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The contamination of soil and water with high levels of heavy metals (HMs) has

emerged as a significant obstacle to agricultural productivity and overall crop

quality. Certain HMs, although serving as essential micronutrients, are required in

smaller quantities for plant growth. However, when present in higher

concentrations, they become very toxic. Several studies have shown that to

balance out the harmful effects of HMs, complex systems are needed at the

molecular, physiological, biochemical, cellular, tissue, and whole plant levels.

This could lead to more crops being grown. Our review focused on HMs’

resources, occurrences, and agricultural implications. This review will also look

at how plants react to HMs and how they affect seed performance as well as the

benefits that HMs provide for plants. Furthermore, the review examines HMs’

transport genes in plants and their molecular, biochemical, and metabolic

responses to HMs. We have also examined the obstacles and potential for HMs

in plants and their management strategies.
KEYWORDS

agricultural productivity, cross-tolerance, genotoxicity, hormesis, molecular responses,
transport genes
1 Introduction

Plants, similar to other living species, are vulnerable to high levels of heavy metals

(HMs) in the atmosphere, resulting from both human activities and environmental factors

(El-Sappah and Rather, 2022; Li et al., 2023). The poisoning of the environment with HMs

is mostly caused by intensive mining operations, fast industrialization, and widespread

agricultural activities (Adnan et al., 2024). The presence of high levels of HMs in soil and

water is a notable illustration of human activities that have a substantial impact on the

environment and constitute a considerable hazard (El-Sappah et al., 2021a; Hama Aziz

et al., 2023). HMs may be transferred over long distances in both gaseous and particle
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forms, leading to their rapid buildup in biological systems, water,

and sediment (Mishra et al., 2017).

A total of 53 elements have been classified as HMs based on

their density, which exceeds 5 g/cm3 (Ali and Khan, 2018). For the

essential metabolic operations of plant cells, a total of 17 elements

are required. However, only six of these elements are classified as

HMs: copper (Cu), zinc (Zn), manganese (Mn), iron (Fe),

molybdenum (Mo), and nickel (Ni). The macroelements are

carbon (C), oxygen (O), hydrogen (H), magnesium (Mg), sulfur

(S), nitrogen (N), calcium (Ca), phosphorus (P), and potassium (K),

while the microelements are Cu, Zn, Mn, Mo, boron (B), and

chlorine (Cl) (Fan et al., 2021). In plants, the macro- and

microelements are essential for the regulation of numerous

physiological and biochemical processes, such as chlorophyll

formation, photosynthesis, nucleic acid metabolism, protein

modification, intra-compartmental redox reactions, carbohydrate

metabolism, and N fixation (Dutta et al., 2018; Zayed et al., 2023).

It is intriguing that while numerous HMs function as

microelements, others, such as aluminum (Al), cadmium (Cd),

chromium (Cr), lead (Pb), and mercury (Hg), have detrimental

effects on plants. These consequences include impaired

photosynthesis, chlorosis, decreased biomass output, disrupted

water balance, and impaired nutrient absorption (Angulo-

Bejarano et al., 2021). The unpreceded use of agrochemicals,

long-term application of municipal sewage effluent, industrial

waste disposal, waste incineration, and vehicle exhausts are the

primary sources of HMs in agricultural soils (Mishra et al., 2017).

Plants ingest and accumulate HMs in soil with high

concentrations, which subsequently reach human nutrition

through the food chain (Angon et al., 2024). The absorption of

HMs by both underground and above-ground surfaces of plants can

have a direct or indirect impact on plant health (Emamverdian

et al., 2015). The inhibition of cytoplasmic enzymes and the injury

to cell structures are the direct consequences of oxidative stress

(Jadia and Fulekar, 2009). An often observed result of HM toxicity

is the overabundance of reactive oxygen species (ROS) and

methylglyoxal (MG), both of which can lead to lipid peroxidation,

protein oxidation, enzyme deactivation, DNA damage, disruption

of ionic balance in plant cells, and/or interaction with other

essential components of plant cells (Hossain et al., 2012; Jomova

et al., 2023).

Some HMs indirectly impose oxidative stress through a variety

of mechanisms, including the depletion of glutathione, the binding

of sulfhydryl groups of proteins (Jaishankar et al., 2014), the

inhibition of antioxidative enzymes, or the induction of ROS-

producing enzymes such as NADPH oxidases (Bielen et al.,

2013). Regardless of whether it is direct or indirect, plants that

are exposed to high levels of HMs experience a reduction or even

the complete cessation of all metabolic activities (Singh et al., 2015).

Plant cells react to the toxicity caused by HMs via complex and

interrelated systems that operate at many levels and include both

immediate and long-lasting processes (Dutta et al., 2018). The

immediate or short-term reactions include the rapid modification

of the rates at which hundreds or even thousands of genes are

transcribed, followed by alterations in physiological and metabolic

processes (Dutta et al., 2018). On the other hand, genetic alterations
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and epigenetic modifications are associated with enduring reactions

(Ryu et al., 2015). The control of gene expression, which is an

essential part of the plant’s response to stress, usually involves

making changes to the levels of stress-responsive genes in a way that

is both common to all plants and specific to each individual plant

(Gallo-Franco et al., 2020).

Therefore, it is logical to expect that plants will react to HMs’

toxicity, which causes both oxidative and genotoxic effects, by

organizing and combining different elements of stress perception

and signaling networks, with the possibility of communication at

different stages, depending on the circumstances (Dutta et al.,

2018). The environmental, ecological, and genetic effects of HMs

on plants, as well as their resources, occurrence, and agroecological

ramifications, were discussed in the current review. The challenges

and prospects of HMs’ impacts on plants, as well as the methods for

mitigating them, have also been the subject of discussion.
2 HMs in plants: resources,
occurrence, and
agroecological ramifications

The presence of HMs in soil may have negative effects on

human and animal health as well as on soil quality, fertility, and

agricultural productivity (Rashid et al., 2023). Given the fast-paced

changes in the economy and culture, many hazardous materials

found in polluted soil constitute a risk to both the general people

and the environment (Hajam et al., 2023). Cd, Hg, Cu, Zn, Ni, Pb,

Cr, and arsenic (As) are often detected as contaminants in soil

settings (Priya et al., 2023). This kind of pollution poses a significant

biological risk, is widely spread, and is prevalent in the soil

environment (Adnan et al., 2024). The concentration of

hazardous materials in the soil is beyond the acceptable threshold

in five million areas worldwide (Rodrí guez Eugenio et al., 2018).

According to the Environmental Protection Agency (EPA)

(Goyer et al., 2004), Hg, Pb, Cd, and As are the most dangerous

metals/metalloids in the environment. Human activities, such as the

use of fertilizers in agriculture, the manufacturing of compounds,

and the extraction of minerals, are the main causes of the creation of

hazardous substances in soil (Tang et al., 2019). Multiple studies

have shown that natural sources of HMs in the environment are

often of lesser importance when compared to human activities

(Dixit et al., 2015). There are two main origins of HMs: natural and

anthropogenic (Angon et al., 2024). The HMs are mostly derived

from volcanic and sedimentary minerals, making them the most

abundant natural sources (Alengebawy et al., 2021).

The main origin of HMs in soils is the parent material from

which they were first generated (Angon et al., 2024). Sedimentary

rocks make up around 5% of the Earth’s mantle, whereas igneous

elements make up 95% (Sarwar et al., 2017). On the other hand, the

phrase “anthropogenic” usually refers to sources that are created by

humans. Anthropogenic activities, such as burning fossil fuels for

electricity, disposing of municipal waste, applying fertilizer, using

pesticides, and irrigating with effluent, increase the levels of HMs in

agricultural soil settings (Angon et al., 2024).
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Effective soil management is a crucial aspect of sustainable

agriculture, with soil biology playing a vital role in this context

(Srivastava et al., 2017). Soil microorganisms are essential

components of the ecosystem (J iang and Li , 2020) .

Microorganisms play a crucial role in maintaining soil fertility by

breaking down organic matter and cycling nutrients (Wu et al.,

2024). However, stressors such as excessive temperature, pH,

salinity, and chemical pollution might have a negative impact on

them (Paz-Ferreiro and Fu, 2016). As the quantity of HMs grows,

the capacity of microorganisms to survive declines (Igiri

et al., 2018).

The addition of Pb–Cu slurry, Pb–Cu dust, Pb–Zn dust, and

Cd–Pb–Zn to forest soil resulted in a reduction in the number of

colony-forming units (CFUs) of bacteria and fungi (Srivastava et al.,

2017). Generally, the impact of low levels of HMs on soil respiration

is minimal (Verma et al., 2010). However, when HMs’ pollution or

toxicity intensifies, this effect becomes less significant. The

introduction of HMs may either enhance or hinder N-

mineralization, which can be related to differences in the

experimental approach, variances in soil parameters, and

substrate concentrations (Dai et al., 2004). HMs’ pollution

generally has a negative impact on N transformation processes,

which, in turn, affects N-mineralization (Dai et al., 2004; Hamsa

et al., 2017). The bioavailability of metals in soils is influenced by

factors such as metal concentrations, soil pH, organic matter, and

sediment content (Rieuwerts et al., 1998). HMs play a crucial role in

controlling the activities of various soil enzymes, such as

arylsulfatase, alkaline phosphatase, b-glucosidase, cellulase,

dehydrogenase, invertase, protease, and urease (Aponte et al.,

2020). Figure 1 depicts the many sources of HMs (Angon

et al., 2024).
3 Plant response to HM exposure

The persistence of toxic HMs in the soil ecosystem is a

considerable hazard for living animals and plants (Kraemer, 2009;

Abd Elnabi et al., 2023). The plant roots serve as the main points of

contact for terrestrial plants to be exposed to harmful HMs (Podar

and Maathuis, 2022). Plants have developed new, adaptive, and

precise methods to withstand the harmful effects of HM stress

(Tiwari and Lata, 2018). This mechanism involves various strategies

such as immobilization, exclusion outside the plasma membrane,

restriction of absorption and transport, synthesis of specific HM

transporters, induction of stress proteins, and chelation and

sequestration by specific ligands (Clemens, 2001; DalCorso et al.,

2008; Adrees et al., 2015).

To maintain a low concentration of metal ions in the cytoplasm,

it is feasible to block the transport of hazardous metals across the

plasma membrane, which is the cellular mechanism for HMs’

tolerance (Hall, 2002). Here are two direct approaches. The

objective may be achieved by either augmenting the attachment

of metal ions to the cell wall or expelling the metal from the cell

using active efflux pumps. Another approach to detoxification

includes the process of chelation or modifying the concentration
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of harmful metal ions to a lower level, thereby rendering them

inactive (Tong et al., 2004). Several factors, such as plant structure,

plant life cycle, plant vigor, soil pH, root system depth, temperature,

partial oxygen pressure, carbohydrate level, respiration rate,

nutrient interface, and microbial presence, have a significant

impact on the accumulation of metals in plants (Chen et al., 2006).

Plants have the ability to cause HMs to form negatively charged

particles by changing the pH of the soil around their roots or by

releasing negatively charged ions such as PO4
3−. During the process

of adsorption, the surface of the root has the ability to bind a

substantial amount of HMs. The accumulation of these HMs [Cd,

Ni, strontium (sr), and Pb] in plant root tissues happens quickly

(Hossain et al., 2012). The plants have been categorized into three

categories based on their survival strategies under adverse

conditions: accumulators, excluders, and indicators (Baker, 1981).

Plants undergo hyperaccumulation of HMs, resulting in the

accumulation of metals exceeding 0.1%–1% of the dry weight.

The term “hyperaccumulator” was used by Baker and Brooks

(1989) to refer to plants that have a leaf nickel concentration

above 1,000 mg/g. Hyperaccumulator species refer to plants that

have the ability to collect more than 100 mg of Cd per kilogram or

more than 500 mg of Cr per kilogram in dried plant leaf tissue

(Kumar et al., 2019). A plant with a hyperaccumulator trait is

capable of accumulating and enduring significant levels of

metal pollution.

Some plant species have the ability to flourish in soil that is

polluted with HMs and may collect substantial levels of metals in

such soil (Lombi et al., 2002). The primary methods involved in the

hyperaccumulation of toxic metals in plants include bio-activation

of HMs in the rhizosphere through root microbe interfaces,

enhanced activity of metal conveyor proteins in cell membranes,

detoxification of metals by restricting them to apoplasts, chelation

of HMs in the cytoplasm by multiple ligands, and sequestration of

metals into the vacuole by multiple ligands (Kumar et al., 2019).
4 The performance of seeds and
seedlings under HM stress

While the seed coat initially offers some defense against metal

stress before germination, it will gradually rupture or become more

porous throughout the germination process (Kranner and Colville,

2011). Current data suggests that metals have two distinct impacts

on seed germination: their overall toxicity and their ability to hinder

the uptake of water (Osman and Fadhlallah, 2023). Pb significantly

affects the physical and biological characteristics of seeds, hindering

their ability to sprout, the roots to grow, the seedlings to develop,

the plants to grow, water to be transported, chlorophyll to be

produced, and protein to be synthesized (Collin et al., 2022).

Pb also hampers the production of ATP, causes the oxidation of

lipids, and leads to DNA damage, culminating in an accumulation

of ROS (Pourrut et al., 2011; Ur Rahman et al., 2024). Soils

contaminated with Pb hinder the growth of seedlings by causing

an increase in lipid peroxidation and the activation of enzymes such

as superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase,
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and glutathione (GSH)–ascorbate cycle enzymes (Sethy and

Ghosh, 2013).

Cd is known for its capacity to inhibit seed germination via

several methods. It has a negative impact on metabolic reactivation

by decreasing the number of hydrolyzing enzymes, hindering starch

mobilization, and preventing seed imbibition. It may also influence

signaling via Ca, mitogen-activated protein kinases (MAPKs), and

transcription factors (TFs) as well as the levels of phytohormones

such abscisic acid (ABA), auxin (AUX), gibberellic acid (GA), and

ethylene (ET) (Rahoui et al., 2010; Vijayaragavan et al., 2011). Cd

toxicity also induces the upregulation of glutathione peroxidase

(Gpx) expression and decreases the activity of glutathione reductase

(Branca et al., 2020). Additionally, Cd toxicity hinders the proper

functioning of mitochondria (Genchi et al., 2020).

On the other hand, Co triggers DNA methylation in Vicia faba

seeds (Rancelis et al., 2012) while Cu is harmful to young sunflower
Frontiers in Plant Science 04
plants, causing oxidative stress by producing ROS and reducing

catalase activity (Garcıá et al., 1999; Pena et al., 2011). Under stress

conditions, the germination rate is decreased and there is a

stimulation of biomass mobilization, which hinders the

breakdown of starch and sucrose in reserve tissue (Sethy and

Ghosh, 2013).

Cu poisoning induces oxidative stress by increasing the

expression of antioxidant and stress-related proteins, hence

altering metabolic processes (Liu et al., 2020). Ni is a noxious

agent that impacts plant species by altering enzyme function and

hindering seed germination and growth (Pandolfini et al., 2006;

Sethy and Ghosh, 2013). It impacts the process of breaking down

and moving food reserves in plants, resulting in decreased plant

height, root length, fresh and dry weight, chlorophyll content,

enzyme carbonic anhydrase activity, malondialdehyde content,

electrolyte leakage, and photosynthetic pigments (Alam et al.,
FIGURE 1

Various origins of heavy metals. Coal combustion, mining, refining, soil erosion, and volcanic eruptions are all sources of antimony. Sources of
arsenic include smelting, mining, atmospheric deposition, pesticides, and geological sedimentation. Volcanic dust and coal and hydrocarbon
combustion are sources of beryllium as well. Sources of cadmium include plastic, fertilizer, pesticides, refining, and welding. Sources of chromium
include textiles, dyeing, electroplating, paint manufacturing, steel fabrication, and tanning. Copper is obtained through mining, refining, painting,
plating, and printing. Coal combustion, electroplating, battery manufacturing, mining, paint, and pigments are all lead sources. Batteries, coal
combustion, geothermal activities, mining, paint and paper industries, volcanic eruptions, and geological weathering are all sources of mercury.
Sources of nickel include porcelain enameling, electroplating, non-ferrous metals, and pigments. Sources of selenium include coal combustion and
mining. Sources of silver include the production of batteries, mining, photographic processing, and smelting. Production of cement, combustion of
fossil fuels, metal smelting, and hydrocarbon refining are all sources of thallium. Brass manufacturing, mining, hydrocarbon refining, and plumbing
are all sources of zinc. This figure was made using BioRender.
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2007). Ni stress has a detrimental impact on Brassica nigra seeds,

resulting in a substantial decrease in growth, leaf water potential,

pigments, and photosynthetic machinery (Yusuf et al., 2012).
5 The beneficial roles of metals
in plants

Plants need six HMs, namely, Cu, Zn, Mn, Mo, Fe, and possibly

Ni. Cu is a metallic element that is essential for the process of

photosynthesis and is present in numerous enzyme systems (Festa

and Thiele, 2011). Cu also improves the flavor and color of fruits,

vegetables, and flowers by increasing the sugar content in plants

(López-Vargas et al., 2018). Furthermore, Cu is essential for the

respiration of plants and is involved in the production and

formation of seeds (Chen et al., 2022). Zn, on the other hand, is a

component of the enzymatic system and plant metabolism

(Hamzah Saleem et al., 2022). It is essential for the synthesis of

RNA and protein as well as the production of chlorophyll and

carbohydrates (Umair Hassan et al., 2020; Costa et al., 2023).

Additionally, it is involved in the production of growth

hormones, which are responsible for the regulation of plant

growth and stem elongation (Saboor et al., 2021).

In addition, Zn permits plants to endure frigid temperatures

(Kudo et al., 2023). Mn is essential for photosynthesis and

respiration (Alejandro et al., 2020). The availability of N, P, and

Ca to the plant is enhanced by Mn, which facilitates their

decomposition (Yang et al., 2021b). Additionally, Mn activates

numerous enzyme systems, some of which are responsible for

safeguarding plants from specific environmental stressors, such as

drought, winter cold, salt damage, and ozone damage as well as

specific soil-borne diseases and fungal leaf diseases (Alejandro et al.,

2020). Additionally, it facilitates pollen tube development and

pollen germination (Sawidis et al., 2021). It is also essential for

the production of chlorophyll and protein (Mousavi et al., 2011).

Conversely, the plant necessitates Mo to convert nitrates into

ammonia, a form that it can assimilate (Liu et al., 2022). Mo is also

indispensable for specific microorganisms, such as rhizobia, which

have a symbiotic relationship with legumes and contribute to the

fixation of atmospheric N in legumes (Bursakov et al., 2023). Mo

also facilitates the conversion of inorganic forms of phosphorus into

organic forms that are able to be absorbed by the plant (Seeda et al.,

2020). In contrast, Fe is critical to the plant’s development and

health. It is vital in metabolic activities such as DNA synthesis,

energy transmission, photosynthesis, and respiration (Rai et al.,

2021; Ning et al., 2023). Finally, Ni is essential for the biological

fixation of atmospheric N in legumes and the metabolism of N in

plants (Mendes et al., 2023). It is involved in the metabolism, iron

assimilation, senescence, and disease resistance of plants (Begum

et al., 2022). The beneficial effects and toxicity of critical HMs in

various plants are reviewed in Figure 2.

Metal ions can cause hormetic reactions in plants (Salinitro

et al., 2021). Hormesis is a biphasic reaction to diverse chemicals in

living organisms that likely produce an adaptive stress response

(Mattson, 2008). It is likely an adaptive stress response induced by a
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disturbance of homeostasis caused by low levels of biotic or abiotic

stimuli (Vargas-Hernandez et al., 2017). HMs stimulate plant

hormetic responses, which may impact nutrient absorption,

activate particular defense processes, create ROS, activate

antioxidant responses, and improve photosynthetic system

efficiency, leading to increased biomass. This mechanism is

thought to be an adaptive reaction to stress (Salinitro et al., 2021).

On the other hand, plants that efficiently protect themselves

against one kind of stress may increase their tolerance to other types

of stress (Perincherry et al., 2021). Cross-tolerance is a phenomena

that highlights plants’ capacity to swiftly adjust to changing

environments, exhibiting their well-developed and durable

defensive regulatory networks (Foyer et al., 2016). HMs may

endanger herbivores, and HMs have been shown in studies to

have an effect on fungi and insects, particularly aphids (Chen et al.,

2020a). Air and soil pollution, especially HMs, may alter plant–

insect or plant–disease connections. This pollution may be harmful,

causing a hormesis effect and influencing these species’ behavior

and metabolism (Perincherry et al., 2021).
6 HMs–Transporters in plants

Metal ions are transported by a diverse array of transporters in

organelles. Recent advancements in molecular and genetics research

have found many crucial gene families that play a role in metal

transport (Drew et al., 2021) (Table 1). These gene families have the

potential to great ly contribute to HMs ’ tolerance in

hyperaccumulator plants. So far, scientists have discovered many

different types of metal transporter proteins in plants (Singh et al.,

2015). These transporters are responsible for the safe storage of ions

and the assistance of plants in recovering from the adverse effects of

metal stress. These proteins have important roles in absorbing,

transporting, sequestering, and storing metals in particular parts of

the cell. Additionally, they have a noteworthy impact on the

regulation of metal levels inside plant cells (Drew et al., 2021).

Metal transporters can be classified into six main groups:

natural resistant-associated macrophage protein (NRAMP) (Li

et al., 2024), Zn-regulated, Fe-regulated transporter-like proteins

(ZIP) (Shuting et al., 2022), cation diffusion facilitator (CDF)

transporters (Kolaj-Robin et al., 2015; El-Sappah et al., 2021b; El-

Sappah et al., 2023), yellow stripe-like (YSL) proteins (Islam et al.,

2020), and P1B-type HMs ATPases (HMAs) (Batool et al., 2023).

Cell organelles include specialized compartments dedicated to

certain processes, including photosynthesis, respiration,

phytohormone production, and metal detoxification (Jogawat et al.,

2021). Among these transporters, the vacuole plays a crucial role in the

accumulation and compartmentalization of metals for their

detoxification. This is a significant strategy for lowering metal

stress-related ailments in plants (Emamverdian et al., 2015; Sharma

et al., 2016). Chloroplasts and mitochondria need transition metals to

carry out essential operations such as photosynthesis, electron

transport system, photoprotection, and other processes. Maintaining

metal homeostasis is crucial for the optimal functioning and structural

integrity of chloroplasts and mitochondria (Nouet et al., 2011).
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Metal and nonmetal ions are primarily stored in vacuoles within

plant cells. Additionally, the neutralization and mitigation of the

detrimental effects of metal ions are contingent upon their storage

in the vacuole (Hall, 2002). Tonoplasts (vacuolar membrane)

contain a variety of transport proteins, such as MTPs, ABC

transporters (ABCCs, ABCGs), HMAs, Ca2+ exchangers (CAXs),

and NRAMPs. These proteins either remove metals from the

cytosol or deposit them in the vacuolar area (Zhang et al., 2018a).

Chloroplasts have a crucial role in hosting transition metals due

to their involvement in the process of photosynthesis and the

breakdown of water molecules (Schmidt et al. , 2020).

Chloroplasts play a crucial role in reducing the harmful effects of

metal toxicity by capturing metal ions to facilitate metal

detoxification. The double membrane structure of the cellular

envelope allows for the protection of its integrity and the

detoxification of metals in the intermembrane gap. Various

transporters located on the inner and outer membranes are

necessary to maintain the homeostasis of chloroplastic metals

(Nouet et al., 2011).

Mitochondria are a crucial cellular organelle occasionally

referred to as the cell’s powerhouse due to their substantial
Frontiers in Plant Science 06
involvement in chemosmosis. This is because certain metals are

essential for the correct functioning of mitochondria, as they serve

as cofactors for critical enzymes and are also involved in the

composition of electron transport molecules (Jogawat et al.,

2021). Therefore, it is imperative to maintain the equilibrium of

metals within the mitochondria. ATMs and mitochondrial iron

transporters (MITs) are the two primary categories of transporters

that modulate metal levels in mitochondria (Nouet et al., 2011).

Golgi apparatus is an essential component of the

endomembrane system, which plays a crucial role in directing

membrane-bound proteins (such as transporters) to either the

plasma membrane or organelles (Jogawat et al., 2021). The major

purpose of this is to regulate the balance of metals in the body.

Metal transporters are also found in the Golgi apparatus to detect

and import metals for their arrangement (Bressler et al., 2007).

When exposed to metal stress, the Golgi apparatus system responds

by reorganizing the endomembrane system and storing excess

metals in vesicles (De Caroli et al., 2020). This process involves

reducing the number of metal transporters at the plasma

membrane. This substantially reduces the detrimental impacts of

metals (De Caroli et al., 2020).
FIGURE 2

Toxic and inefficient impact of heavy metals on plants. This figure was made using BioRender.
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TABLE 1 List of gene families that play a role in metal transport.

Gene
family

Genes Plant Roles References

ZIP AtIRT1,
AtIRT2,
and AtIRT3

Arabidopsis
thaliana

AtIRT1 is involved in the uptake of vital metals including iron, zinc, manganese, nickel, and cobalt as well
as non-essential elements such as cadmium from the soil into the cells of the root epidermis. AtIRT2 has a
role in the segregation of iron and zinc into internal storage vesicles to mitigate the harmful effects of
excessive metal levels. AtIRT3 promotes the absorption of iron and zinc but does not improve the uptake
of cadmium and manganese

(Grotz et al.,
1998;
Guerinot, 2000)

ZIP OsIRT1
and OsIRT2

Oryza
sativa

They enhance the absorption of iron, zinc, and cadmium (Nakanishi
et al., 2006)

ZIP ZmIRT1 Zea mays It has a role in the transportation of iron and zinc (Li et al., 2015)

ZIP NcZNT1 Nicotiana
caerulescens

It is a critical zinc-regulated, iron-regulated transporter-like proteins that is implicated in the hyper-
accumulation and tolerance of zinc and cadmium. It is also responsible for the translocation of metals to
the shoot through xylem-mediated processes

(Lin et al., 2016)

ZIP AtZIP4 Arabidopsis
thaliana

It is accountable for the translocation of metals to the shoot through xylem-mediated mechanisms (Lin et al., 2014,
Lin et al., 2016)

ZIP IRT3, ZIP3,
ZIP6, ZIP9,
and ZIP12

Arabidopsis
halleri

They ensure the homeostasis of heavy metals in the entirety of plants (Chiang
et al., 2006)

CDF ZAT1
(MTP1)

Arabidopsis
thaliana

The primary expression of ZAT is found throughout the plant, and its expression is augmented by an
increase in zinc concentration

(van der Zaal
et al., 1999)

CDF AtMTP1
and
AtMTP3

Arabidopsis
thaliana

They are accountable for the vacuolar transport of zinc (Kobae et al.,
2004; Desbrosses-
Fonrouge et al.,
2005; Arrivault
et al., 2006)

CDF AhMTP1-
A1 and
AhMTP1-
A2

Arabidopsis
halleri

Under conditions of excessive zinc stress, they were upregulated in the roots (Dräger et al.,
2004; Shahzad
et al., 2010)

CDF AhMTP1-
B1

Arabidopsis
halleri

It manifested in roots when zinc deficiency was present (Shahzad
et al., 2010)

CDF AhMTP1-C
and
AhMTP1-D

Arabidopsis
halleri

Under conditions of excessive zinc stress, they were downregulated in the shoot and roots (Shahzad
et al., 2010)

CDF AtMTP11 Arabidopsis
thaliana

It is upregulated in the presence of a zinc deficiency (Delhaize et al.,
2007; Peiter
et al., 2007)

CDF NtMTP1-A
and
NtMTP1-B

Nicotiana
tabacum

They upregulate in response to deficiencies in zinc and copper (Shingu et al.,
2005;
Ricachenevsky
et al., 2013)

CDF OsMTP1 Oryza
sativa

It is upregulated in the shoot and root in the presence of an excess of zinc, cobalt, nickel, cadmium,
and iron

(Yuan et al.,
2012; Menguer
et al., 2013)

CDF PtMTP11.1
and
PtMTP11.2

Populus
trichocarpa

They upregulate under manganese deficiency (Peiter
et al., 2007)

COPT COPT1,
COPT2,
and COPT6

Arabidopsis
thaliana

They are indispensable elements of the primary pathway for cellular high-affinity uptake of copper (Sancenón et al.,
2003; Yuan et al.,
2011; Garcia-
Molina
et al., 2013)

COPT COPY2 Arabidopsis
thaliana

This is a cell surface transporter that is primarily found in all regions of plants, with a particular
abundance in roots, young leaves, apical meristems, trichomes, and anthers

(Perea-Garcıá
et al., 2013)

COPT COPT5 Arabidopsis
thaliana

It is thought to have a role in maintaining balance inside cells (Garcia-Molina
et al., 2011)

(Continued)
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Finally, endoplasmic reticulum (ER) is also part of the

endomembrane system and has a vast lumen to store and utilize

metals for different purposes (De Caroli et al., 2020). Broad-

specificity transporters for Cd, Cu, and Zn are identified on the

ER membrane and are sometimes found to be localized on the

plasma membrane. This common localization might be due to the

continuum of the endomembrane system as part of the secretory

pathway (Jogawat et al., 2021).
7 Molecular, biochemical, and
metabolic plant responses
toward HMs

7.1 Negative impact of metals on plants

Exposure to HMs causes several reactions in plants, including

physiological, biochemical, and agricultural production responses

(Singh et al., 2020). The toxicity of HMs is influenced by a variety of

factors, such as the plant species, the concentration of the individual

metal, its chemical structure, soil composition, and pH level (Abd

Elnabi et al., 2023). Certain HMs, including Cu and Zn, are essential

for the vegetative plant growth (Arif et al., 2016). HMs can

participate in enzyme processes by forming complexes with

enzymes and substrates, acting as cofactors and activators

(Witkowska et al., 2021). Trace metal nutrients have a vital role

in redox reactions, electron transportation, and structural functions

in nucleic acid processing (Sunda, 2012).

Additionally, HMs have various effects on the functioning of the

photosynthetic system at different levels of organization (Ventrella

et al., 2009). HMs directly affect plants by interfering with the PS I

and PS II processes and indirectly affect photosynthesis, growth,

and yield (Singh et al., 2015). Additionally, certain HMs, including

Cd and Hg, possess phytotoxic properties that impede metal-

sensitive enzymes, resulting in growth retardation and the

mortality of organisms (Alengebawy et al., 2021). HMs can be

classified into two categories based on their ability to undertake

redox reactions: redox-active and redox-inactive (Ercal et al., 2001).

The redox reaction within cells is facilitated by redox-active

transition metals, including Fe, Cu, Cr, and Co (Kostenkova et al.,

2022). This process leads to the production of superoxide (O2
•−),

hydrogen peroxide (H2O2), and hydroxyl radicals (•OH) (Collin,

2019). The oxidative stress is induced by the indirect interactions
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with the antioxidant defense system, disruption of the electron

transport chain, and induction of lipid peroxidation, which are the

results of exposure to redox-inactive HMs (Bhattacharyya

et al., 2014).

In plants, HMs are involved in the production and release of free

radicals through chemical reactions, metabolic pathways, and

physiological processes (Emamverdian et al., 2015). The ROS are

generated by biological systems through the production of radicals

that are centered on oxygen, S, N, and carbon (Phaniendra et al.,

2015). The lipid content of thylakoid membranes is altered in plants

that are exposed to HMs stress, which leads to membrane

degradation and lipid peroxidation (Emamverdian et al., 2015).

The primary site of lipid peroxidation is polyunsaturated fatty acids,

and it is comprised of three distinct phases: initiation, advancement,

and termination. The functionality of PS II is impeded by HMs,

which leads to an increase in the formation of O2
•− in leaves and an

increase in lipid peroxidation (Hasanuzzaman et al., 2020). Recent

research has revealed that HMs can damage numerous

physiological systems by generating ROS that induce lipid

peroxidation (Shahid et al., 2014). Furthermore, the rate of

photosynthesis and PS II can be significantly affected by the by-

products of lipid peroxidation (Pospıśǐl and Yamamoto, 2017).

Chlorophylls (Chl) and carotenoids are essential pigments that

are involved in the conversion of solar energy to chemical energy

during photosynthesis (Hashimoto et al., 2016). The production of

photosynthetic compounds is specifically influenced by HMs

(Ventrella et al., 2009). Chlorosis and plant growth retardation

are frequently observed in metal-contaminated environments.

These findings suggest that the biosynthesis of photosynthetic

compounds has been disrupted (Yadav, 2010). Consequently,

these variables influence the proliferation of plastids, the

efficiency of photosynthesis, and the overall metabolism.

Additionally, HMs inhibit the accumulation of photosynthetic

compounds (Ventrella et al., 2009).
7.2 The mechanism of HM uptake
and tolerance

The development of plants as phytoremediation agents is

contingent upon an understanding of the genetic basis and

interrelated network of physiological and molecular mechanisms

that govern plant tolerance to specific HMs (Hossain et al., 2012).
TABLE 1 Continued

Gene
family

Genes Plant Roles References

ABC AtABCC1
and
AtABCC2

Arabidopsis
thaliana

They have been linked via vacuolar sequestration to phytochelatin-mediated cadmium and
mercury detoxification

(Park et al., 2012)

ABC OsABCB14 Oryza
sativa

It is shown to be in charge of iron homeostasis (Xu et al., 2014)

ABC OsABCG43/
PDR5

Oryza
sativa

Induced in rice roots during cadmium stress, it may be implicated in cadmium detoxification by
compartmentalizing cadmium into organelles

(Oda et al., 2011;
Xu et al., 2014)
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Different plant species may have developed distinct mechanisms to

tolerate excessive HMs, and even within a single plant species,

multiple mechanisms may be in operation (Asiminicesei et al.,

2024). To endure excessive HMs, plants possess both constitutive

and adaptive mechanisms (Hasanuzzaman et al., 2013). To identify

the underlying mechanisms of HMs’ accumulation, tolerance, and

adaptive mechanisms to contend with HM stress, physiological,

biochemical, and molecular approaches are still being employed

(Mashabela et al., 2023).

Among the adaptive mechanisms that tolerant plants have

evolved are the synthesis of particular phytochelatins (PCs) and

metallothioneins (MTs), induction of mechanisms opposing the

effects of ROS and MG, induction of stress proteins, the

biosynthesis of proline (Pro), polyamines (PAs), and signaling

molecules like salicylic acid (SA) and nitric oxide (NO) (Hossain

et al., 2012; Hasanuzzaman et al., 2019). Figure 3 demonstrates the

process of HMs’ sequestration in plant cells, specifically within the

vacuoles. HMs are absorbed by plants through root interception,

entrance into roots, and translocation to the stem (Khan et al.,

2023). The entrance of HMs into the organism is contingent upon

the sort of HM (Yimer et al., 2024).

The prevention of superfluous HMs from infiltrating the plant

is one method of reducing or preventing the toxic effects of HMs.
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Plants can accomplish this by precipitating or complexing HMs in

the root environment (Riyazuddin et al., 2021). Plants can

precipitate HMs by either increasing the pH of the rhizosphere or

excreting anions, such as phosphate (Hinsinger et al., 2003; Chen

et al., 2017). In response to Al stress, root exudation of phosphate

has been observed in maize (Calderón-Vázquez et al., 2011).

Additionally, malate exudation from the roots of sorghum and

citrate exudation from the roots of maize have also been

documented in response to Cd stress (Piñeros et al., 2002). These

results lend credence to the hypothesis that the HM-binding

capabilities of root exudates may serve as a critical mechanism for

stabilizing HMs in the vicinity of the root, thereby rendering them

unavailable to the plant and reducing the toxicity encountered by

the plant (Hossain et al., 2012).

There must also be other processes since certain tolerant and

hyperaccumulator plants really absorb more HMs than sensitive

plants. An essential adaptive strategy for HM tolerance in plants is

the cellular exclusion of HMs (Riyazuddin et al., 2021). The

apoplastic space is the location of a significant proportion of HMs

in plant roots, which implies an exclusion mechanism

(Sattelmacher, 2001). The cell wall–plasma membrane interface

has the potential to serve as a site of HM tolerance, as it accumulates

substantial amounts of HMs (Danouche et al., 2021). The plant
FIGURE 3

Sequestration of heavy metals in plant cells within the vacuoles. The uptake of heavy metal (HMs) ions is facilitated by a variety of transporters, such
as the cation diffusion facilitator (CDF) family, the heavy-metal-transporting ATPase (HM ATPase), the copper transporter (CTR), the zinc-regulated,
iron-regulated transporter-like proteins (ZIP), and the natural resistance-associated macrophage protein (NRAMP). For instance, HMs, such as Cd2+,
enter the cytosol and initiate the production of phytochelatins (PCs) after being transported by members of the ZIP family. PCs are produced
through a transpeptidation reaction from reduced glutathione (GSH) in a non-translational manner. The primary function of PCs is to bind cytosolic
HMs, which results in the formation of the HM–PC complex. In the case of Cd2+ ions, these bind with low-molecular-weight (LMW) complex and
form the LMW Cd-complex. This complex is subsequently transported into the vacuole by a tonoplast-localized ATP-binding-cassette (ABC)
transporter. The LMW Cd-complex is collected and converted into a high-molecular-weight (HMW) complex within the vacuole. This complex
contains supplementary Cd2+ ions. The tonoplast-localized cation/proton exchanger (CAX) transporters facilitate the direct interaction between
these HMW complexes and protons, thereby enabling them to access the vacuole. Metal tolerance proteins (MTPs) and NRAMPs are transporters
that are present in the tonoplast. They are accountable for the migration of metal ions to facilitate compartmentalization or remobilization. Organic
acids, amino acids, and metallothioneins (MTs) are among the chelators that contribute to the regulation of metal levels in the cytosol to a safe and
low level. ROS, reactive oxygen species. This figure was made using BioRender.
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cation exchange capacity (CECs) of sensitive wheat cultivars is

substantially lower than that of tolerant cultivars (Masion and

Bertsch, 1997). This implies that tolerant cultivars utilize a high

CEC to complex HMs at the cell wall and obstruct their entry into

the cell (Bortoloti and Baron, 2022).

Once HMs infiltrate the cell, plants employ a variety of

strategies to mitigate their toxicity (Pande et al., 2022). One

approach is to transport or sequester HMs into the vacuole,

which serves as an appropriate storage reservoir for excessively

accumulated HMs (Peng and Gong, 2014). Vacuolar assimilation of

the majority of solutes is stimulated by two vacuolar proton pumps:

a vacuolar proton-ATPase (V-ATPase) and a vacuolar proton

pyrophosphatase (V-Ppase) (Hossain et al., 2012). Grasses have

the capacity to actively transport Zn into vacuoles, with more

tolerant clones being able to maintain the process at higher

external Zn levels than sensitive clones (Brookes et al., 1981).

Either channels or transporters can facilitate uptake. Genetic and

molecular techniques have identified a variety of genes (Table 2)

that are involved in the uptake of transition HM ions into cells, the

sequestration of HMs in the vacuole, the remobilization of HMs

from the vacuole, the loading of HMs in the xylem, and the

discharge of HMs (Gill et al., 2021).

Zn-regulated transporter (ZRT), Fe-regulated transporter

(IRT)-like protein ZIP family, ATP-binding cassette (ABC)

transporters, the P-type metal ATPases, NRAMP family,

multidrug resistance-associated proteins (MRP), CDF family of

proteins, copper transporter (COPT) family proteins, pleiotropic

drug resistance (PDR) transporters, YSL transporter, and CAX are

among the well-characterized HM transporter proteins (Toyoda

et al., 2008; Pittman and Hirschi, 2016; Wang et al., 2021a; Pacheco

et al., 2023). MTs and PCs are two forms of peptide metal-binding

ligands that are essential for the detoxification and tolerance of

HMs in plants that are subjected to HM stress (Faizan et al., 2024).

PCs are synthesized from GSH and are induced by a variety of

HMs, including Cd, Hg, Ag, Cu, Ni, Au, Pb, As, and Zn (Faizan et al.,

2024). The activity of ABC transporters accumulates them in the

vacuole, thereby restricting the circulation of free Cd2+ within the

cytosol, and they complex Cd ions through the thiolic group (–SH) of

cysteine (Salbitani et al., 2023). PCs are produced by both HM-

resistant and HM-sensitive plants; however, certain reports have

concluded that PCs are not the primary cause of the

hyperaccumulation of Zn, Ni, or Pb (Hossain et al., 2012). The

chelation of HM ions is not the sole mechanism of the HM

detoxification process (Gulcin and Alwasel, 2022). The HM ion

complex is transported to the vacuole and stabilized, thereby

forming a complex with sulfides or organic acid, following the

activation of PC synthase by HM ions and HM chelation by the

synthesized PCs (Faizan et al., 2024). Nevertheless, the HM specificity

or species specificity of hyperaccumulation is not adequately

elucidated by the formation of HM complexes. Consequently, the

precise function of PCs in the HM tolerance mechanism at the

cellular level is yet to be ascertained (Emamverdian et al., 2015).

Plant MTs are polypeptides that are cysteine-rich, low

molecular weight, and capable of engaging HMs through their

cysteine residues (Freisinger, 2011). Their physiological functions

encompass the protection against intracellular oxidative damage,
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the sequestration of toxic HMs, and the maintenance of essential

transition HM homeostasis (Subramanian Vignesh and Deepe,

2017). The cysteine residue arrangement has resulted in the

division of plant MTs into three classes, which are diverse (Guo

et al., 2003). The organization of cysteine residues confers distinct

MT isoforms and their capacity to bind and sequester distinct HM

ions for the purposes of detoxification and homeostasis (Ruttkay-

Nedecky et al., 2013).

Factors such as hormones, cytotoxic agents, and HMs induce

MT biosynthesis, which is regulated at the transcriptional level

(Thirumoorthy et al., 2007). Gene expression studies have

demonstrated that MT genes are differentially regulated in

response to a variety of HM stresses (Qu et al., 2024). The role of

MTs in HM detoxification and homeostasis has been demonstrated

by a variety of data (Ruttkay-Nedecky et al., 2013). However, the

metal-inducibility of plant MTs has not always been demonstrated.

Additional information regarding the structures and properties of

MTs could provide a more comprehensive understanding of their

functions and mechanism(s) of action (Hossain et al., 2012). The

molecular mechanisms of HM transport, trafficking, tolerance, and

homeostasis in plants are likely to be further elucidated through the

use of a model system and a model hyperaccumulator, such as

Arabidopsis halleri and particularly Thlaspi species (Pasricha

et al., 2021).

In plants, metal chelation can be classified into two categories:

internal tolerance and external exclusion. During the external

detoxification process, organic acids expelled from plant roots

may combine with HM ions to create stable HM–ligand

complexes, which may change the HM ions’ mobility and

bioavailability (Sabreena et al., 2022). This obstructs the entry of

HM ions into plants and prevents their accumulation in sensitive

root sites. Organic acids may chelate with HM in the cytosol during

internal HM detoxification, resulting in the transformation of the

ions into a less toxic or nontoxic form (Gasic and Korban, 2006).

Plants generate a variety of ligands for Al, Cd, Cu, Ni, Co, and Zn.

Potential ligands for HMs include carboxylic and amino acids,

including citrate, malate, and oxalate, histidine and nicotianamine,

and phosphate derivatives (phytate), which are involved in

detoxification and tolerance (Hossain et al., 2012). Citrate has a

significant affinity for chelating HM ions, and other HMs, including

Cd, Ni, Co, and Zn, also exhibit a high affinity for citrate (Gasic and

Korban, 2006; Hossain et al., 2012).

At low Cd concentrations, citric acid is a significant ligand and

contributes to the accumulation and tolerance of Zn (Najeeb et al.,

2011). HMs such as Al are also detoxified, and oxalate is secreted by

the roots (Zheng et al., 2005). In response to Al stress, buckwheat

(Fagopyrum esculentum Moench.) secretes oxalic acid from the

roots and accumulates nontoxic-Al-oxalate in the leaves (Feng Ma

et al., 1998). Consequently, detoxification occurs both internally

and externally (Hall, 2002). Histidine and nicotianamine are also

involved in the chelation of HM ions in the xylem fluid and within

plant cells (Zhakypbek et al., 2024). Nicotianamine is a

nonproteinogenic amino acid that is mobile within the plant and

has been identified in phloem fluid as well as in root and leaf cells

(Klatte et al., 2009). It is suggested that it may be involved in the

regulation of HM transfer within plant cells (Takahashi et al., 2003).
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TABLE 2 Compilation of genes exhibiting variable expression in response to various heavy metals.

Plant Gene Metal Response References

Vigna radiata irt1and irt2 Cadmium Treatments involving cadmium under conditions of sufficient iron (Muneer
et al., 2014)

Arabidopsis
thaliana

AtABCC3 and AtABCC6 Cadmium The phenomenon of tolerance during seedling development mediated by phytochelatin (Brunetti
et al., 2015)

Arabidopsis
thaliana

CAX2 and CAX4 Cadmium It plays a role in the storage of cadmium in the vacuoles, which gives it the ability to
tolerate heavy metals

(Koren’Kov
et al., 2007; Mei
et al., 2009)

Arabidopsis
thaliana

AtHMA4 Cadmium The expression of the gene decreased when exposed to cadmium stress (Xu et al., 2010)

Arabidopsis
thaliana

AtNHX1 Cadmium It is accountable for the storage of metabolites in vacuoles and enhances tolerance (Yao et al.,
2020;
Riyazuddin
et al., 2021)

Oryza sativa cadA and bmtA Cadmium The accumulation of cadmium and the production of cadmium-nanoparticles have been
found to enhance tolerance by reducing oxidative stress

(Shi
et al., 2020)

Nicotiana
tabacum

TaMT3 Cadmium It resulted in an elevation of superoxide dismutase activity and provided tolerance (Zhou
et al., 2014)

Hibiscus
cannabinus L.

WRKY, GRAS, MYB,
bHLH, ZFP, ERF,
and NAC

Cadmium The molecular mechanism underlying enhanced tolerance (Chen
et al., 2020b)

Fragaria vesca FvABCC11 Cadmium Enhancement of tolerance by the utilization of ATP binding cassette (ABC) transporters (Shi
et al., 2020)

Brassica napus BnaABCC3
and BnaABCC4

Cadmium Augmentation of stress tolerance (Zhang
et al., 2018b)

Triticum
aestivum

TaABCC Cadmium Unique molecular manifestation and heightened resilience (Bhati
et al., 2015)

Oryza sativa OsHMA3 and OsABCC9 Cadmium Participating in the study of plant cadmium tolerance (Sasaki et al.,
2014; Yang
et al., 2021a)

Oryza sativa OsMYB45, OsCATA
and OsCATC

Cadmium OsMYB45 induces upregulation of OsCATA and OsCATC receptors, enhances catalase
activity in plants, and reduces rice’s susceptibility to cadmium

(Hu
et al., 2017)

Populus alba PyWRKY75 Cadmium The upregulation of PyWRKY75 resulted in enhanced tolerance to cadmium (Wu
et al., 2022)

Oryza sativa OsNAC15,OsZIP7
and OsZIP10

Cadmium The regulation of zinc and cadmium tolerance is mediated by OsNAC15 by its
interaction with the ZDRE motif located in the promoters of OsZIP7 and OsZIP10,
resulting in the inhibition of their transcription

(Zhan
et al., 2022)

Arabidopsis
thaliana

MAN3 Cadmium The glutathione-dependent pathway is responsible for the regulation of
cadmium tolerance

(Chen
et al., 2015)

Arabidopsis
thaliana

AtFC1 Cadmium The control of both antioxidants and antioxidant enzymes is attributed to several factors (Hossain
et al., 2012)

Arabidopsis
thaliana

MYB40 and PCS1 Arsenic The expression of PHT1;1 was directly suppressed to decrease the absorption of As(V)
into plant cells, while the expression of PCS1 was directly increased to increase the
amount of PCs, which formed complexes with As(III). The expression of PHT1;1 was
suppressed, while the expression of PCS1 was upregulated

(Sung et al.,
2009; Castrillo
et al., 2013)

Triticum
aestivum

TaCATs Arsenic Stress tolerance (Tyagi
et al., 2021)

Oryza sativa OsABCC1 Arsenic Sequestration can manifest in various parts of rice plants, including roots, stems, leaves,
and husks. The presence of vacuoles plays a crucial role in mitigating the distribution of
arsenic within rice grains

(Song
et al., 2014)

Oryza sativa OsLsi1 and OsLsi2 Arsenic They can lead to an augmentation in the absorption of arsenate by roots (Pan
et al., 2020a)

(Continued)
F
rontiers in Plant
 Science
 11
 frontiersin.org

https://doi.org/10.3389/fpls.2024.1423625
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


El-Sappah et al. 10.3389/fpls.2024.1423625
Plants that are HM-tolerant frequently prevent HMs from being

transmitted from root to stem by either detoxifying them through

chelation or storage or retaining them in root cells (Singh et al.,

2015). Nevertheless, a unique group of plants known as
Frontiers in Plant Science 12
hyperaccumulators effectively transport HMs to the shoot

through the xylem, a process that is likely facilitated by

transpiration. They are capable of accumulating HMs from

modest external concentrations, with the majority of them being
TABLE 2 Continued

Plant Gene Metal Response References

Oryza sativa OsLsi3/OsLsi6 Arsenic They result in a significant rise in the buildup of arsenic in shoots during the stages of
heading to milk

(Pan
et al., 2020a)

Arabidopsis
thaliana

ATQ1 Arsenic ATQ1 deficiency results in a reduced outflow of arsenic in roots and a notable rise in
arsenic accumulation in shoots

(Chao
et al., 2017)

Oryza sativa CCoAOMT Copper Increased lignin synthesis and improved tolerance (Su et al., 2020)

Nicotiana
tabacum

EhMT1 Copper It results in reduced hydrogen peroxide production and enhanced tolerance (Xia
et al., 2012)

Arabidopsis
thaliana

MT2a and MT3 Copper They are significantly stimulated by copper exclusively in the root tips and young leaves (Guo
et al., 2003)

Imperata
cylindrica

CRK10, SDI1, PHO1,
PHT1-11, VIT1, VTC2,
PAE7, SWEET3,
and REX4

Copper Genes that are expressed differently in shoots under situations of copper stress (Vidal
et al., 2021)

Imperata
cylindrica

Mn-SODs, SOD1,
ATOX1, HEPHL1,
HMA5, NBR1, ACT1,
Act87E, Arp2, and
Actobindin-A

Copper These genes exhibit a correlation with copper-tolerant systems in roots (Vidal
et al., 2021)

Jatropha
curcas

JcMT2a and JcPAL Lead The process of antioxidant accumulation, such as the presence of flavonoids and
phenolics, as well as metal detoxification

(Pan
et al., 2020b)

Nicotiana
tabacum

tCBP4 Lead Increased tolerance (Sunkar
et al., 2000)

Arabidopsis
thaliana

ACBP1 Lead Increased gene expression and improved tolerance (Xiao et al.,
2008; Du
et al., 2015)

Linum
usitatissimum

LuACBP1 and LuACBP2 Lead The transcript level was elevated in the transgenic group, resulting in enhanced tolerance (Pan
et al., 2020b)

Medicago
sativa

Sucrose synthase, P5CS,
and d-OAT

Lead Lead resistance (Wang
et al., 2021b)

Medicago
sativa

YUCCA, 4CL, CCR, F5H,
and COMT

Lead Their increased expression results in the growth of roots during lead-induced stress (Wang
et al., 2021b)

Medicago
sativa

NRAMP, MATE, HIPPs,
MTP, and
ABC transporter

Lead They were subjected to lead stress (Wang
et al., 2021b)

Pogonatherum
crinitum

CAT, SOD, and POD Lead Their antioxidant enzyme activities are consistent with the evolving trend of roots (Zhu
et al., 2022)

Oryza sativa OsSTAR1 and OsSTAR2 Aluminum Reduced concentration of aluminum in the cell wall and increased tolerance (Huang
et al., 2021)

Arabidopsis
thaliana

AtALMT1 and STOP1 Aluminum The transcription factor STOP1t plays a crucial role in the regulation of ALMT1
expression, which is essential for the development of aluminum tolerance

(Daspute
et al., 2017)

Arabidopsis
thaliana

AtBCB Aluminum It provided a certain level of resistance to aluminum (Ezaki
et al., 2000)

Nicotiana
tabacum

parB, NtPox and NtGDI1 Aluminum It provided a certain level of resistance to aluminum (Ezaki
et al., 2000)

Oryza sativa ART1, Nrat1, OsFRDL4,
OsALS1, OsMGT1, ASR5
and ART2

Aluminum They have crucial functions in the resistance to aluminum poisoning (Bhattacharjee
et al., 2023)
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translocated to the shoot (Yang et al., 2005). Hyperaccumulators

exhibit an unusually high uptake of HM at the root membrane level,

which may be attributed to the presence of a high expression of an

HM transporter in the plasma membrane (Skuza et al., 2022).

Efficient intracellular compartmentalization and chelation may be

the cause of this high HM tolerance.

A complex network of biochemical adaptive strategies, known

as the antioxidant system, is present in plants to detoxify a variety of

ROS (Dumanović et al., 2020). In general, this system can be

divided into two categories. The first group comprises enzymes,

including superoxide dismutase, catalase, ascorbate peroxidase, and

glutathione reductase, that eliminate oxygen radicals and their

metabolites (Rajput et al., 2021). Nonenzymatic compounds such

as glutathione, ascorbate, and phenolics comprise the second group.

These compounds have the ability to neutralize ROS without

transforming into deleterious radicals themselves (Zandi and

Schnug, 2022).

The presence of the two HMA proteins, hma2/hma4, is essential

for the uptake of Cd in the shoot via the xylem (Kraemer, 2009).

When cultivated on regular soil, the shoot of the hma2/hma4

double-mutant shows severe signs of Zn shortage, as previously

shown (Haydon and Cobbett, 2007). This suggests that both HMA2

and HMA4 are required for the movement of Zn from the roots to

the shoots in regular soils (Claus et al., 2013). On the other hand,

the heat shock proteins (HSPs) are molecular chaperones that are

essential for the protection and repair of proteins under stress

conditions as well as for the folding and assembly of proteins (El-

Sappah et al., 2017; Abbas et al., 2022). In response to Cd stress, they

can enhance the accumulation of large HSPs, such as HSP70, and

are induced by transition metals (Zn, Cu, Cd, Hg, Al, and Cr)

(Hasan et al., 2017).

Additionally, HSPs can prevent irreversible protein

denaturation as a result of oxidative stress or facilitate proteolytic

degradation (Kumar et al., 2022). Nevertheless, the extent of their

involvement in HM tolerance is still mainly obscure. Enzymes that

modify metal oxidation states or facilitate the incorporation of HMs

into organic molecules are known as metal-modifying enzymes

(Kaczmarek et al., 2009). After being supplied with Cr(VI) in

nutrient culture, Eichhornia crassipes, a water hyacinth,

accumulated innocuous Cr(III) in its root and branch tissues

(Giri and Patel, 2011). This implies that E. crassipes detoxified Cr

(VI) during root assimilation and transported a portion of the

detoxified Cr to leaf tissues. A reductase at the root cell membrane

in dicots reduces Fe and potentially Cu prior to assimilation (Cohen

et al., 1997).

Plants may reduce harmful substances (e.g., HMs) through a

process called in situ reduction, which can be advantageous for

phytoremediation by helping to detoxify the environment (Kafle

et al., 2022). Metal-responsive transcription factor 1 (MTF-1) plays

a crucial role in the cellular response and tolerance to HM stress by

activating genes important for HM uptake, transport, and

detoxification (Wang et al., 2004). The TFs involved in the

reaction to HM stress and tolerance have been reported in several

plant species (Niekerk et al., 2024). On the other hand, oxidative

stress and antioxidative defense systems are induced by HM stress

(Mansoor et al., 2023). These systems are constituted of free-radical-
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scavenging molecules, such as ascorbate (AsA) and GSH, and the

enzymes involved in their biosynthesis and reduction (Rajput

et al., 2021).

During times of stress, specifically HM stress, SA interacts with

many plant hormones, including AUX, ABA, and GA, to promote

the synthesis of antioxidant chemicals and enzymes. This

interaction serves to notify and assist plants treated with HM,

helping to alleviate the stress caused by HM (Sharma et al., 2020).

SA is a natural signal molecule that is crucial for the regulation of

physiological and biochemical processes, thereby enhancing the

resistance of plants to biotic and abiotic stresses (Mishra

et al., 2024).

On the other hand, Pro accumulation in response to HM stress

has also been extensively documented (Hayat et al., 2012).

Enhanced protection against Cd stress is provided by increased

Pro levels in microalgae (Siripornadulsil et al., 2002). Pro plays a

vital role in mitigating the harmful effects of Cd stress by protecting

against damage caused by free radicals and maintaining a controlled

reducing environment within the cell rather than just isolating Cd

(Hayat et al., 2012). However, PAs are organic cations that exist

naturally and possess nonenzymatic antioxidant characteristics.

They are thought to function as second messengers in regulating

plant growth and development processes (Raychaudhuri

et al., 2021).

PAs and Pro are components of the “general adaptation

syndrome” (GAS) response to environmental adversities,

including nutrient scarcity, HMs, and low temperatures (Gill

et al., 2012). Engineered plants that overexpress genes involved in

the biosynthesis of PAs exhibit an enhanced ability to withstand a

range of environmental stressors, including HMs (Kajla et al., 2023).

By modulating the level and toxicity of ROS and hormones, NO, a

ubiquitous bioactive signaling molecule, serves a critical function in

a wide range of physiological processes in plants (Jomova et al.,

2023). By governing the general mechanisms for cellular redox

homeostasis and promoting the transformation of O2
•− to H2O2

and O2, NO safeguards plants from oxidation damage (Huang

et al., 2019).

NO may also safeguard cells from oxidative processes by

promoting the synthesis of GSH (Lu, 2013), in addition to its

direct ROS scavenging activity and the modulation of lipid

peroxidation through lipoxygenase (LOX) inhibition. Under HM

stress, exogenous NO can effectively induce tomato seedlings to

modify their physiological and biochemical mechanisms to protect

against Cu toxicity, thereby preserving their metabolic capacity and

normal growth capabilities (Singh et al., 2015).
8 Challenges and prospective

It is crucial to examine the interactions between different HMs

in plants. Certain HMs may have synergistic effects, whereby their

collective presence amplifies toxicity beyond what would be

anticipated based on individual doses (Angon et al., 2024).

Conversely, some combinations may have antagonistic effects,

where one metal reduces the toxicity of another. In order to

assess and control risks, it is important to acknowledge these
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linkages. Subsequent research should strive to measure the

combined impacts of HMs on the physiological processes, growth,

and reproductive capabilities of plants. In order to do this,

researchers may examine the correlations between dosage and

response, the patterns of bioaccumulation, and the effects,

particularly on different tissues. There has been a scarcity of

research on agricultural genetic diversity and the mechanisms of

plant adaptation. The sensitivity and tolerance of plants to HMs

might vary depending on the species and genotypes (Emamverdian

et al., 2015).

Studying the way various plant species and genotypes react to

environmental difficulties might impede the progress of creating

metal-tolerant agricultural cultivars. It is crucial to bridge this gap

in order to comprehend the ability of plants to withstand challenges,

provide guidance for agricultural activities in polluted areas, and

assist in environmental remediation efforts. Furthermore,

investigating the transfer of HMs to crops is crucial for the

development of sustainable agriculture. Gaining insight into the

mechanisms by which HMs persist and migrate throughout

successive plant generations may provide valuable guidance for

addressing pollution in affected areas. This knowledge can be

particularly useful in developing phytoremediation systems that

effectively eliminate toxins from contaminated soil.

The current scientific investigations have mostly concentrated

on the detection and analysis of microplastics in soil. Nevertheless,

there is an increasing curiosity in comprehending the mechanisms

by which these minute plastic particles might carry HMs and

influence their dispersion and accessibility. It is crucial to

enhance several techniques that aid in reducing and managing the

stress caused by harmful substances in plants. Using a single

technique is ultimately unrealistic and inadequate for effectively

restoring soil that has been polluted with HMs (Priya et al., 2023).

There have been numerous methods developed to mitigate or

prevent HM pollution and to reestablish vegetation in polluted

soil (Priya et al., 2023).

Restoring the flora of soil that has been contaminated with HMs

is a highly promising approach known as phytoremediation (Yan

et al., 2020). Public acceptance has been achieved, and it offers

numerous advantages over other physicochemical treatments

(Mitra et al., 2022).

The most effective and cost-efficient approach is the recent

emergence of the introduction of nanoparticles (NPs) into plants to

increase their tolerance to HM toxicity and facilitate the cleansing of

these toxic elements (Zhou et al., 2020). Genetic engineering is a

valuable method for modifying plants to manifest specific

characteristics, including rapid growth, high biomass output,

strong tolerance and accumulation of HMs, and adaptability to a

variety of climatic and geological conditions (Yan et al., 2020). As a

result, it will be essential to have a thorough understanding of the

processes by which plants absorb, transport, and eliminate HMs as

well as the identification and analysis of a variety of molecules and

signaling pathways in order to create genetically engineered plant

species that are optimal for phytoremediation (Priya et al., 2023).

Enhanced tolerance or accumulation of HMs in plants may be

achieved by manipulating genes associated with HM absorption,
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translocation, sequestration, and tolerance. In addition, the

bioavailability of HMs may be improved by the use of chelating

compounds and microorganisms, which, in turn, facilitates their

accumulation in plants (Olaniran et al., 2013). In addition, they can

be employed to improve the health of the soil and to further

encourage the growth and fi tness of plants . Several

hyperaccumulator plants have been identified, and the most

direct method for phytoremediation is the use of HM

hyperaccumulators (Skuza et al., 2022). However, there are

certain limitations that impede the utilization of these natural

hyperaccumulators in phytoremediation (Yan et al., 2020).

Due to their capacity to penetrate plants extensively, exhibit

superior adsorption, and deliver targeted effects, they may be

instrumental in the regulation of photosynthesis and the

detoxification of ROS (Rasheed et al., 2022). Subsequently, they can

substantially improve the germination, growth, and yield of plant seeds

(Kornarzyński et al., 2020). NPs also facilitate plant growth by

modulating the movement and distribution of both mobile and

immobile forms of HMs (Zhou et al., 2020). The potential of NPs to

significantly improve the remediation of metal-contaminated soils in

the future is suggested by the positive results observed in the use of

NPs, particularly in the enhancement of plants’ resistance to HMs and

the facilitation of their development.
9 Conclusion

HMs are defined as metals with densities more than 5 g cm3.

HMs account for 53 of the almost 90 elements found in nature.

Plant nutrition is thought to need a grand total of 18 components.

Some of its parts are thought to have positive effects. HMs in the soil

can have a negative impact on human and animal health, soil

quality, fertility, and agricultural productivity. Plants have

developed ways to deal with HM stress, such as immobilization,

exclusion outside the plasma membrane, limited absorption and

transport, production of specific HM transporters, activation of

stress proteins, and chelation and sequestration by specific ligands.

Metals have two distinct impacts on seed germination: their

overall toxicity and their ability to hinder water uptake. Plants

absorb and store HMs using concentration gradients and selective

absorption. These chemicals influence enzymes, cellular

metabolism, and the production of nucleic acids, proteins, and

pigments for photosynthesis. Recent molecular and genetic research

has identified gene families that play a role in metal transport,

contributing to metal tolerance in hyperaccumulator plants.

Understanding the interactions between different HMs in plants

is crucial for assessing and controlling risks.

Research on agricultural genetic diversity and plant adaptation

mechanisms is also essential for developing metal-tolerant

agricultural cultivars and reducing the harmful impact of

contaminated soil on crop growth and productivity. Finally, the

current review examined the locations in plants where HMs are

found. It discussed the benefits of HMs to plants, the consequences

on seed performance, and the initial plant reaction to HM exposure.

This review also looks at the existence of HM transport genes in
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plants and how plants react to HMs on a molecular, biochemical,

and metabolic level, respectively. Methods for managing HMs in

plants, together with the associated challenges and opportunities,

have been also examined.
Author contributions

AE-S: Conceptualization, Funding acquisition, Validation,

Visualization, Writing – original draft, Writing – review &

editing. YZ: Visualization, Writing – review & editing. QH:

Funding acquisition, Visualization, Writing – review & editing.

BC: Writing – review & editing. SS: Writing – review & editing. MA:

Writing – review & editing. KY: Conceptualization, Writing –

review & editing. JL: Conceptualization, Funding acquisition,

Writing – review & editing. KE-T: Conceptualization, Funding

acquisition, Validation, Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Natural Science Foundation of Sichuan Province
Frontiers in Plant Science 15
(NO. 2023NSFSC1265) to QH, and AE-S, as well as the Key

Research and Development Projects Science and Technology

Department of the Sichuan Province (NO. 2021YFS0343) to JL.

Also, it was supported by the Abu Dhabi Award for Research

Excellence -Department of Education and Knowledge (Grant

number: 21S105) and the UAEU program of Advanced Research

(Grant number: 12S169) to KE-T.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abbas, M., Li, Y., Elbaiomy, R. G., Yan, K., Ragauskas, A. J., Yadav, V., et al. (2022).
Genome-wide analysis and expression profiling of SlHsp70 gene family in Solanum
lycopersicum revealed higher expression of SlHsp70-11 in roots under Cd2+ stress.
Front. Biosci. 27, 186. doi: 10.31083/j.fbl2706186

Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A.,
Elmasry, S., et al. (2023). Toxicity of heavy metals and recent advances in their removal:
a review. Toxics 11, 580. doi: 10.3390/toxics11070580

Adnan, M., Xiao, B., Ali, M. U., Xiao, P., Zhao, P., Wang, H., et al. (2024). Heavy
metals pollution from smelting activities: a threat to soil and groundwater. Ecotoxicol.
Environ. Saf. 274, 116189. doi: 10.1016/j.ecoenv.2024.116189

Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., et al. (2015). The
effect of excess copper on growth and physiology of important food crops: a review.
Environ. Sci. pollut. Res. 22, 8148–8162doi: 10.1007/s11356-015-4496-5

Alam, M. M., Hayat, S., Ali, B., and Ahmad, A. (2007). Effect of 28-homobrassinolide
treatment on nickel toxicity in Brassica juncea. Photosynthetica 45, 139–142.
doi: 10.1007/s11099-007-0022-4

Alejandro, S., Höller, S., Meier, B., and Peiter, E. (2020). Manganese in plants: from
acquisition to subcellular allocation. Front. Plant Sci. 11, 300. doi: 10.3389/
fpls.2020.00300

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., and Wang, M. Q. (2021). Heavy
metals and pesticides toxicity in agricultural soil and plants: ecological risks and human
health implications. Toxics 9, 42. doi: 10.3390/toxics9030042

Ali, H., and Khan, E. (2018). What are heavy metals? Long-standing controversy over
the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition.
Toxicol. Environ. Chem. 100, 6–19. doi: 10.1080/02772248.2017.1413652

Angon, P. B., Islam, M. S., Kc, S., Das, A., Anjum, N., and Poudel, A. (2024). Sources,
effects and present perspectives of heavy metals contamination: soil, plants and human
food chain. Heliyon 10, e28357. doi: 10.1016/j.heliyon.2024.e28357

Angulo-Bejarano, P. I., Puente-Rivera, J., and Cruz-Ortega, R. (2021). Metal and
metalloid toxicity in plants: an overview on molecular aspects. Plants 10, 635.
doi: 10.3390/plants10040635

Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., et al. (2020). Meta-
analysis of heavy metal effects on soil enzyme activities. Sci. Total Environ. 737, 139744.
doi: 10.1016/j.scitotenv.2020.139744

Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., et al. (2016).
Influence of high and low levels of plant-beneficial heavy metal ions on plant growth
and development. Front. Environ. Sci. 4, 69. doi: 10.3389/fenvs.2016.00069
Arrivault, S., Senger, T., and Krämer, U. (2006). The Arabidopsis metal tolerance
protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the
shoot under Fe deficiency and Zn oversupply. Plant J. 46, 861–879. doi: 10.1111/j.1365-
313X.2006.02746.x

Asiminicesei, D. M., Fertu, D. I., and Gavrilescu, M. (2024). Impact of heavy metal
pollution in the environment on the metabolic profile of medicinal plants and their
therapeutic potential. Plants 13, 913. doi: 10.3390/plants13060913

Baker, A. J. M. (1981). Accumulators and excluders strategies in response of plants to
heavy metals. J. Plant Nutr. 3, 643–654. doi: 10.1080/01904168109362867

Batool, T. S., Aslam, R., Gul, A., Paracha, R. Z., Ilyas, M., De Abreu, K., et al. (2023).
Genome-wide analysis of heavy metal ATPases (HMAs) in Poaceae species and their
potential role against copper stress in Triticum aestivum. Sci. Rep. 13, 7551.
doi: 10.1038/s41598-023-32023-7

Begum, W., Rai, S., Banerjee, S., Bhattacharjee, S., Mondal, M. H., Bhattarai, A., et al.
(2022). A comprehensive review on the sources, essentiality and toxicological profile of
nickel. RSC. Adv. 12, 9139–9153. doi: 10.1039/D2RA00378C

Bhati, K. K., Sharma, S., Aggarwal, S., Kaur, M., Shukla, V., Kaur, J., et al. (2015).
Genome-wide identification and expression characterization of ABCC-MRP
transporters in hexaploid wheat. Front. Plant Sci. 6, 488. doi: 10.3389/fpls.2015.00488

Bhattacharjee, B., Ali, A., Tuteja, N., Gill, S., and Pattanayak, A. (2023). Identification
and expression pattern of aluminum-responsive genes in roots of rice genotype with
reference to Al-sensitivity. Sci. Rep. 13, 12184. doi: 10.1038/s41598-023-39238-8

Bhattacharyya, A., Chattopadhyay, R., Mitra, S., and Crowe, S. E. (2014). Oxidative
stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases.
Physiol. Rev. 94, 329–354. doi: 10.1152/physrev.00040.2012

Bielen, A., Remans, T., Vangronsveld, J., and Cuypers, A. (2013). The influence of
metal stress on the availability and redox state of ascorbate, and possible interference
with its cellular functions. Int. J. Mol. Sci. 14, 6382–6413. doi: 10.3390/ijms14036382

Bortoloti, G. A., and Baron, D. (2022). Phytoremediation of toxic heavy metals by
Brassica plants: a biochemical and physiological approach. Environ. Adv. 8, 100204.
doi: 10.1016/j.envadv.2022.100204

Branca, J. J. V., Fiorillo, C., Carrino, D., Paternostro, F., Taddei, N., Gulisano, M.,
et al. (2020). Cadmium-induced oxidative stress: focus on the central nervous system.
Antioxidants 9, 492. doi: 10.3390/antiox9060492

Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y., Maerten, A., and Bannon, D. (2007).
Metal transporters in intestine and brain: their involvement in metal-associated
neurotoxicities. Hum. Exp. Toxicol. 26, 221–229. doi: 10.1177/0960327107070573
frontiersin.org

https://doi.org/10.31083/j.fbl2706186
https://doi.org/10.3390/toxics11070580
https://doi.org/10.1016/j.ecoenv.2024.116189
https://doi.org/10.1007/s11356-015-4496-5
https://doi.org/10.1007/s11099-007-0022-4
https://doi.org/10.3389/fpls.2020.00300
https://doi.org/10.3389/fpls.2020.00300
https://doi.org/10.3390/toxics9030042
https://doi.org/10.1080/02772248.2017.1413652
https://doi.org/10.1016/j.heliyon.2024.e28357
https://doi.org/10.3390/plants10040635
https://doi.org/10.1016/j.scitotenv.2020.139744
https://doi.org/10.3389/fenvs.2016.00069
https://doi.org/10.1111/j.1365-313X.2006.02746.x
https://doi.org/10.1111/j.1365-313X.2006.02746.x
https://doi.org/10.3390/plants13060913
https://doi.org/10.1080/01904168109362867
https://doi.org/10.1038/s41598-023-32023-7
https://doi.org/10.1039/D2RA00378C
https://doi.org/10.3389/fpls.2015.00488
https://doi.org/10.1038/s41598-023-39238-8
https://doi.org/10.1152/physrev.00040.2012
https://doi.org/10.3390/ijms14036382
https://doi.org/10.1016/j.envadv.2022.100204
https://doi.org/10.3390/antiox9060492
https://doi.org/10.1177/0960327107070573
https://doi.org/10.3389/fpls.2024.1423625
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


El-Sappah et al. 10.3389/fpls.2024.1423625
Brookes, A., Collins, J. C., and Thurman, D. A. (1981). The mechanism of zinc
tolerance in grasses. J. Plant Nutr. 3, 695–705. doi: 10.1080/01904168109362872

Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., et al.
(2015). Cadmium-inducible expression of the ABC-type transporter AtABCC3
increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J. Exp. Bot. 66,
3815–3829. doi: 10.1093/jxb/erv185

Bursakov, S. A., Kroupin, P. Y., Karlov, G. I., and Divashuk, M. G. (2023). Tracing the
element: the molecular bases of molybdenum homeostasis in legumes. Agronomy 13,
2300. doi: 10.3390/agronomy13092300

Calderón-Vázquez, C., Sawers, R. J., and Herrera-Estrella, L. (2011). Phosphate
deprivation in maize: genetics and genomics. Plant Physiol. 156, 1067–1077.
doi: 10.1104/pp.111.174987

Castrillo, G., Sánchez-Bermejo, E., de Lorenzo, L., Crevillén, P., Fraile-Escanciano,
A., Tc, M., et al. (2013). WRKY6 transcription factor restricts arsenate uptake and
transposon activation in Arabidopsis. Plant Cell 25, 2944–2957. doi: 10.1105/
tpc.113.114009

Chen, G., Li, J., Han, H., Du, R., and Wang, X. (2022). Physiological and molecular
mechanisms of plant responses to copper stress. Int. J. Mol. Sci. 23, 12950. doi: 10.3390/
ijms232112950

Chen, J., Wang, J. W., and Shu, Y. H. (2020a). Review on the effects of heavy metal
pollution on herbivorous insects. Ying Yong Sheng Tai Xue Bao 31, 1773–1782.
doi: 10.13287/j.1001-9332.202005.035

Chao, L. M., Liu, Y. Q., Chen, D. Y., Xue, X. Y., Mao, Y. B., and Chen, X. Y. (2017).
Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at
reproductive stage. Mol. Plant 10, 735–748. doi: 10.1016/j.molp.2017.03.010

Chen, P., Chen, T., Li, Z., Jia, R., Luo, D., Tang, M., et al. (2020b). Transcriptome analysis
revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus
cannabinus L.). Ind. Crop Prod. 158, 112970. doi: 10.1016/j.indcrop.2020.112970

Chen, Y., Wang, Y., Wu, W., Lin, Q., and Xue, S. (2006). Impacts of chelate-assisted
phytoremediation on microbial community composition in the rhizosphere of a copper
accumulator and non-accumulator. Sci. Total Environ. 356, 247–255. doi: 10.1016/
j.scitotenv.2005.04.028

Chen, Y. T., Wang, Y., and Yeh, K. C. (2017). Role of root exudates in metal acquisition
and tolerance. Curr. Opin. Plant Biol. 39, 66–72. doi: 10.1016/j.pbi.2017.06.004

Chen, J., Yang, L., Gu, J., Bai, X., Ren, Y., Fan, T., et al. (2015). MAN 3 gene regulates
cadmium tolerance through the glutathione-dependent pathway in Arabidopsis
thaliana. New Phytol. 205, 570–582. doi: 10.1111/nph.13101

Chiang, H. C., Lo, J. C., and Yeh, K. C. (2006). Genes associated with heavy metal
tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic
survey with cDNA microarray. Environ. Sci. Technol. 40, 6792–6798. doi: 10.1021/
es061432y
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Peñarrubia, L., and Puig, S. (2011). The intracellular Arabidopsis COPT5 transport
protein is required for photosynthetic electron transport under severe copper
deficiency. Plant J. 65, 848–860. doi: 10.1111/j.1365-313X.2010.04472.x

Garcia-Molina, A., Andrés-Colás, N., Perea-Garcıá, A., Neumann, U., Dodani, S. C.,
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Rodrí guez Eugenio, N., McLaughlin, M. J., Pennock, D. J.Land and Water
Development Div. Food and Agriculture Organization of the United Nations (2018).
Soil pollution: a hidden reality (Rome (Italy: FAO).

Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T.,
et al. (2013). The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044–
6066. doi: 10.3390/ijms14036044

Ryu, H. W., Lee, D. H., Won, H. R., Kim, K. H., Seong, Y. J., and Kwon, S. H. (2015).
Influence of toxicologically relevant metals on human epigenetic regulation. Toxicol.
Res. 31, 1–9. doi: 10.5487/TR.2015.31.1.001

Saboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., et al.
(2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea
mays L.) growth and productivity. Saudi J. Biol. Sci. 28, 6339–6351. doi: 10.1016/
j.sjbs.2021.06.096

Sabreena, S., Bhat, S. A., Kumar, V., and Ganai, B. A. (2022). Phytoremediation of
heavy metals: an indispensable contrivance in green remediation technology. Plants 11
(9), 1255. doi: 10.3390/plants11091255

Salbitani, G., Maresca, V., Cianciullo, P., Bossa, R., Carfagna, S., and Basile, A. (2023).
Non-protein thiol compounds and antioxidant responses involved in bryophyte heavy-
metal tolerance. Int. J. Mol. Sci. 24 (6), 5302. doi: 10.3390/ijms24065302

Salinitro, M., Mattarello, G., Guardigli, G., Odajiu, M., and Tassoni, A. (2021).
Induction of hormesis in plants by urban trace metal pollution. Sci. Rep. 11, 20329.
doi: 10.1038/s41598-021-99657-3
Frontiers in Plant Science 19
Sancenón, V., Puig, S., Mira, H., Thiele, D. J., and Peñarrubia, L. (2003).
Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol. Biol.
51, 577–587. doi: 10.1023/a:1022345507112

Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A.,
et al. (2017). Phytoremediation strategies for soils contaminated with heavy metals:
modifications and future perspectives. Chemosphere 171, 710–721. doi: 10.1016/
j.chemosphere.2016.12.116

Sasaki, A., Yamaji, N., and Ma, J. F. (2014). Overexpression of OsHMA3 enhances
Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 65, 6013–6021.
doi: 10.1093/jxb/eru340

Sattelmacher, B. (2001). The apoplast and its significance for plant mineral nutrition.
New Phytol. 149, 167–192. doi: 10.1046/j.1469-8137.2001.00034.x
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