machine vision is one of the key technologies

for robotic fruit picking, which can be used to complete multiple

functions such as fruit detection, recognition, and positioning

(Bazame et al., 2021). This paper only introduces the relevant

research on machine vision in fruit target recognition.

Due to the complexity and non-structured nature of the

orchard’s environment, robotic picking still faces some challenges

in fruit target recognition. Fruit target recognition methods can be

divided into two categories: one is the traditional recognition

method that artificially designs manual features based on the

shape, color, and texture of the fruit itself, using algorithms such

as chromatic aberration method, a threshold segmentation method,
Frontiers in Plant Science 02
region growing method, support vector machine, and K-means

clustering for image segmentation; another is the Convolutional

Neural Networks(CNN) method based on deep learning (Chen

et al., 2023). The detection algorithm of the traditional recognition

method is relatively mature at present. However, in the complex

environment of the natural orchard, due to the influence of factors

such as shadows, uneven illumination, occlusion, night

environment, fruit overlap, and the same color scheme, etc., as

shown in Figure 2, making the traditional recognition methods

manually designed features more complex (Cao et al., 2021; Tang

et al., 2020), it is difficult to meet the operational requirements of

actual fruit harvesting. The traditional detection algorithm mainly

has shortcomings: low pertinence of the selection strategy, weak

universality; large amount of calculation, slow detection speed and

poor real-time performance; the low precision of recognition effect.

The CNN method based on deep learning has a high degree of

hierarchical structure, has a strong selflearning ability for the

features of the target, and can show a certain generalization

ability, which makes this method have certain robustness when

facing the complex environment of orchards, and also has a good

performance in terms of detection accuracy and real-time

performance. It is an end-to-end detection model that fuses
FIGURE 1

The main picking method in the market at this stage.
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feature extraction, selection, and classification of targets in the same

model (Zhao et al., 2020; Huaibo et al., 2023). With powerful

learning capability and highly hierarchical structure, it has unique

advantages in fusing complex visual information with target

perception (Li et al., 2022c). Although the CNN method based on

deep learning has outstanding performance in fruit target

recognition, there are still some problems in the complex

environment of the orchard, and the maturity of the technology

still cannot meet the requirements of practical operations.

This paper reviewed the research progress of fruit target

recognition and high-quality articles related to key technologies,

aiming to introduce the improvement and application of different

recognition algorithms for fruit recognition, summarize the existing

problems and challenges of fruit target recognition technology, and

prospect the development direction of this technology. It can

provide a reference for the research of fruit target recognition of

robotic picking. In general, the traditional fruit target recognition

method and fruit target recognition method based on deep learning

were introduced, and the application of different recognition

algorithms in fruit target recognition was summarized. Section 2

introduced the review methods involved in this paper, including

the scope of literature retrieval, the databases and keywords used,

and the visual results. Section 3 discussed the application of the

traditional fruit target recognition method to different interference

factors in the orchard. Section 4 is the key review part of this

paper, which focuses on the fruit target recognition method

based on deep learning. The fruit target recognition method

based on deep learning was introduced in four parts: deep

learning target recognition process and datasets preparation, fruit

target recognition method and classification standard, target
Frontiers in Plant Science 03
segmentation method, and fruit target recognition method based

on network compression and acceleration. By comparing the

research and application of different scholars in fruit target

recognition algorithms, the advantages and disadvantages of

different network models were summarized. Section 5

summarized and prospected the research trend of fruit target

recognition based on deep learning. The logic diagram of the

main review content in this paper as shown in Figure 3.
2 Review methodology

In this work, the methods of fruit target recognition and the

research achievements and progress of related scholars in this field

are reviewed, by searching relevant journal papers and conference

papers in the past 18 years (2006-2023). The selected literature

resources mainly come from the Web of Science database, in

addition to multi-disciplinary databases (such as Elsevier

ScienceDirect) and open online resources (such as open-access

journals, academic websites, and academic forums). The keywords

used to retrieve scientific and technological papers mainly

include “deep learning”, “Machine vision”, “recognition”,

“segmentation” and “lightweight”. The retrieval string in the

Web of Science database based on the above keywords and

Boolean search terms is (“recognition” OR “detection” OR

“detect” OR “identify”) AND (“harvest” OR “harvesting” OR

“pick” OR “picking”) AND (“fruit”) AND (“robot”) AND

(“segmentation”) AND(“lightweight”). A total of 181 references

were selected for review in this work, and 23 types of fruit target

recognition research results were retrieved.
FIGURE 2

Orchard interference factors.
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3 Traditional fruit target
recognition method

With the development of deep learning, classification methods,

detecting, and segmenting fruit targets based on manual features are

defined as the traditional target recognition methods. Compared

with the deep learning target recognition algorithms, the traditional

target detection algorithm has certain limitations, which are only

suitable for recognition scenarios with simple detection

backgrounds and obvious target features, such as apples, peaches,

and other fruits with obvious differences in color from leaves. By

distinguishing the pixel color difference between the target and the

background region based on the color features, the target fruit can

be separated from the background. To realize the recognition of

lychee fruits and fruit stems, Xiong Juntao et al. used the YCbCr

color model to perform threshold segmentation on lychee images

based on the color and grayscale features of lychees (Xiong et al.,

2011). Si Yongsheng et al. used normalized red-green differential
Frontiers in Plant Science 04
segmentation to segment apples and backgrounds based on color

features and achieved the recognition of red apples (Si et al., 2010).

To recognize immature tomatoes, Ma Cuihua et al. conducted

relevant research based on significance detection and improved

circular random Hough transformation, with a correct recognition

rate of 77.6% (Ma et al., 2016). However, in the field environment in

the actual natural background, there are many interference factors

for the recognition of fruit targets, so it is difficult to realize accurate

recognition of fruits through general abstract features. To overcome

the influence of field interference factors on accurate recognition,

some scholars have conducted the following related research on

different interference factors.

Given interference factors such as uneven illumination, night

environment, and shadows, some scholars have improved the

lighting conditions during image acquisition, such as using a

light-blocking device to block the strong light when the scene

light is strong and providing an auxiliary light source to optimize

the lighting conditions when the light is weak. FAN et al. considered
FIGURE 3

Content logic diagram.
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the influence of lighting and shadows, a pixel block segmentation

method based on gray-centered red, green, and blue (RGB) color

space was proposed to effectively distinguish apple fruit pixels from

other pixels by exploring the color characteristics and local changes

of apple images (Fan et al., 2021b, a). TSOULIAS et al. used LiDAR

to target changes in lighting conditions and proposed an apple

detection method based on corrected backscattering reflection

intensity (R-ToF) and geometric features, which could alleviate

the influence of lighting changes on fruit recognition (Tsoulias et al.,

2020). GONGAL et al. aimed at the halo and shadow interference

factors on the fruit surface built an opaque tunnel structure, and

installed auxiliary light sources to weaken the influence of canopy

occlusion and illumination changes on fruit recognition. Based on

multi-features and patches, an apple image segmentation technique

was proposed by using grey-centered red, green, and blue color

space (Gongal et al., 2016). In response to shadow interference

factors, Zhao De’an et al. adopted the method of auxiliary light

source to increase the incandescent lamps at different angles to

weaken the shadow on the fruit (Dean et al., 2015). For the

nighttime environment, JIA et al. used different auxiliary light

sources such as incandescent lamps, fluorescent lamps, and LED

lamps to collect images by filling light processing for nighttime

apple images, and concluded that the color feature images of

incandescent lamps were more similar to those of natural light

images through comparative analysis (Jia et al., 2018). To overcome

the influence of natural light on image segmentation, Lv et al. used

an adaptive gamma correction method to obtain a complete and

clean fruit area (Lv et al., 2019b). Lv et al. also designed a green

apple image segmentation method that combines the normal bright

areas and the highlight areas of the fruit (Lv et al., 2019a). To

eliminate shadows produced under strong illumination and direct

sunlight conditions, Xu et al. combined group pixels and edge

probability graphs to develop a new algorithm with strong

robustness for the detection of orchard apples under natural

illumination conditions (Xu et al., 2019). Based on super-pixel

features, Liu Xiaoyang et al. proposed a fruit segmentation method

for apple-picking robots for the recognition and segmentation of

unevenly colored fruits in the natural environment, which is better

than the chromatic aberration method using pixel-level features and

the segmentation method using neighborhood pixel features and

meets the real-time demands (Xiaoyang et al., 2019). Based on the

observation of highlight points under artificial illumination,

LINKER et al. proposed a new method for detecting apples in

nighttime images by analyzing the spatial distribution of light

around highlights (“bright spots”) (Linker and Kelman, 2015).

In the non-structured orchard environment where fruits are

blocked by branches and leaves, fruits overlap with each other, and

the combination of overlapping fruits and branches and leaves has a

serious impact on fruit recognition. JIA et al. extracted a total of 16

features such as fruit color and shape based on a pulse-coupled

neural network, introduced a Genetic algorithm(GA) to optimize

the Elman neural network, and proposed a new genetic Elman

neural network (GA-Elman), with a recognition rate of 88.67% for

overlapping fruits (Jia et al., 2020a). Color and illumination factors

have a great impact on traditional target recognition algorithms. To

address this problem, Liu Changyuan et al. proposed a fruit
Frontiers in Plant Science 05
recognition and localization algorithm based on depth images

from the perspective of fruit morphology, which can effectively

deal with the overlapping and occlusion scenes of fruits, and realize

the picking work at night (Liu et al., 2022a). Regarding the problem

of overlapping tomatoes, Xiang Rong et al. realized the recognition

of overlapping fruits based on edge curvature analysis, but with the

increase of the occlusion rate, the recognition precision would

decrease significantly (Xiang et al., 2012). TAO et al. proposed an

automatic apple recognition method based on point cloud data to

process apple image information. Based on color fusion (extraction

of RGB and HSI color components) and three-dimensional

geometric information (FPFH), targets were divided into fruits,

branches, and leaves (Tao and Zhou, 2017). NYARKO et al.

proposed a new RGB-D image method of fruit recognition based

on convex surface detection and classification for fruit recognition

in leaves and branches, aiming at the condition of occluded and

Shadowed fruits (Nyarko et al., 2018).

Fruits with epidermal similarity to branches and leaves, such as

Cuiguan pear, Su Cui pear, green lemon, citrus, etc., are called same

color scheme fruits. For such fruits, a single color feature cannot

distinguish them, so it is necessary to combine color, shape, texture,

and other multi-feature recognition. Regarding the problem of

homochromatic citrus, KURTULMUS et al. proposed a new

“feature fruit” detection method based on color and circular Gabor

texture analysis (Kurtulmus et al., 2011). SUN et al. proposed a

progressive detection method for green apples based on fuzzy set

theory to enhance the image and (AIM) algorithm to determine the

fruit region, to achieve accurate segmentation of fruit targets (Sun

et al., 2020). LI et al. used significance detection and a Gaussian curve

fitting algorithm to represent the image as a closed loop graph with

super-pixels as nodes, then sorted the nodes and finally binarized

them to detect green apples in natural scenes (Li et al., 2018). It is

difficult to recognize green apples in a natural light environment, Liao

Wei et al. established a green apple random forest recognition model,

carried out Otsu threshold segmentation and filtering processing

based on RGB color space, extracted the grayscale and texture

features of leaves and apples, realizing the classification and

recognition of green apple fruits in this type of environment (Wei

et al., 2017). SUN et al. designed a GrabCut model based on a visual

attention mechanism to solve the same color scheme problem. For

overlapping fruits, the Ncut algorithmwas used to accurately segment

the extracted fruits (Sun et al., 2019).

Many scholars have conducted in-depth research on the

interference factors of fruit recognition in nonstructured orchards

and proposed corresponding recognition methods for fruits in each

specific scene. However, with the continuous improvement of

people’s requirements for orchard-picking technology, traditional

image processing methods have been unable to meet the needs of

picking robots, and it is difficult to popularize the traditional

recognition methods in practical applications. The main reason is

that the traditional hand-design features (color, texture, and shape)

become more complex due to uncertainty interference factors, and

the limited artificial features can not meet the needs of fruit picking

in a variety of scenarios, resulting in the traditional image

processing methods are limited, which can not adapt to the real-

time and universal nature of fruit harvesting operations in the
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orchard. The main defects are as follows: (1) Traditional image

processing methods have more redundant regions in the candidate

regions, low utilization rate, large algorithm model, and complex

feature extraction process, resulting in increased computation and

slow detection speed; (2) Artificial features cannot adapt to multiple

picking conditions under complex background, feature descriptors

designed based on low-level visual cues are only suitable for simple

scenes, and it is difficult to extract representative semantic

information for recognition tasks under complex background. (3)

The hand-designed features for specific fruits have great limitations,

poor classifier self-adaptation, and weak generalization ability,

making it difficult to generalize the application to other fruits.
4 Fruit target recognition method
based on deep learning

With the advancement of artificial intelligence technology, deep

learning has made significant progress in recent years. The

architecture of deep learning models is constantly evolving, and

the feedforward neural network is the original deep learning model

architecture. With the continuous development of deep learning,

CNN, recurrent neural network (RNN), Transformer, and so on

gradually appear. Evolving deep learning benefits from the

availability of large-scale datasets and increasingly powerful

computing power. This data can be used to train more accurate

models, and advances in high-performance computing hardware

(e.g., GPUs and TPUs), have made it possible to train deeper and

more complex models. Compared with the traditional recognition

direction, the target recognition method based on deep learning has

the advantages of self-learning of target features, strong expression

ability, good generalization performance, high recognition precision

and real-time performance, a large number of scholars have begun

to apply it to fruit target recognition.

The fruit target recognition methods based on deep learning

typically use CNN (LeCun et al., 2015), introducing multi-layer

perceptrons in the structure, and using low-level features to form

high-level features. With multilayered representation, it can learn

non-structured features under different interference factors from

training datasets through machine learning and has higher

precision and universality for fruit target recognition. These

methods train the network with a large number of labeled fruit

images so that it can learn the features of different fruits. At the time

of recognition, the model extracts features from the input images

and compares them with the trained data to determine the type of

fruit in the images. Common deep learning frameworks such as

TensorFlow and PyTorch can be used to implement these methods.

Based on the recognition results of detection components and

target regions, deep learning models can be divided into classification

and detection models (image classification and target detection) and

segmentation models (semantic segmentation and instance

segmentation), which are also the four basic tasks of machine

vision. Since the source code of the deep learning model is mostly

open source for researchers to use, the vast majority of scholars who

do fruit recognition are based on the characteristics of the target fruit
Frontiers in Plant Science 06
itself and the growing environment of the orchard to improve the

research based on better network models for visual recognition (such

as R - CNN, YOLO, etc.), to achieve the goal of faster recognition

speed and precision of fruit recognition under complex orchard

environment, to meet the requirements of picking.
4.1 Deep learning target recognition
process and dataset preparation

The specific steps of fruit target recognition based on deep

learning (based on better model improvement) include dataset

preparation, target detector selection, model structure

modification, modified model transfer training, model application

testing and evaluation, and model continuous improvement.

Among them, the preparation of datasets is a key step in deep

learning, and also the basis of deep learning target recognition tasks.

The preparation of datasets includes image acquisition, data

cleaning, data labeling, data segmentation, data enhancement, and

other steps. The quality and diversity of the datasets will affect the

final training results and recognition precision of the model.

Therefore, for the non-structured orchard environment, the

amount of image acquisition data must be large enough, and fruit

images under various interference factors in the complex orchard

environment should be included as much as possible. However, due

to the periodic harvesting of fruits and the non-structural nature of

the orchard itself, as well as the influence of weather, region, fruit

species, time, human, and other factors, the current preparation

process of orchard datasets is complicated, time-consuming and

laborious, for the recognition research in this field has not yet a

representative orchard public datasets for researchers to use.

The deep learning training process can be specifically divided

into supervised learning, unsupervised learning, semi-supervised

learning, and weakly supervised learning according to whether the

data has label information.

Supervised Learning: In supervised learning, the training

datasets contain inputs and corresponding labels (or outputs).

The model learns these data to create a mapping of inputs to

outputs that allow it to predict new and unseen data. Classical

classification and regression tasks fall into the supervised learning

category (Caruana and Niculescu-Mizil, 2006). It is also the current

main method of fruit target recognition based on deep learning. The

datasets preparation has a great impact on supervised learning, and

the richness of data information in the training data directly affects

the final recognition effect, the size of the datasets is usually

determined by the deep learning model and image complexity.

For the fruit recognition task under the complexity of non-

structured orchards, the datasets should contain multiple types of

image data in the orchard complex environment under various

interference factors, such as shadow, branch occlusion, fruit

overlap, night environment, uneven illumination, and the same

color scheme, and the data scale should be large enough. Since fruits

are cyclical ripening crops, weather, time, region and other factors

make it difficult to prepare orchard datasets, which increases the

difficulty of the picking work.
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Unsupervised Learning: In unsupervised learning, the training

data has no corresponding label and only contains input. The goal

of the model is to discover the intrinsic structures, patterns, or

features in the data, such as tasks such as clustering (grouping data

into groups) and dimensionality reduction (reducing the

dimensions of the data). Unsupervised learning omits the more

complex process of data labeling, and with original data samples

model can extract distinguishable information or features from the

structure of training data, and then map the features extracted from

the input image to the specified output (Hasan et al., 2021).

Semi-Supervised Learning: Semi-supervised learning is a

learning mode between supervised and unsupervised learning, in

which the label coverage of the training datasets is not all image

data, but only part of the image data is labeled. This method uses the

powerful self-learning ability of deep learning to map the

relationship between labeled data and unlabeled data and

improve the detection performance of the model. Semi-supervised

learning can use as much information as possible to achieve better

generalization capabilities when the data is limited or the cost of

label production is high so that training with small and medium-

sized data can obtain high-precision results (Xiao et al., 2020b).

Weakly Supervised Learning: A training model in which there is

only partial label information in the training data is called weakly

supervised learning. This information may be rough and

incomplete labels. In this case, the model needs to learn about the

data from the incomplete label information for tasks such as target

detection, segmentation, etc. Incomplete supervision, Inexact

supervision, and Inaccurate supervision are three typical types of

weakly supervised learning (Zhou, 2018). This is a growing field,

and researchers are constantly coming up with new ways to

improve the effectiveness of weakly supervised learning.
4.2 Fruit target recognition methods and
classification criteria based on
deep learning

The rapid development of Deep Learning began in 2012 when

AlexNet overwhelmingly defeated traditional target detection

algorithms in the ImageNet Large-scale Visual Recognition

Challenge (ILSVRC) (Krizhevsky et al., 2017). In 2013, the

European Commission and Baidu respectively initiated and

established the supercomputer project and the Deep Learning

Research Institute. In 2014, two influential CNN models,

VGGNet and Inception Net (GoogLeNet), were developed. Then

deep learning developed more and more rapidly, in the

development of algorithms related to object recognition as shown

in Table 1. Algorithms not indicated with references in the table are

network models published on platforms such as GitHub.

The object recognition detection algorithm based on deep

learning can be divided into two categories: classification-based

two-stage detection algorithm and regression-based single-stage

detection algorithm. Two-stage detection algorithms divide the

target detection problem into two stages: first, the candidate

target frames are generated, and then these frames are classified

and positionally adjusted. This method typically requires two
Frontiers in Plant Science 07
forward passes. Representative algorithms include R - CNN, Fast

R - CNN, Faster R - CNN, and Mask R - CNN, among others. It is

characterized by accurate detection results, high detection precision,

and wide adaptability to the target size. The single-stage detection

algorithm treats the object detection problem as a regression

problem and only needs one forward pass to predict both the

category and boundary frame of the object at the same time. It is a

method that can predict the target location and classification

directly from the image. YOLO (You Only Look Once) (Redmon

et al., 2016) and SSD (Single Shot MultiBox Detector) (Liu et al.,

2016) are two typical single-stage detection algorithms. It is

characterized by simple and fast, multi-scale prediction, relatively

less calculation, and better performance for small and dense targets.

The choice of a single-stage or two-stage detection algorithm

depends on the application scenario, computing resources, and

requirements for detection performance. In general, the single-stage

algorithms have the advantage in terms of speed and are suitable for

real-time or fast detection requirements, while the two-stage

algorithms perform better in terms of precision and are suitable

for tasks that require high precision.

4.2.1 Two-stage fruit target detection method
The two-stage detection algorithm is not a simple fusion of

traditional machine learning methods and CNN, but rather a

specific target detection method, which uses CNN based on deep

learning for target detection, but adopts a two-stage process in the
TABLE 1 Major development history of object recognition algorithm
based on deep learning.

Year Development stages of recognition algorithms

2012 AlexNet(early CNN) (Krizhevsky et al., 2012)

2013 OverFeat (Sermanet, 2013), ZFNet (Zeiler, 2014)

2014 VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al.,
2015), R - CNN (Girshick et al., 2014)

2015 SPPNet (He et al., 2015) and ResNet (He et al., 2016) (Multi-scale
Feature Extraction and Deeper Network Layers), Faster R - CNN
(Girshick, 2015), YOLO (Redmon et al., 2016) (single-stage object
detection algorithms are beginning to emerge)

2016 SDD (Liu et al., 2016), YOLOv2 (Redmon and Farhadi, 2017)

2017 The model begins to integrate tasks such as instance segmentation,
semantic segmentation, and object detection, Mask R - CNN (He et al.,
2017a) introduces the concept of instance segmentation, MobileNet
(Howard, 2017), ShuffleNet(efficient model) (Zhang et al., 2018)

2018 YOLOv3, CornerNet (Law and Deng, 2018)

2019 ExtremeNet (Zhou et al., 2019), FCOS (Tian et al., 2019), CenterNet
(Duan et al., 2019),
FoveaBox (Kong et al., 2020), EfficientNet (Tan and Le, 2019) (efficient
model), GhostNet (Han et al., 2020), CondConv (Yang et al., 2019)

2020 YOLOv4 (Bochkovskiy et al., 2020), YOLOv5, RegNet (Radosavovic
et al., 2020) (Efficient model)

2021 YOLOF (Chen et al., 2021a), YOLOR (Wang et al., 2021a), YOLOX
(Zheng et al., 2021)

2022 YOLOv6 (Li et al., 2022a), YOLOv7 (Wang et al., 2023b)

2023 YOLOv8
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target detection process. Candidate frame generation stage: In this

stage, the algorithm generates a series of candidate target frames

through different methods, often referred to as “candidate regions”

or “candidate frames”. These candidate frames are regions that may

contain targets, but their category and precise location have not yet

been determined. Target classification and position adjustment

stage: In this stage, the generated candidate frames are passed

through the CNN for target classification (i.e., determining which

category they belong to) and position localization (i.e., adjusting the

coordinates of the bounding box). This stage uses deep learning

methods, usually using CNN to achieve classification and

localization. This is different from traditional machine learning

methods in algorithmic ideas and processes. Girshick et al.

proposed the R - CNN algorithm inspired by the AlexNet

network (Girshick et al., 2014), The network structure is shown

in Figure 4. The training and testing of the network take a long time,

occupy a large space, and the training modules are independent of

each other. Fast R - CNN (Girshick, 2015) adds an RoI pooling

based on the previous R – CNN, then integrates the entire model

using a deep convolutional neural network for efficient target

detection, reducing the calculation area and increasing the

training speed by 9 times, but the memory consumption is

relatively large. The network structure is shown in Figure 5. The

Region Proposal Network (RPN) is a highlight of Faster R-CNN,

which replaces the SS (Selective Search) method to extract

proposals. The network structure is shown in Figure 6. This

structure greatly improves the speed of generating candidate

regions for network models (Ren et al., 2015). Based on Faster R

- CNN, Mask R - CNN adds a branch of segmentation task to

predict the target mask, and fuses object detection and image

segmentation into the same network. The network structure is

shown in Figure 7, which uses a ResNet-FPN network with stronger

feature extraction capability. To solve the problem of misalignment

between RoI and extracted features, the RoI Align layer is

introduced while the extracted features are aligned with the input

(He et al., 2017b).

A large number of scholars have used the two-stage algorithms

to accomplish the task of fruit target recognition under complex
Frontiers in Plant Science 08
backgrounds in orchards. The relevant research results of the two-

stage fruit target detection algorithm are shown in Table 2. As can

be seen from Table 2, the two-stage algorithms such as Faster R -

CNN and Mask R - CNN are applied to fruit target recognition in

different scenarios, which can achieve higher detection precision

and better performance in small target detection. However, the

extracted feature maps are all single-layer with lower resolution. For

occluded targets, the recognition precision will decrease. Moreover,

the algorithm structure finally uses a fully connected layer, which

occupies a large part of the parameters and increases the amount of

calculation. The overall time of detection and segmentation is

relatively long, and the detection speed is significantly slower than

that of the single-stage detection algorithm. The next section will

focus on the application of the single-stage detection algorithm.

4.2.2 Single-stage fruit target detection method
The single-stage target detection algorithms are also known as

regression-based detection methods. This regression-based method

enables the single-stage algorithm to complete the target location

and classification in a single forward pass, with faster detection

speeds compared with the two-stage detection algorithms. The

YOLO series and SSD are two representative algorithms among

them. SSD was proposed by Wei Liu et al. in 2016 (Liu et al., 2016).

It can complete both target classification and location in a model at

the same time and can adapt to multi-scale targets, which is fast and

suitable for real-time target detection, but there is the problem of

inaccurate location when the target scene is more complex, the

network structure is shown in Figure 8.

YOLO target detection algorithm is an early single-stage target

detection algorithm of deep learning. It was proposed by REDMON

et al. in 2015 and is also a popular target detection algorithm at

present (Redmon et al., 2016). Its core idea is that through a single

CNN structure directly from image input to the final prediction

result, including the generation of candidate boxes, target

classification, and the prediction of boundary box regression

parameters, it has already been derived from several generations

of models. The latest detection model is YOLOv9 launched in 2024.

Table 3 lists some of the fruit target recognition research results
FIGURE 4

R - CNN network model structure diagram.
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based on a single-stage target detection algorithm. Table 3 mainly

includes two algorithms: SSD and YOLO. SSD is comparable to

YOLO in terms of running speed, and comparable to the two-stage

detection algorithm Faster R - CNN in terms of detection precision,

but the setting process of min size, max size, and aspect ratio in the

prior box needs to be completed manually. making the parameter

debugging process more complicated and relying on manual

experience. Therefore, YOLO is the single-stage algorithm with

the highest usage rate and the most improvement at present, and

this paper only analyzes the mainstream version officially released

by YOLO.

For the first time, YOLO proposes a real-time end-to-end target

detection method that uses a more direct output to predict detection

outputs based solely on regression. The YOLOv1 structure consists

of 24 convolutional layers followed by two fully connected layers for

predicting the coordinates and probabilities of the bounding boxes.

The network layer uses leaky RELU, and only the last layer uses
Frontiers in Plant Science 09
linear activation functions and a 1 × 1 convolution layer to reduce

the number of feature maps and keep the number of parameters

relatively low. YOLOv1 unifies the target detection step by

simultaneously detecting all bounding boxes and achieved an

average precision(AP) of 63.4%on the PASCAL VOC2007

datasets, which had larger location errors than the Fast R - CNN

of the same period.

The YOLOv2 has several improvements over the original

YOLO to make it better, maintain the same speed, and be more

powerful - capable of detecting 9,000 classes. The main

improvements are as follows: 1. Batch normalization processes all

convolutional layers in the network. 2. A high-resolution classifier

of 448 × 448 is used to fine-tune the model. 3. Dense layers are

removed and a fully convolutional architecture is used. 4. A pooling

layer is removed and a pass-through layer is used to generate finer-

grained features. 5.YOLOv2 does not use the full connection layer,

and the input can be multi-scale images. With all these
FIGURE 6

Faster R - CNN network model structure diagram.
FIGURE 5

Fast R - CNN network model structure diagram.
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TABLE 2 Research results of fruit target recognition based on a two-stage algorithm.

Recognition
algorithm

Application
scenarios

Technical principles and
characteristics

Identification effect and
evaluation index

Research
scholars

Faster R - CNN winter jujube Same-color,
green walnut

Based on data balance, combined with
deep learning Improved Faster R -CNN:
Adding batch normalization and
improving the adaptability

Improved generalization effect, mAP was
98.5% The precision was 97.71%, recall was
94.58%, F1 value was 96.12%, detection
speed was 227 ms

(Wang et al., 2020;
Fan et al., 2021c)

Shake grab, apple Improved Faster R - CNN: Transfer
learning using pretrained networks such
as Alexnet, VGG16

The mAP was 82.40% with an average
detection time of 0.45 s

(Zhang et al., 2020)

Light and Occlusion,
passion fruit

Improved Faster R - CNN: Based on
Multi-scale Fast Regional CNN

The precision was 93.10%, recall was
96.20%, F1 value was 94.60%,

(Tu et al., 2020)

Same color, green citrus Determine the optimal training
parameters for the model

The mAP was 85.49% with an average
running time of 0.4 s

(Juntao et al., 2018)

Occlusion, fruit
overlapping, kiwi

Transfer learning, using Im-AlexNet as a
feature extraction layer

Complex environment, the mAP was 96%,
and the detection speed was 1 s/graph

(Longtao et al., 2019)

Natural environment
prickly pear

Improved Faster R - CNN: Bilinear
interpolation was used to change the ROI
pooling to ROI align

The recall was 96.93%, precision was
95.53%, F1 was 94.99%, average speed was
0.2s/graph

(Yan et al., 2019)

Multiple types of fruit Improved Faster R - CNN framework:
Improved convolution layer and
pooling layer

The mAP was 92.51% and the speed was
58 ms/graph

(Wan and
Goudos, 2020)

Occlusion, apple A multi-class apple detection method
based on Faster R - CNN was proposed
using VGG16

The average mAP of the four types of
scenarios 87.9%

(Gao et al., 2020)

Mask R - CNN Overlap fruit, apple The input parameters are reduced, and
each fruit the mask can be output

The precision rate was 97.31% and the
recall rate was 95.70%

(Jia et al., 2020b)

Block, overlap fruit, apple Proposed RS-Net. Mask R - CNN was
extended by embedding the Gaussian
attention module

The mAP 86.2 with an average
segmentation time of 65.79ms

(Jia et al., 2022b)

Light, occlusion, apple Add a suppress branch to standard Mask
R - CNN to suppress non-apple features
produced by the original network

The precision was 88.0%, recall was
93.10%, F1 value was 90.5%, detection time
was 0.25 s/graph

(Chu et al., 2021)

(Continued)
F
rontiers in Plant Sc
ience
 10
FIGURE 7

Mask R - CNN network model structure diagram.
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improvements, YOLOv2 achieved an average precision of 78.6% on

the PASCAL VOC2007 dataset.

The YOLOv3 backbone network is Darknet-53, which replaces

all maximum pooling layers with stride convolution and adds

residual connections. It contains a total of 53 convolutional

layers. The main improvements are as follows: 1. In terms of

boundary box prediction, YOLOv3 uses logistic regression to

predict an object property score for each boundary box. 2. In

terms of class prediction, binary cross entropy is used to train

independent logical classifiers, and the problem is formalized into

multi-label classification. 3. YOLOv3 predicts three boxes on three

different scales for multi-scale prediction. This helps to get a finer

detail box and significantly improves the prediction for small

objects, which was one of the main weaknesses of previous

versions of YOLO. Since that release, all YOLO models have been

evaluated in the MS COCO datasets, and the YOLOv3-spp has

achieved 36.2% AP and 60.6% AP50 at 20 FPS, reaching the state-

of-the-art level at the time, and the speed was increased by 2 times.

At this point, the structure of the target detector begins to be

divided into three parts: the backbone network, the neck network,

and the head network. The backbone network is responsible for

extracting useful features from the input images. The neck is the

intermediate component that connects the backbone network to the

head, focusing on enhancing spatial and semantic information at

different scales. The head is the final component of the target

detector, which makes predictions based on the features provided

by the backbone network and the neck.
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The main change in YOLOv4 is the enhanced architecture

integrated with methods that slightly increase the cost of inference

but significantly improve precision. The best-performing

architecture is a modification of Darknet-53, adding a cross-stage

partial connection (CSPNet) and a Mish activation function as the

backbone network, and the neck network uses a modified path

aggregation network (PANet) and a modified space Attention

Module (SAM). CIoU loss and Cross mini-batch Normalization

(CmBN) were added to collect statistics from the entire batch rather

than from a single mini-batch and perform hyperparameter

optimization with a genetic algorithm. Evaluated on test-dev 2017

on the MS COCO datasets, YOLOv4 achieved 43.5% AP and 65.7%

AP50 at over 50 FPS on the NVIDIA V100.

The YOLOv5 introduces the Focus module and SPP structure,

as well as the CSP module and FPN- PAN structure, to improve the

efficiency of feature extraction and fusion, backbone network adopts

CSPDarknet53, starting with Stem, that is, a stride convolution layer

with large window size, SPPF (Spatial pyramid pool fast) layer and

subsequent convolution layer to process features at different scales,

while the upper sampling layer increases the resolution of the

feature map. Each convolution is followed by batch normalization

(BN) and SiLU activation. The neck uses SPPF and modified CSP-

PAN, while the head is similar to YOLOv3. YOLOv5 uses multiple

enhancement techniques, such as Mosaic, copy-paste, random

affine, MixUp, HSV enhancement, random horizontal flipping,

and other enhancements from the albumentations package, to

increase the diversity of data; As evaluated on the MS COCO
TABLE 2 Continued

Recognition
algorithm

Application
scenarios

Technical principles and
characteristics

Identification effect and
evaluation index

Research
scholars

Shade, overlap,
occlusion, apple

Improved Mask R - CNN: Added
attention module (deformable
convolution combined with deformable
attention with key content items)

The precision was 95.8%, recall was 97.1%,
F1 value was 96.4%, mAP was 91.7%

(Wang and He, 2022)

R - FCN Same color, green apple Improved R - FCN image feature
extraction based on ResNet-44

The recall was 85.7%, precision was 95.1%,
error rate was 4.9%, average speed was
0.187s/graph

(Wang and He, 2019)
FIGURE 8

SSD network model structure diagram.
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TABLE 3 Research results of fruit target recognition based on a single-stage algorithm.

Recognition
algorithm

Application
scenarios

Technical principles and
characteristics

Identification effect and
evaluation index

Research
scholars

SSD The drone image is small in
size, litchi

MFEFF-SSD model based on multiple feature
enhancement and feature fusion was
proposed. Add RFB, multi-scale feature
fusion, attention mechanism

The average precision of a small target
detection was higher than other
classical models compared

(Peng et al., 2022)

Lingwu Long Jujube Improve the DenseNet model, introduce the
Inception module, and feature fusion
structure. Lightweight model

The mAP was 96.60%, the speed was
28.05 frames/s, number of parameters
was 1.99 × 10

(Wang and Xue, 2021)

Small target missed,
misdetected, grapefruit

Design features Fusion single lens detector
IFSSD, backbone network Inceptionv3, and
Focal Loss function.

The precision rate was 93.70%, and the
detection time was 29 s/graph

(Xiao et al., 2020a)

Multiple types of fruit Propose SD(single shot multibox detector)
model and replace VGG16 with Res Net-101

The mAP was 89.53%, F1 value
was 96.12%

(Peng et al., 2018)

YOLO Tomato Multi-scale IMS - YOLO algorithm, backbone
Darknet-20, fuses multi-scale information

The mAP was 97.13%, recision was
96.36%, recall rate was 96.03%, the
detection time was 7.72 ms

(Liu et al., 2020a)

YOLOv2 Same color, mango Using YOLOv2 to realize green mango
recognition in UAV image

The average detection time was 0.08 s/
image and the AP was 86.43%

(Xiong et al., 2018)

Light, same color,
unripe mango

Tiny - Yolo network structure was designed
to realize multilayer feature reuse and fusion

The detection speed was 83f/s,
precision rate was 97.02%, recall rate
was 95.1%

(Xue et al., 2018)

strawberries Image enhancement algorithm based on
YOLOv3 combined with gamma transform

The mAP was 87.51%, precision was
97.14%, recall rate was 94.46%,
detection rate was 58.1f/s

(Liu et al., 2020b)

YOLOv3
Night environment, litchi Detection of litchi fruit at night was realized

based on
YOLOv3 and U-Net

AP value High brightness was 96.78%,
normal brightness was 99.57%, and low
brightness was 89.30%

(Liang et al., 2020)

Light, occlusion, overlap,
winter jujube

The improved YOLOv3-SE model was
proposed, and the SE Block structure was
introduced to enhance the feature expression
ability of the feature map

Percentage improvement: recall rate
was 2.43\∼5.08, mAP was 2.38\∼4.81,
F1 value was 1.75\∼2.77

(Tianzhen et al., 2021)

Night environment,
overlapping citrus

Multi-scale CNN DesYOLOv3 algorithm,
adding Dense Block structure

The mAP was 90.75% (Improved by
2.27%), detection speed increased by 11
f/s

(Xiong et al., 2020)

Light, overlapping,
occlusion, Apple

Fusion of DarkNet53 and CSPNet, adding
SPP module to achieve feature fusion, using
Soft NMS algorithm and joint Loss function
based on Focal and CIoU Loss

The mAP 96.30%, F1 value 91.80%,
detection speed 27.8 f/s

(Zhao et al., 2021)

Pineapple Based on binocular stereo vision and
improved YOLO v3 model. DenseNet and
SPP modules were added to the network

F1 and AP were 93.00% and 97.55%
respectively in the slightly
obscured datasets

(Liu et al., 2023)

Complex
background, Apple

Lightweight Light-YOLOv3 model, residual
blocks in series, using depthseparable
convolution, the multiobjective loss function
is proposed

The detection speed and precision were
improved, F1 value of 94.57%, mAP
value of 94.69%

(Xing et al., 2020)

Light, block, stick,
bagging, apple

An apple recognition and location method
based on YOLOv3 CNN was proposed

The mAP was 87.71%, precision was
97%, recall rate was 90%, IOU
was 83.61%

(Zhao et al., 2019)

Same color, light,
Shade, banana

Multi-class detection of banana bunches and
banana stalks based on YOLOv4

The model mAP was 93.69%, average
detection time was 44.96 ms/graph

(Fu et al., 2022)

YOLOv4 Light, occlusion, tomato YOLOv4 combines HSV to segment
the target

When the segmentation area
proportion was 16%, the precision was
94.77%, and the detection speed was
25.86ms/graph

(Li et al., 2021c)

(Continued)
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TABLE 3 Continued

Recognition
algorithm

Application
scenarios

Technical principles and
characteristics

Identification effect and
evaluation index

Research
scholars

Light, occlusion,
interference, tomato

To improve the backbone network, the deep
separable convolution model is adopted to
realize the reuse of feature information and
multi-scale fusion

The precision rate was 88.00%, the
recall rate was 89.00%, the mAP was
94.44%, detection speed was 10.71 f/s

(Zheng et al., 2022b)

Small targets, strawberries proposed, which adopts a lightweight
network GhostNet to embed attention
mechanism and integrate multi-features

The weight of the model was 4.68MB,
the detection time was 5.63 ms/graph,
and mAP was 92.62%

(Sun et al., 2022)

Small target, dense,
occluded, citrus

The feature recursive fusion network model
FR-YOLOv4 was proposed, and the backbone
network uses CSPResNest50 and RFP
fusion features

The mAP is 94.60%, average detection
speed 51 f/s

(Yi et al., 2021)

Small target, same
color, apple

The YOLOv4-SENL model was proposed,
and two attention mechanisms, SE block, and
NL block, were used to integrate
advanced features.

With an average precision of 96.90%,
the detection effect was better than
SSD, YOLOv4, Faster R - CNN, and
other models

(Song et al., 2021)

Bright light, blurred image,
occlusion, apple

The YOLOv4-NLAM-CBAM model was
proposed, and two attention modules NLAM
and CBAM were added

The AP of highlight/shadow, blurry and
severely occluded images were 98.00%,
96.20% and 97.00%, respectively

(Jiang et al., 2022)

Occlusion, size, apple Improved model CAYOLOv4 was proposed,
and CBAM convolutional attention module
was added, adaptive layer and dense
connection were introduced

The precision rates of early, middle,
and harvest were 86.20%, 87.50%, and
92.60%, respectively

(Lu et al., 2022)

Uneven lighting,
occlusion, blueberries

The I-YOLOv4-Tiny network was proposed,
CSPDarknet53Tiny was adopted as the
backbone network, and the CBAM module
was added

The mAP was 96.24%, the average
detection time was 5.72 ms, and the
memory occupied by the network
structure was 24.20 MB

(Wang et al., 2021b)

Small target,
occlusion, tomato

A YOLOv4-tiny-X model was proposed, and
CBAM was added, the Mish activation
function was adopted, and global feature
fusion was enhanced with DCCN

The detection speed on Nvidia GTX
2060 and global feature fusion was
enhanced with DCCN

(Yang et al., 2022b)

Small targets, strawberries Propose a lightweight RTSDNet network,
reduce the number of CSPNet modules, and
simplify the network structure of CSPNet

Compared with the YOLOv4-Tiny
model, mAP reduces by 0.62%, but the
detection speed increases by 25.93%

(Zhang et al., 2022b)

Citrus Based on YOLOv5s combined with an
improved visual significance
detection algorithm

The mAP was 95.40%, occupying 13.70
MB of memory, detection time was 70
ms/graph

(Chen et al., 2022)

YOLOv5
Night environment, tomato The CIoU target position loss function based

on crossover ratio was used to calculate and
select the best anchor frame size

The average recognition precision of
tomatoes was 96.80%

(He et al., 2022)

Natural
environment, cherry

Adopt offline and online data enhancement
strategies, add Transformer module, BiFPN
structure, and P2 module

The precision rate was 97.60%, the
recall rate was 89.90%, mAP
was 95.20%

(Zhang et al., 2022c)

Occlusion, overlap, apple Improved YOLOv5s improves the bottleneck
CSP module to bottleneck CSP-2, introduces
the attention mechanism SE, improves the
initial anchor frame size

The recall rate was 91.48%, precision
was 83.83%, mAP was 86.75%, F1 value
was 87.49%, speed was 15 ms/graph

(Yan et al., 2021)

Stem occlusion, apple Design BottleneckCSP module, introduce SE
module, improve the initial anchor frame size
of the network

The recall rate was 85.90%, precision
was 81.00%, mAP was 80.70%, F1 value
was 83.40%, speed was 25 ms/graph

(Bin et al., 2022)

Grapes An MRWYOLOv5s grape detection model
was proposed. MobileNetv3 was used to
extract features and attention mechanism,
and RepVGG Block was introduced

Parameters size is 7.56M, mAP was
97.74% (2.32% higher), detection time
was 10.03ms/graph (6.13ms lower)

(Sun J. et al., 2023)

pear The YOLO - P model was proposed. SB
structure and ISB module were used to

The AP was 97.6% (1.8% improved),
model size was 8.3MB (39.4%

(Sun H. et al., 2023)

(Continued)
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datasets test-dev 2017, YOLOv5x achieved 43.5% AP and 65.7%

AP50 at 640 pixels image size at speeds over 50 FPS, using

NVIDIA V100.

The YOLOv6 uses the RepVGG-based backbone network

EfficientRep, which has higher parallelism than the previous

YOLO backbone. The neck uses PAN, which is enhanced by

RepBlocks or CSPStackRep modules, and for larger models, the

highly efficient decoupled head after YOLOX is used. Classification

VariFocal losses and SIoU/GIoU regression losses are used. Use

RepOptimizer and channel-level distillation for faster detectors.

Evaluated on test-dev 2017 of the MS COCO datasets, the largest

model reached 57.2% AP at about 29 FPS on an NVIDIA Tesla T4.

Architectural changes in The proposed Extended Efficient Layer

Aggregation Network (E-ELAN) and a new connection-based
Frontiers in Plant Science 14
model scaling strategy are the structural highlights of YOLOv7.

Evaluated on the MS COCO datasets test-dev 2017, YOLOv7-E6

achieved 55.9% AP and 73.5% AP50 at an input size of 1280 pixels

at 50 frames per second, using an NVIDIA V100.

The YOLOv8 uses a backbone network similar to YOLOv5,

with some modifications to CSPLayer, reducing the number of

blocks of the maximum stage in the backbone network, thereby

reducing the number of parameters and calculations, and achieving

lightweight, called the C2f module. The convolution structure of the

up-sampling phase on PAN-FPN is also optimized to combine

high-level features with contextual information to improve

detection speed and accuracy. It uses an anchor-free model with

decoupling heads that independently handle object properties,

classification, and regression tasks. The Sigmoid function is used
TABLE 3 Continued

Recognition
algorithm

Application
scenarios

Technical principles and
characteristics

Identification effect and
evaluation index

Research
scholars

replace CBS structure, CBAM module was
inserted, activation function: Hard-Swish

compression), detection precision
was 97.6%

Elevated
cultivation, strawberries

The ATCSP-YOLOv5s model is proposed
and an attention mechanism is introduced.
The effective segmentation of fruit stems
was realized

The precision was 97.24%, recall rate
was 94.07%, average precision was
95.59%, detection speed was 17.3f/s

(Yang et al., 2023)

Growth type, apple The YOLOv5-B network model with BiFPN-s
structure was proposed, activation function:
ACON-C

The average precision is 98.45% and
the processing speed is 71 FPS

(Lv et al., 2022)

YOLOv7
Multigrowth posture,
dragon fruit

Based on the optimal YOLOv7 model, a
multi-pose dragon fruit detection method
was proposed

The precision rate was 83.6%, the recall
rate was 79.9%, and the mAP
was 88.3%

(Wang et al., 2023)

Fruit thinning period, apple Merge the window-long selfattention
mechanism, add Swin Transformer Block and
adopt SIoU loss function

The average precision was 95.2%,
precision was 92.7%, recall rate was
91.0%, model size was 81 MB

(Long et al., 2023)

Different ripening,
occlusion, tomato

MobileNetV3 was used to extract features
and the global attention mechanism GAM
was introduced

The precision rate was 98.6%, recall
rate was 98.1%, mAP was 98.2%,
detection time was 82ms

(Miao et al., 2023)

Light, dragon fruit The RDE-YOLOv7 detection method was
proposed, introducing RepGhost and
decoupling head and several ECA blocks

The precision, recall, and mAP were
increased by 5.0%, 2.1%, and
1.6% respectively

(Zhou et al., 2023b)

Complex orchard
environment, pineapple

Insert the attention mechanism SimAM,
improve the MPConv structure, and replace
the nonmaximum inhibition (NMS)
algorithm with a soft NMS algorithm

The mAP was 95.82% (2.71%
improved), recall was 89.83%
(3.41% improved)

(Lai et al., 2023)

immaturity, occlusion,
yellow peach

The YOLOv7-peach model was proposed, the
CA module was embedded, EIoU was
adopted, P2 shallow downsampling module
was added

The mAP was improved by 3.5%, and
the detection speed was up to 21 fps

(Liu and Yin, 2023)

High density, occlusion,
overlap, Apple

Introducing MobileOne module, improving
SPPCSPS module to parallel channel, adding
auxiliary detection head

precision improved by 6.9%, recall
improved by 10%, mAP1 improved by
5%, mAP2 improved by 3.8%

(Yang et al., 2023b)

Shade, small target, Apple Lightweight YOLOv7-tiny algorithm, adding
jump connection on shallow features used
P2BiFPN for multi-scale feature fusion
and reuse

The mAP was 80.4% (5.5% improved),
loss rate was 3.16%

(Ma et al., 2023)

YOLOv8 Tomato Depth-separable convolution, DPAG module
is designed, and feature enhancement module
is added

The mAP was 93.4% (1.5% improved),
precision was 2% better, recall was
0.8% better

(Yang et al., 2023a)
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as the activation function of the object property score, the Softmax

function is used to represent the class probability, the CIoU and

DFL loss functions are used to calculate the bounding box loss, and

the binary cross entropy loss is used to calculate the classification

loss. A semantic segmentation model named YOLOv8-Seg is

provided whose backbone network is the CSPDarknet53 feature

extraction, followed by a C2f module instead of the traditional

YOLO neck architecture, the C2f module is followed by two

segmentation heads that learn to predict semantic segmentation

masks for input images. The YOLOv8 consists of five detection

modules and a prediction layer, the model structure is shown in

Figure 9. The YOLOv8-Seg model achieves state-of-the-art results

on a variety of object detection and semantic segmentation

benchmarks while maintaining high speed and efficiency.

Evaluated on the MS COCO datasets test-dev 2017, The

YOLOv8x achieved 53.9% AP at an image size of 640 pixels

(compared to 50.7% for YOLOv5 at the same input size), running

at 280 FPS on the NVIDIA A100 and TensorRT.

The YOLOv9 was released in February 2024. The main

improvement is to propose programmable gradient information

(PGI) and design GELAN, a new lightweight network architecture

based on gradient path planning, which reduces parameters and

calculation requirements. Compared with YOLOv8x, the

parameters are reduced by 15%, reducing the calculation amount,

but the AP value is increased by 1.7%. Since it has just been released,

this article will not introduce the structure, readers can refer to the

YOLOv8 structure for understanding the YOLO structure.

Many versions of YOLO have evolved around the idea of

balancing speed and precision, providing real-time performance

without sacrificing the quality of detection results. YOLO

introduced anchor-based from YOLOv2 to improve the precision

of boundary box prediction. However, from the YOLOX version to

the latest YOLOv9, the anchor-free method has been used. The next

section of this paper will introduce the anchor-free algorithm

in detail.
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4.2.3 Anchor-free target detection algorithm
The mainstream algorithms of the target detection model are

mostly Anchor-based detection algorithms. This type of algorithm

uses anchor boxes of different sizes and shapes to regression and

classify the targets, which can directly classify targets and bounding

box regression, with better detection effect, especially for small

target detection has significant improvement, but it still has the

following shortcomings: the anchor frame parameter design is more

complex, and it needs to set a lot of artificial hyper-parameters, such

as the size, length, width, etc., these parameters will affect the

detection performance of the detector; The design scale and shape

of the anchor frame detector are redundant, resulting in more

negative samples, which makes the positive and negative samples

unbalanced. A large number of redundant anchor frames will also

increase the calculation cost. In response to these problems, anchor-

free target detection algorithms are beginning to emerge. Anchor-

free detection algorithms are a kind of target detection method.

Different from the traditional method using predefined anchor

frames, it does not need predefined anchor frames but directly

predicts the location and category of the targets through the

network. This method divides the recognition into two sub-

problems of determining the object center and predicting the four

borders, it only needs to regress the target center point, width, and

height, which reduces the time-consuming and computing power

and can be more adaptive to targets of different sizes and shapes.

However, since anchor frames are not used and the anchor-free

detection algorithm predicts only one frame at each position, some

algorithms may have poor detection effects in some scenarios, such

as overlapping or occlusion scenarios with a leakage detection

problem. Anchor-free detection methods can be divided into two

main categories based on single central point prediction and multi-

key point joint expression (Zhang et al., 2022a), as shown

in Figure 10.

The pixels on a feature map are called Anchor Points, which in

target detection are also called Anchor frames, and are predefined
FIGURE 9

YOLOv8 network model structure diagram.
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frames used to generate candidate target frames. The prediction

method based on a single central point is called Anchor Point

Detector, and the role of anchor points in target detection

algorithms is to be able to capture the target in the image at

different scales and aspect ratios. The anchor point detector

encodes the real frame as the anchor points and its positions are

associated with the features. CenterNet, FCOS, and CSP are the

representative algorithms of the anchor point detector. The anchor

detection methods are mainly concerned with locating the position

of the target and bounding frame in the image. Anchor points are

usually placed at every location in the image, and each anchor point

has a different size and aspect ratio. The object detection algorithm

applies these anchor points to each location in the image to generate

a series of candidate target frames that can cover targets of different

sizes and shapes. The key point detector decodes the key points into

the prediction frame by predicting the location of key points such as

corner point, center point, or Extreme point in the bounding frame,

CornerNet, ExtremeNe, etc. are its representative algorithms. This

method focuses on detecting specific key points or feature points of

the object, rather than predicting the bounding frame directly. Key

points are usually points on the object with significant properties,

and by detecting these points, the position and attitude of the object

can be inferred. The fruit target recognition research results of some

anchor-free target detection algorithms are shown in Table 4. To

sum up, due to the shortcomings of the anchor-based algorithm,

relevant scholars have proposed an anchor-free algorithm to

address these shortcomings. From the existing research, it can be

seen that the anchor-free algorithm performs better than anchor-

based algorithms in certain scenarios. However, due to the relatively

late emergence of anchor-free algorithms and short research time,

many algorithms are currently not suitable for general target

detection. The target recognition anchor-based algorithm is still

in the mainstream in terms of application. Compared with anchor-

based algorithms, this kind of algorithm has the advantages of

strong robustness, short training time, and can avoid sample
Frontiers in Plant Science 16
imbalance problems during the training process, this type of

algorithm itself has not encountered a research bottleneck and is

still in the rapid development stage, it will still be one of the research

hotspots of target detection algorithms in the next few years.
4.3 Target segmentation method based on
deep learning

4.3.1 Semantic segmentation model based on
deep learning

The semantic segmentation model based on deep learning aims to

assign each pixel in the image to the corresponding semantic category,

to achieve pixel-level image segmentation, which is a more advanced

task of target detection. Classifying each pixel point in the target image

is the purpose of semantic segmentation. The following are some

common semantic segmentation models based on deep learning:

Fully Convolutional Network (FCN) (Long et al., 2015): FCN is

the pioneering work of the target detection algorithm in the field of

semantic segmentation, released in 2014. FCN is a model that

extends the traditional CNN into a full convolutional structure with

the core idea of feature fusion. It applies CNN to semantic

segmentation tasks by restoring resolution through layer-by-layer

up-sampling. The biggest feature is that FCN can retain both the

location information and semantic information of the target, and

can classify the target at the pixel level to complete the task of

target segmentation.

U-Net (Ronneberger et al., 2015): Released in 2015, the core

idea of U-Net is the stitching of feature maps, which are widely used

in semantic segmentation tasks. Its structure includes two parts:

encoder (under-sampling) and decoder (up-sampling) and achieves

fine image segmentation through a series of convolutional and up-

sampling layers.

SegNet (Badrinarayanan et al., 2017): SegNet was released in

2015, the core idea is to put forward the max pool index to up-
FIGURE 10

Classification of anchor-free detector.
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sampling, its backbone network is two VGG16 removed the full

connection layer, forming an encoder-decoder structure for image

segmentation, the encoder extract features, the decoder gradually

restore resolution.

DeepLab Series: DeepLab is a series of models that use dilated

convolution to expand the receptive field, thereby integrating

contextual information while maintaining the resolution.

DeepLab v1 (Chen et al., 2014), published in 2014, is an

improved full-convolutional layer network based on VGG-16.

The core idea is to use spatial convolution to expand the

receptive field and conditionally refine the boundary randomly.

DeepLab v2 (Chen et al., 2017), published in 2016, uses ResNet-101

and VGG16 models as the base network. The main difference from

DeepLab v1 is the introduction of atrous spatial pyramid pooling

(ASPP) structure with hollow convolution, which improved the
Frontiers in Plant Science 17
segmentation precision. DeepLab v3 (Chen et al., 2018) uses

ResNet-101 and Xception as backbone networks respectively, and

introduces deep separable convolution to ASPP structures,

effectively reducing the computational complexity of the model

while maintaining the performance. DeepLab v3+ adds a decoder

module based on DeepLab v3 and uses Aligned Xception as the

backbone network.

PSPNet (Zhao et al., 2017) (Pyramid Scene Parsing Network):

PSPNet was released in 2017, the core idea is to propose the

Pyramid pooling module, which captures context information of

different scales through pyramid pooling layers, and improves the

performance of semantic segmentation.

ENet (Paszke et al., 2016) (efficient neural network): ENet is a

lightweight semantic segmentation model designed for real-time

performance, suitable for embedded and mobile devices.
TABLE 4 Research results of fruit target recognition based on anchor-free detection algorithms.

Recognition
algorithm

Application
scenarios

Technical principles and
characteristics

Identification effect and
evaluation index

Research
scholars

FCOS Natural
environment, apples

Backbone network used DarkNet19, which
improved loss function: fusion union
intersection ratio and focus loss

The error caused by the imbalance of
positive and negative sample ratio was
reduced, precision was 96.00%, mAP
was 96.30%

(Long et al., 2021b)

Same color, light, occlusion,
green apple

New detection method: the RFPN structure
was introduced to replace FPN, and the two-
layer convolutional attention network
was added

The detection precision was 81.20%, the
segmentation precision was 85.3%, model
size was 39.7MB

(Liu et al., 2022b)

Coloring, occlusion, light,
green fruit

Add LSC module, add deformable convolution,
FPN cross-connect, add attention mechanism
in size, space, and channel

The model size was 38.65MB, average
precision was 63.0%(green apple), 75.2%
(green persimmon)

(Zhao et al., 2023)

Light, shade, coloration,
green apple

The feature extraction capability of CNN was
integrated, and a bottom-up feature fusion
architecture was added

The average precision was 85.6%, model
size was 32.0MB

(Zhong-hua
et al., 2022)

FoveaBox Same color, green apple Fast-FDM model was proposed,
EfficientNetV2-S was used for the backbone
network, BiFPN was used for
feature extraction

The mAP for detecting green apples
was 62.3%

(Jia et al., 2022a)

CenterNet Apple Improved original network Design Lightweight
network Tiny Hourglass-24 backbone Network

In dense scenes, the mAP was 93.63%, F1
was 92.91.00%, recognition time was 69
ms/graph

(Yang et al., 2022a)

Apple Adopt the improved MobileNetv3 as
CenterNet’s backbone network

The mAP was 88.90%, the model size was
14.2MB, detection speed was 8.1 f/s

(Xue et al., 2020)

YOLOX - S Kiwi fruit Lightweight, multi-scale feature set, improved
activation function and loss function

The precision was 6.52% improved, the
model parameters was 44.8% reduced,
detection speed was 63.90% improved

(Zhou et al., 2022)

YOLOX - ViT Small target, occlusion,
overlap, tomato

Fruit and flower collaborative recognition
method, image combination enhancement, and
front-end ViT classification network
are introduced

The mAP was 92.30%, detection speed
was 28.46 f/s

(Lv et al., 2023)

YOLOX - Tiny Natural environment, apple A lightweight Shufflenetv2YOLOX detection
method is proposed, and CBAM attention and
ASFF feature fusion modules are added

The mAP was 96.76%, precision was
95.62%, recall was 93.75%, F1 was 95.00%
and speed was 65 f/s

(Ji et al., 2022)

Natural environment, apple Proposed lightweight Lad-YXNet model,
introduced ECA and SA lightweight attention
modules, and built SDCLayer modules

The average precision was 94.88%, the
detection time was 10.06 ms/graph, and
the model size was 16.6MB

(Hu et al., 2022)
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4.3.2 Instance segmentation model based on
deep learning

Assigning semantic labels and instance labels to all pixels to

segment target instances is called instance segmentation. The

instance segmentation model based on deep learning aims to

segment each target instance in the image into separate parts, and

each instance is assigned a unique tag, i.e., a pixel-level

segmentation mask is assigned to each target. Compared with

semantic segmentation, it can provide more detailed image

information such as the location and number of detected objects.

Mask R - CNN is the most representative algorithm for fruit target

instance segmentation. Published in 2017, Mask R - CNN (He et al.,

2017a) extends the target detection model Faster R - CNN and

simultaneously predicts the segmentation mask of the target

category, bounding frame, and pixel level. Table 5 lists the

research achievements of some scholars using a segmentation

algorithm based on deep learning for fruit target recognition. In

Table 5, many scholars have used different target segmentation

methods to solve the problem of fruit recognition in different
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scenarios and achieved good recognition results. However, target

segmentation is to detect all targets in the image, and solve the

problem of which object or scene each pixel belongs to at the pixel

level. The question of which target or scene it belongs to has high

computational cost and complexity, and the overall detection and

segmentation take a long time, which is not conducive to real-time

picking in orchards. To improve the overall detection speed of the

network model, a large number of scholars have begun to conduct

lightweight research on the model to improve the detection speed of

the target recognition network model. The next section will

introduce the lightweight method of the network model in detail.
4.4 Fruit target recognition method based
on network compression and acceleration

With the development of computer hardware and the

enhancement of GPU processing power, the computing power

foundation has been provided for the application of target
TABLE 5 Research results of fruit target recognition based on deep learning segmentation algorithm.

Recognition
algorithm

Application
scenarios

Technical principles
and characteristics

Identification effect and
evaluation index

Research
scholars

Mask R – CNN Occlusion, Apple Mask R - CNN combined with SfM
photogrammetry technology to generate
a 3D point cloud to achieve apple
fruit segmentation

The mAP was 85.99%, F1 was 86.00%,
high occlusion and small target, there
was missegmentation

(Gené-Mola et al., 2020)

Grapes Segmentation of grape clusters in natural
scenes based on Mask R - CNN

The precision rate was 92.00%, recall rate
was 86.00%, F1 value was 88.90%

(Santos et al., 2020)

Strawberries The backbone network uses Resnet50
combined with FPN for
feature extraction

The precision rate was 95.78%, the recall
rate was 95.41%, average MIoU
was 89.85%

(Yu et al., 2019)

Many fruit, occlusion, citrus A segmented labeling method for
random and irregular branches was
proposed, and a segmented merging
algorithm was used

The average precision of fruit was 88.15%,
the recall rate was 79.85%, average
precision of branch was 96.27%

(Yang et al., 2020)

Tomato Swin Small + Cascade Mask R - CNN
network model was applied for detection
and semantic segmentation

When IoU takes 0, 0.5, and 0.75, the
mask AP increases by 7.8, 6.4 and 7.2
percentage points respectively

(Zhang M. et al., 2022)

Cherry tomatoes Improvement: RGB and depth image
dual-module data fusion, using multi-
class prediction subnetwork

The precision rate was 93.76% (11.53%
improved), recall rate was 94.47%
(11.53% improved)

(Xu et al., 2022)

Tomato A multi-source information fusion
method of RGB image, depth image, and
infrared image is proposed

The precision rate was 98.30%, IOU
was 91.6%

(Wang et al., 2021c)

Cherry tomatoes Proposed Fuzzy Mask R - CNN model The precision was 98.00%, the overall
weighted precision was 96.14%, recall rate
was 95.91%

(Huang et al., 2020)

Apple A new method of binocular localization
based on segmentation neural network
was proposed

The IoU was 80.11%(detection), IoU was
84.39%(segmentation), precision
was 99.49%

(Zhang et al., 2023)

Occlusion, overlap, grape The backbone network ResNet50-FPN-
ED was proposed, the ECA mechanism
was introduced, and DUC was used for
feature fusion

The average precision of instance
segmentation was 59.5%. AP was 1.6%
better than the original Mask R -CNN

(Shen et al., 2022)

(Continued)
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recognition algorithms. For fruit recognition with multiple

interference factors under complex orchard background, to meet

more recognition requirements and higher recognition precision,

the neural network model of target recognition has gradually

become more and more complex from the initial simple structure,

with deeper and deeper model depths, and the model parameters

are also increasing, resulting in the explosive growth of model size

and calculation cost, larger memory storage and growing number of

floating point calculation increase the training cost and calculation

time, bringing new challenges to the deployment of the model on

embedded devices (Zhu et al., 2021; Wang et al., 2023a). Therefore,

how to carry out model compression and acceleration to achieve

model lightweight without affecting the performance of deep

learning models has become a research hotspot.

Current lightweight fruit target recognition models aim to

achieve efficient fruit target recognition while maintaining low

computing resources and memory consumption. The

optimization mainly focused on reducing the computation

amount and model parameters, reducing the actual running time,

simplifying the underlying implementation, and simplifying the
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model structure. Model compression and acceleration are the main

methods and means to achieve model lightweight, generally

through the simplification of neural network parameter

redundancy and network structure redundancy to achieve not

only not affect the completion of the recognition tasks, but also to

obtain a network model with fewer parameters and more

streamlined structure.

The methods of model compression and acceleration can be

divided into three types: compression parameter, compression

structure, and hybrid compression, in which the compression

parameter can be subdivided into strategies such as parameter

pruning, parameter quantization, low-rank decomposition, and

parameter sharing. The purpose of parameter pruning is to

reduce the number of parameters in the model. By designing

evaluation criteria on the importance of parameters, eliminating

unnecessary connections or layers in the model to reduce

parameters; The essence of parameter quantization is to quantize

network parameters (weights) and convert floating point digits to

reduce storage space; Low-rank decomposition refers to the

reduction of high-dimensional parameter vectors to sparse low-
TABLE 5 Continued

Recognition
algorithm

Application
scenarios

Technical principles
and characteristics

Identification effect and
evaluation index

Research
scholars

DasNet - v2 Light, Occlusion, Apple Improved: Lightweight, adds instance
split branches to FPN, simplifies FPN,
and adopts encoder with
cavity convolution

The backbone network was ResNet-101
with a recall rate of 86.80%, precision rate
of 88.00%, and segmentation precision
rate of 87.30%

(Kang and Chen, 2020)

U-Net Dragon fruit Introduction of SCSE attention
mechanism and integration into residual
module DRB

The mIoU was 86.69%, mPA was 93.89%,
average error of 3D attitude estimation
was 8.8°

(Lixue et al., 2023)

Deeplab+ResNet Apple Three architectures were compared:
Deeplab v3 + ResNet-18, VGG-16 and
VGG-19

ResNet-18 had 97% mAP and IoU of
0.69, both of which were better than
VGG networks

(Zhang et al., 2021b)

CSP-ResNet50 different ripeness, tomato Fusing the interstage local network
CSPNet with the original residual
network ResNet

The mean precision was 95.45%, was F1
91.2%, segmentation time 0.658/graph

(Long et al., 2021a)

PSPNet
Different poses, dragon fruit A method for detecting dragon fruit

endpoints based on PSPNet
was proposed

The precision was 84.4%, the recall rate
was 92.4%, average precision was 93.2%

(Zhou et al., 2023a)

Litchi YOLOv5 and PSPNet were used as the
main stem detection and segmentation
model of litchi

The recall and precision were 76.29% and
92.50%, respectively

(Qi et al., 2022)

Natural environment Embedding CBAM attention module and
improving semantic segmentation model;
Fusion of multiple feature layers

IoU and mAP were 87.42% and 95.73%
respectively, which were 4.36% and 9.95%
higher than the origirepiPSPNet model

(Chen et al., 2021b)

Deeplab Rotten fruit, apple DeepMDSCBA segmentation model was
proposed, and feature extraction used
MobileNet, depth convolution, and
attention module

IoU and mAP were 87.42% and 95.73%
respectively, which were 4.36% and 9.95%
higher than the original PSPNet model

(Mo et al., 2022)

Litchi DeepLabV3+ fusion anomaly depth
separable convolution feature; Encoding,
decoded structure, and space pyramid
pool were adopted

MIoU was 76.5% (14.4% improved), with
stronger robustness

(Peng et al., 2020)

Banana The CNN Deeplab V3+ model was
combined with the classical image
processing algorithm

The target segmentation MIoU was
87.8%, the average precision was 93.6%,
detection precision was 86%

(Wu et al., 2023)
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dimensional vectors; The purpose of parameter sharing is to

mapping the internal parameters of the network by using

methods such as structural matrix or clustering, to achieve the

sharing of parameters in different layers and to reduce redundant

storage and training time.

The compressed structure can be divided into strategies such as

knowledge distillation and compact network. Knowledge distillation

refers to distilling small models from large models to maintain

performance and reduce parameters; Compact networks refer to

designing new networks in terms of convolution kernels, special

layers, and network structure, reducing the computation by

designing fewer channels, smaller convolution kernels, using deeply

separable convolutions, lightweight modules, simple network structure

(SqueezeNet, MobileNet, etc.), and optimizing network connections

and hierarchical structure to reduce the number of parameters, reduce

the computational complexity and extract features efficiently; The

compact structure design directly optimizes the model from the

perspective of model structure, compared with the model

compression, the compact structure design has a more obvious effect

in model acceleration and can reduce the number of parameters and

calculations amount of the model to a greater extent, and improve the

detection speed of the model. Therefore, the lightweight model design

of a compact network is the main development direction of the target

detection algorithms used in embedded device transplantation and

mobile terminals in the future. Figure 11 lists the compression

acceleration networks that have performed well in recent years.

Table 6 lists some research results of fruit target recognition based

on network compression and acceleration models.

The above systematically describes the process and classification

of target recognition methods based on deep learning and the

research results of many scholars in the related algorithms.

In general, compared with the single-stage recognition algorithms,
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the two-stage recognition algorithms can obtain higher recognition

precision and have better performance in large targets and complex

scenarios, but the recognition speed is slow; The single-stage

algorithms have a faster detection speed, but it is easy to produce

a higher false detection rate in small target detection and more

complex environments; Compared with anchor-based target

detection algorithm, the anchor-free target detection algorithm

has stronger generalization ability, more concise framework, and

high precision of abnormal scale target detection, which reduces the

time and computing power. However, in some scenarios (occlusion,

overlap, etc.), there will be a leakage detection phenomenon. For

multiscale target detection and small target detection, the precision

is lower than that of the anchor-based detection algorithm.

Semantic segmentation is the advanced task of image detection,

which is used to judge which target the pixels in the image belong to.

Instance segmentation can be regarded as an advanced task that

unifies target detection and semantic segmentation. The advantage

is that the bounding box instance segmentation of contrast target

detection can be accurate to the edge of the object, while the same

target attribute instance segmentation of contrast semantic

segmentation needs to label different individuals of the same

target on the graph. The lightweight network based on network

compression and acceleration is designed to achieve efficient fruit

target recognition while maintaining low computing resources and

memory consumption, which is also one of the current research

hotspots in orchard target recognition.

In general, with the rapid development of deep learning, the

application of fruit target recognition methods based on deep

learning in orchard fruit recognition tasks in recent years far

exceeds the application of traditional fruit target recognition

methods. The single-stage target detection algorithm has the

advantages of detection speed and the anchor-free recognition
FIGURE 11

Common methods of network compression and acceleration.
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algorithm has the advantages of better generalization ability and

lower computing power consumption, which is more suitable for

the orchard picking target recognition task. If you are a beginner

and want to achieve real-time detection tasks, the YOLO series

algorithm is a good choice, which is an end-to-end single-stage

detection algorithm. The latest version of YOLO adopts the

principle of anchor-free detection, and many scholars are still

continuously improving YOLO from the perspective of network

model compression and acceleration.
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5 Conclusion and future perspectives

As mentioned above, although the relatively mature target

recognition network model based on deep learning has been

widely used in various fruit recognition tasks, most of the

researches on network models are based on the original model

structure, aiming at specific recognition scenarios, by changing the

model structure, adding attention mechanism or using transfer

learning to improve the detection performance of the model.
TABLE 6 Research results of fruit target recognition based on network compression and acceleration model.

Recognition
algorithm

Application
scenarios

Technical principles
and characteristics

Identification effect and evalu-
ation index

Research
scholars

MobileNet Drone picking, longan MobileNet was adopted to improve the
original backbone network of the
YOLOv4 model

The mAP was 89.73%(8.01% improved), the
average detection time was 68 ms, model size
was 46.5 MB

(Li et al., 2021a)

MobileNetv2 Small target, grapes MobileNetv2 was adopted to replace the
original backbone network of YOLOv3,
M - Res2Net module was introduced;
Improved loss function

The average precision was 81.20%, the
average detection time was 6.29 ms/graph,
model size was 44 MB

(Li et al., 2021b)

MobileNetv3
Multiple types of fruit An end-to-end detection model was

designed based on MobileNetV3
network architecture

The precision was 93.64%, the detection time
was 8.4 ms/graph

(Cao et al., 2022)

Dragon Fruit MobileNetv3 was adopted to replace the
original backbone network of YOLOv4,
and upsampled feature fusion
was added

The AP was 96.48%, recall rate was 95.00%,
mIOU was 81.09%, model size was 2.7 MB

(Jinpeng et al., 2020)

Dense fruit, occlusion,
Cherry tomatoes

YOLOv4-LITE lightweight detection
model was proposed, and MobileNet-v3
was used for feature extraction;
Depthseparable convolution

The model size was 45.3MB, detection time
was 3.01 ms/graph, mAP was 99.74%,
precision was 99.15%

(Zhang et al., 2021a)

Complex Network, apple Replace the YOLOv4 backbone network
with MobileNetv3 and introduce a
coordinated attention mechanism

The AP was 92.23%, the model size was 54.1
MB, detection speed on the embedded
platform was 15.11 f/s

(Wang et al., 2022)

Squeezenet Mango Feature extraction of the SqueezeNet
model was visually analyzed, redundant
layers were removed, and the
convolution kernel was modified

The model size was 0.87MB, the
computation amount was 181 MFLOPS,
average precision was 95.64%

(Wei et al., 2022)

ShuffleNetV2 Light, occlusion,
shadow, jujube

ShuffleNet V2 was adopted to improve
the yolov5 backbone network, and the
data loading module Stem was
proposed, PANet was replaced
by BiFPN

The number and size of model parameters
were 6.25% and 8.33% of that of the original
network, respectively. Precision, Recall, F1-
score, AP, and FPS were all improved.

(Qiao et al., 2022)

YOLOX-s Occlusion, apple A groundbreaking multi-type occlusion
Apple datasets design and data balance
enhancement method was proposed

Precision increased from 0.894 to 0.974,
recall rate from 0.845 to 0.972, mAP0.5 from
0.982 to 0.919

(Li et al., 2022b)

YOLOX Occlusion, small target,
Cherry Tomatoes

The YOLOX-Dense-CT model with the
DenseNet backbone network was
proposed, and the CBAM attention
mechanism was adopted

The mAP was 94.80% (up 4.02%), model size
was 34.6MB (down 19.6MB)

(Zheng et al., 2022a)

MFN Same color, banana The banana stem segmentation method
is based on lightweight multifeature
fusion Deep neural Network (MFN)

The number of model parameters was
reduced, the operation efficiency was
improved, and the model can be transplanted
to mobile devices

(Chen et al., 2021c)

GhostNet Occlusion, light, small
target, Apple

An improved yolov4 network was
proposed. The neck and YOLO head
structures can be reconstructed by
introducing depth

The mAP was 95.72%(3.45% improved), the
network size was 37.9MB, and speed was
increased by 5.7 FPS

(Zhang C. et al., 2022)
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Although certain results can be achieved, as mentioned above, each

model still has different degrees of shortcomings that make it

difficult to completely solve the interference problem caused by

the complex orchard environment to the target recognition task,

and there are still many problems and challenges in the actual

application of the model to the fruit picking robot. Be specifically

manifested in
Fron
1. It is more difficult to prepare large-scale public standard

datasets for orchards. At present, the research results of

different scholars are only based on small-scale datasets

prepared by individuals, which cannot fully reflect the

performance of research algorithms. The fruit target

datasets should contain all the interference conditions

such as shadows, occlusion, fruit overlap, night

environment, uneven illumination, and the same color

scheme in the complex orchard environment, and fruit

agricultural products have a certain growth cycle, the data

collection will be affected by many uncontrollable factors

such as weather and region, and the data processing will

also be affected by human factors. Therefore, the

preparation of large-scale and high-quality public orchard

datasets is one of the difficulties in fruit target

recognition tasks.

2. The detection model recognition algorithms have some

limitations. Although deep learning-based CNN has

shown good performance in fruit target recognition, it

can be seen from the above that due to the complexity

and non-structure of the natural working environment and

the uncertainty of the growth state of fruit, all kinds of

network models have varying degrees of shortcomings. At

present, most mature target recognition models online are

supervised learning models. To cope with the influence of

various interference factors in complex orchard conditions,

the model needs to introduce more network structure

layers, which leads to more complex models, increases the

calculation time, reduces the real-time performance of the

system, and affects the picking efficiency.

3. The algorithms are not universal. Most of the deep learning

recognition algorithms are supervised learning models,

which cannot automatically adapt to the variability of the

natural environment in the orchard and the growth

differences between different fruits, are limited to specific

picking environment and picking objects, and rely too

much on the label information of datasets. For specific

picking objects, corresponding ripe fruit datasets need to be

made for target recognition training. It is necessary to re-

prepare and train the datasets when the target fruits are

replaced, which restricts the popularization and application

of the vision system. The development of a fruit target

recognition model with high versatility is conducive to

improving the universality of picking robots.

4. For the overlapping and complex occlusion of fruits,

although many scholars have carried out relevant

research, effective solutions have not yet been obtained.
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5. The stability, generalization, and robustness of the model in

complex scenarios are poor. The interference factors in the

orchard’s natural environment have the characteristics of

randomness and uncertainty, which will affect the

recognition results. The model can only with high

stability, generalization, and robustness to have a better

detection effect under the influence of the interference

factors in the natural environment of the orchard.

Therefore, how to improve the performance of the model

in complex scenes of orchards is currently a difficult

problem in the field of fruit picking target recognition.
Given the above problems, future research on orchard target

recognition should focus on the following aspects
1. Investigate weakly supervised or unsupervised deep learning

models (or find an alternative to manually labeling

samples). The limited sample data is used to effectively

train the model, reduce the number of label data, reduce

labor costs, and improve the flexibility of detection and

learning efficiency.

2. Compression and acceleration of deep neural networks. On

the premise of ensuring the model detection effect, the

models are compressed and accelerated to obtain a

lightweight network with a compact structure, fewer

parameters, and higher computing power, improve the

detection speed of lightweight models, and create

conditions for the deployment of models on embedded

devices with limited computing power. The development of

models that can be used for real-time and accurate

detection of fruit targets by edge devices is one of the

research hotspots in future fruit target recognition.

3. In the future, it may be more inclined to anchor-free

detection algorithms, with the research being more

focused on the accurate recognition of small targets,

occlusions, and dense fruits. Compared with an anchor-

based algorithm, the precision is poor, but it reduces time-

consuming and computing power, has faster detection

speed, and can be more adaptive to targets of different

sizes and shapes, which is more suitable for real-time

orchard-picking tasks. However, for fruit overlap and

occlusion, which is the difficulty of the orchard

recognition task, the anchor-free algorithm has the

problem of false detection at present, and there is still a

lot of room for improvement.

4. Improve the visual working environment and integrate the

recognition algorithm with the picking strategy. The

complexity and non-structure of the natural working

environment of the orchards is one of the main reasons

for the difficulty of fruit target recognition at present. It is

possible to change the planting mode to build standardized

orchards, such as horizontal trellis-type planting patterns,

Y-type planting patterns, trunk-type planting patterns, etc.

Then, corresponding picking strategies can be formulated

according to different planting patterns to artificially reduce
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the phenomenon of branches and leaves occlusion and fruit

overlap. So that the difficulty of target recognition is

reduced, and the precision, universality, and real-time

performance of the recognit ion algori thm are

improved effectively.

5. Improve the robustness and generalization of the algorithm,

and introduce a new algorithm that is more suitable for

orchard fruit recognition tasks. According to the

characteristics of the actual working environment of

orchards and the uncertainty of influencing factors, the

advantages of various current target recognition algorithms

should be integrated to further improve the fruit target

recognition algorithm, to overcome the recognition errors

caused by the randomness of environmental factors, to

ensure the robustness and generalization of the network

model, and to introduce recognition algorithms more

suitable for the natural environment of orchards.
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