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Spatial distribution and drivers
of arbuscular mycorrhizal
fungi on the Tibetan Plateau
Feng Zhang, Yaoming Li*, Baoming Ji and Shikui Dong*

School of Grassland Science, Beijing Forestry University, Beijing, China
Introduction: Arbuscular mycorrhizal fungi (AMF) are pivotal in plant resource

acquisition, mediating plant interactions, and influencing soil carbon dynamics.

However, their biogeographical distribution in Tibetan alpine grasslands

remains understudied.

Methods: In this research, we examined the distribution pattern of AMF

communities and their key determinants along a 2000-km transect across the

Tibetan plateau, encompassing 7 alpine meadows and 8 alpine steppes.

Results: Our findings indicate that AMF community diversity and composition

exhibit similarities between alpine meadows and alpine steppes, primarily

influenced by latitude and evapotranspiration. At the genus level, Glomus

predominated in both alpine meadow (36.49%±2.67%) and alpine steppe

(41.87%±2.36%) soils, followed by Paraglomus (27.14%±3.69%, 32.34%±3.28%).

Furthermore, a significant decay relationship of AMF community was observed

over geographical distance. Null model analyses revealed that random processes

predominantly (>50%) drove the assembly of AMF communities.

Discussion: In summary, our study elucidates the spatial distribution pattern of

AMF in Tibetan plateau grasslands and underscores the significant influence of

geographical and climatic factors on AMF community dynamics.
KEYWORDS

arbuscular mycorrhizal fungi, biodiversity, alpine grassland, community assembly
mechanism, Tibetan Plateau
1 Introduction

Microorganisms play a crucial role in ecosystem functions, with soil serving as an

abundant microbial reservoir for host plants (Sokol et al., 2022). While ecologists have

extensively studied the biotic and abiotic processes influencing above-ground organisms

(Mod et al., 2020; Liu et al., 2021; Xi et al., 2023), below-ground microbial communities

have received less attention (Ott et al., 2019; Chu et al., 2020).

Arbuscular mycorrhizal fungi (AMF) are widely distributed soil microorganisms capable

of forming beneficial associations with over 80% of vascular plants (Dietrich et al., 2020;
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Giovannini et al., 2020; Gujre et al., 2021). These fungi contribute to

plant nutrient acquisition and play pivotal roles in ecosystem

functioning and sustainability (Berdeni, 2016; Li et al., 2020).

Understanding the relationship between the diversity and

distribution of AMF taxa and environmental conditions across

spatial gradients is essential to elucidate their impact on ecosystem

functions (Meyer et al., 2018). Various factors influence the spatial

patterns of AMF communities in grassland soils, including climate

(Zhang et al., 2016; Wang et al., 2021), geochemical properties (You

et al., 2023), and soil type (Oehl et al., 2010). However, consistent

conclusions regarding AMF biogeographic patterns and their

controlling factors have yet to be reached (Xiang et al., 2014;

Davison et al., 2015). Some studies emphasize edaphic factors and

climate parameters in explaining the variance in AMF distribution

patterns (Ma et al., 2022; Ma et al., 2023a; Ma et al., 2023b)—for

instance, soil texture and fertility are identified as key drivers

determining the AMF community structure (Goldmann et al.,

2020; Aker et al., 2022; Zhang et al., 2022; Liu et al., 2023).

The Tibetan Plateau, with an average altitude exceeding 4,000 m,

is the primary distribution area for grasslands in China. Additionally,

as the world’s highest and most distinctive regional unit, boasting a

fragile ecological environment, it serves as an indicator and regulator

of global climate and environmental changes, representing a crucial

ecological security barrier in China (Yao et al., 2012; Feng et al.,

2021). Alpine grassland is the predominant ecological type on the

Tibetan Plateau. Due to the limitations of extreme environments such

as low temperatures, drought, and barrenness, AMF have evolved

many coping strategies to survive in the long-term evolutionary

process. However, differences across AMF communities originating

from different climatic zones have been detected, underscoring the

importance of climate factors (Islam et al., 2020; Paranavithana et al.,

2021). Geographic constraints, particularly geographical distance

(Sanguin et al., 2016; Valentin et al., 2023) and mean annual

precipitation (MAP) (Zhang et al., 2016; Wang et al., 2021), have

also been proposed as significant drivers of AMF distribution. Thus,

our current understanding of the geographic distributions of AMF

species and the underlying mechanisms remains limited, especially in

alpine ecosystems.

In this study, we elucidate the distribution pattern of AMF

communities and the corresponding drivers in surface soils (0–10

cm) collected from 90 grassland samples on the Tibetan Plateau

spanning over 2,000 km. These grasslands exhibit high

heterogeneity in plant community composition and abiotic

factors. Our objective is to investigate the following: (1) the

spatial distribution pattern of AMF species in Tibetan Plateau

grasslands at a regional scale and (2) the dominant environmental

drivers controlling AMF community composition.
2 Materials and methods

2.1 Study sites and soil sampling

Rhizosphere soils were collected from 15 alpine grasslands

(including 48 alpine steppes and 42 alpine meadows) along a 3,849-

m to 5,299-m elevational gradient (23.43°–28.76° N, 80.86°–98.51° E)
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on the Tibetan Plateau (Figure 1; Supplementary Table S1) in August,

2021. Peak vegetation growth and maximum microbial activity and

biomass were found in this season. The selected sites in this conducted

survey include both typical grassland types here, i.e., alpine meadow

and alpine steppe. In addition, the sites are characterized by

considerable variations in mean annual temperature (MAT) (from

-4.35°C to 6.55°C) and mean annual precipitation (MAP) (from 3,849

to 5 299 m; 1980–2015). These data were obtained from the Institute

of Geographic Sciences and Natural Resources Research, CAS (https://

www.resdc.cn/Default.aspx).

At each of the 15 grassland sites, six quadrats (1 m × 1 m) were

laid out in a Nestle-style pattern, totaling 90 quadrats (6 × 15)

(Figure 1). Subsequently, five soil cores (of 5-cm diameter and 10-

cm depth) were collected in each quadrat, thoroughly homogenized

to form a composite sample, and sieved to no more than 2 mm.

Then, the soils at field moisture were divided into two subsamples

(200 g each). The soils were kept on ice in the field and shipped

overnight on dry ice to Beijing Forestry University. One subsample

was air-dried for the determination of physicochemical soil

properties, while the other was kept at −80°C in the laboratory

for DNA extraction, PCR amplification, and sequencing.
2.2 Soil physicochemical determination
and plant data

Soil physiochemical properties were measured as previously

described (Lu, 2000). The soil moisture was measured by putting 5 g

of soil into an oven at 105°C until a constant weight was reached. Soil

pH and electro-conductibility (EC) were measured in a soil suspension

with a soil/water ratio of 1:2.5 (weight/volume) using a combo pH and

EC (HI, 98130, Hanna Instrument). The soil C and N contents were

measured by using LECO TruSpec Carbon and Nitrogen Analyzer

(LECO Corporation, St. Joseph, MI). Soil NH4
+ and NO3

− contents

were extracted from the soils with 1 M KCl and measured by using

Lachat QuikChem, 8500 series 2 instrument (Lachat, Loveland, CO,

USA). The Normalized Difference Vegetation Index (NDVI) at each

site around the sampling time was collected fromModerate Resolution

Imaging Spectroradiometer (MODIS).
FIGURE 1

Site location and grassland type of the 15 sampling sites for
arbuscular mycorrhizal fungi survey in the Tibetan Plateau.
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2.3 DNA extraction, PCR, and
amplicon sequencing

Soil DNA was extracted from 0.5 g of soil using a FastDNA spin

kit for soil (Tiangen, China) following the manufacturer’s

instructions. The AMF-specific primer pair AMV4.5NF (5′-
AAGCTCGTAGTTGAATTTCG-3 ′ ) and AMDGR (5 ′-
CCCAACTATCCCTATTAATCAT-3′) was used to amplify 18S

rRNA gene, and PCR reaction conditions were adapted from a

previous report (Suzuki et al., 2020). The PCR products were pooled

at equal molality and sequenced on an Illumina Hiseq, 4000

platform (Meige Company, Shenzhen, China).
2.4 Sequence and bioinformatic analysis

The sequences were trimmed, quality-filtered, and de-

replicated, and amplicon sequence variant (ASV) tables were

generated using the DADA2 pipeline in QIIME II, according to

previous reports (Blaalid and Khomich, 2021). The reads were

truncated at 225 bp, corresponding to a quality score of >20. For

taxa comparisons, we used the QIIME2 q2-feature-classifier

plugin and the naïve Bayes classifier that was trained on the

MaarjAM using the Scikit-learn feature classifier (Opik et al.,

2010), revealing 89 virtual taxa (VT; approximately species-level

phylogroups). The samples were retained if they contained >100

reads, while global singleton VT were omitted, leaving 89 VT in 90

samples. The VT count tables were further sub-sampled (rarefied)

to even depths of 5,000 sequences before computing the alpha-

and beta-diversities (in QIIME2) and following the statistical

analyses using R. Paired-end sequence reads generated from this

study have been deposited in the sequence read archives of the

National Center for Biotechnological Information under

BioProject ID PRJNA1104783.
2.5 Data analyses

Data analysis was conducted by using the packages vegan

(Dixon, 2003), plspm (Dijkstra and Henseler, 2015), picante

(Kembel et al., 2010), and icamp (Ning et al., 2020) with the

statistical platform R version 4.3.0. Bacterial beta-diversity was

estimated as the average pairwise community dissimilarity within

each sample using Bray–Curtis distance matrices by permutation

multivariate dispersion (PERMDISP). Mantel tests were performed

to evaluate the influence of environmental and geographic variables

on AMF community composition (soil nutrient content, climate

elements, and plant elements) (Guillot and Rousset, 2013). We then

used the package plspm to better understand the causal relationship

of each environmental variable influence, with a structural equation

model (SEM) constructed. Non-metric multidimensional scaling

(NMDS) analysis was used to visualize the sample relationships

across different sites in overall community composition (Oksanen

et al., 2012). A total of 18 plant and soil variables were performed to

evaluate possible linkages between bacteria and these variables.
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In order to explore the community construction mechanism of

AMF, community Construction Analysis Framework based on

Stegen-QPEN (Quantifying assembly Processes based on Entire-

Community Null model analysis) was applied (Stegen et al., 2012,

2013). First, the degree of phylogenetic turnover (bMNTDobs) in

each paired community was quantified and compared with the null

distribution (bMNTDnull). The bNTI value represented the size of

the deviation between bMNTDobs and bMNTDnull. Significant

bNTI values (|bNTI| >2) were the result of choice, and bNTI <-2
and bNTI >2 was the choice of homogeneous and heterogeneous,

respectively. Not significant for bNTI values (|bNTI| <2), based on

the Bray–Curtis Raup–Crick (RC Bray) value representation BCobs

deviation between BCnull and size, usually RCbray <-0.95 is defined

as homogeneous diffusion, RCbray >0.95 represents the diffusion

limit, and |RCbray| <0.95 is on behalf of the drift. Detailed

descriptions could be found in previous studies (Stegen et al.,

2012; Dini-Andreote et al., 2015). The statistical significance of

those comparisons was determined using 999 permutations, and the

analyses were carried out using the icamp package for R.
3 Results

3.1 Soil and climate properties

Soil and climate properties were significantly different between

alpine meadow and steppe (Figure 2A). Alpine meadow showed

significantly higher values in soil nutrient content, MAT, MAP, and

NDVI, but lower pH values, compared with alpine steppe soils

(Supplementary Figure S1).
3.2 AMF community properties

The AMF virtual taxa (VT) composition and diversity were similar

between the two alpine grassland types. Furthermore, 89 AMF virtual

taxa (VT) representing 10 genera were detected across the two alpine

grassland types (Figure 2D). VT richness was not significantly different

between alpine meadow (16.9 ± 0.79) and steppe (17.4 ± 0.17%),

neither for Shannon diversity (Figure 2C). Similarly, beta diversity

(measured as the distance to group centroid, F = 0.4, p = 0.52)

(Figure 2C) and AMF VT composition were not significantly

different between the two grassland types (ADONIS, R2 = 0.01, p =

0.54) (Figure 2B). Glomus was most abundant in both alpine meadow

(36.49% ± 2.67%) and alpine steppe (41.87% ± 2.36%) soils, followed

by Paraglomus (27.14% ± 3.69% in alpine meadow and 32.34% ±

3.28% in alpine steppe) (Figure 2D). The AMF community similarity in

alpine meadow (r = -0.089, p = 0.01) and steppe (r = -0.086, p < 0.01)

significantly decreased over geographic distance (Figure 3).
3.3 Relationship between AMF community
composition and environmental variables

The major abiotic factors influencing AMF community

composition were identified using Mantel test. The structure of
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soil AMF community was significantly influenced by latitude (r =

0.13, p = 0.01) and ET (r = 0.13, p = 0.02), but not the other 20 soil

and climate variables (Table 1). These variables were further

retained by the forward selection process and used in canonical

correspondence analysis models, respectively. Soil properties

explained only 5.9% of the variation compared with 12% by

climate conditions of the AMF community.

Similarly, latitude showed the greatest effect size on AMF

species richness, followed by Mo, Fe, and NH4
+–N concentrations

(Figure 4) . Addit ional ly , lat i tude, Mo, and NH4
+–N

concentrations have a positive effect on AMF species richness,

while Fe concentration showed a negative effect. Furthermore, we

combined structural equation model (SEM) analysis to further

quantify the contributions of the measured factors to AMF

diversity. As suggested by the SEM analysis, geographical factors

(longitude and elevation) had strong influences on soil and

climate properties which strongly impact the AMF community

(Figure 5). All measured variables explained 20.31% of the

variation in AMF species richness (Figure 4). Soil NO3
–N had a

negative effect on AMF Shannon diversity, and the measured

variables explained 30.41% of the variation in AMF Shannon

diversity (Figure 4).
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3.4 Relative effects of ecological processes
on community assembly

We estimate the community assembly processes using Null

model and bNTI (b-nearest taxon index) analyses. Due to the

similar AMF community properties and distribution patterns in

alpine meadow and steppe soils, we merged all the samples to

conduct the analysis. Null model analysis showed that neutral

assembly, including dispersal limitation (88.64%) and drift

(4.84%), was dominant in the AMF community in the soil.

Dispersal limitation accounted for 88.64%.

The relationships between bNTI and major factors were used to

infer changes in the relative influences of deterministic and

stochastic assembly processes. We chose AMF richness to be the

predictor of bNTI. The degree of phylogenetic turnover in each

paired community was quantified (bMNTDobs) and compared

with the zero distribution (bMNTDnull). The bNTI value

represented the size of the deviation between bMNTDobs and

bMNTDnull. With the increase of AMF species richness, the

relative influence of random community construction process

decreased significantly. There was no significant correlation

between RC and the AMF species richness.
B

C D

A

FIGURE 2

Non-metric multidimensional scaling ordination plots of dissimilarities for environmental properties (A) and arbuscular mycorrhizal fungi (AMF) virtual
taxa (VT) composition (B) of alpine meadows and alpine steppes. Species (i.e., VT) richness, Shannon diversity, and beta diversity (measured and
distance to centroid) (C) and genus composition (D) of AMF community of alpine meadows and alpine steppes.
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4 Discussion

We investigated the distribution of AMF communities and their

key predictors across a 2,000-km transect on the Tibetan plateau,

including alpine meadow and alpine steppe. The non-significant

differences in AMF composition and diversity between the alpine

grasslands indicate less influences of vegetation type compared with

soil and climate factors. Although there is accumulating knowledge

about how AMF assemblages interact with plants, the nature and

direction of these interrelations are not entirely clear. Some results

found a significant relationship between AMF distribution patterns

and occurrence in plant host, suggesting a spatial co-variation of

vegetation and of AMF communities in landscapes (Oepik et al.,

2009). Two decades ago, Hart and Klironomos presented the driver

and passenger hypotheses to describe two general ways in which

AMF and plant communities might change over space (Hart and

Klironomos, 2001). According to the passenger hypothesis, the

AMF community distribution pattern is controlled by changes in

plant communities. However, Zobel and Oepik introduced the

habitat hypothesis: the dynamics of AMF are not related to plant

communities but the soil and climate conditions (Zobel and Oepik,

2014). Our results followed the habitat hypothesis. Latitude was the

most important factor in impacting AMF community composition

and species richness, through affecting soil and climate conditions.

Our result showed that Glomus and Paraglomus were the most

abundant arbuscular mycorrhizal fungi genus in the Tibetan

Plateau grassland soils, which were consistent with the results of
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previous studies (Malar et al., 2022; Velez-Martinez et al., 2023; Li

et al., 2024). These species may be more adaptable in adjusting the

patterns of sporulation to environmental stress conditions of the

alpine grasslands, as evidenced by its global distribution (INVAM

biogeographical database; https://www.invam.caf.wvu.edu).

Different AM fungal groups have different effects on plant

performance and nutrient cycling. Studies have documented the

effectiveness of Glomus spp. to improve the performance of the

target plant species. Additionally, Paraglomus has been associated

with soils rich in plant diversity and forested areas (Marinho et al.,

2018; Pena-Venegas et al., 2021).

In this study, we observed that across all abiotic (e.g.,

geographical and climatic) factors, ET strongly correlated with

AMF community composition, which was supported by a

previous study (Zhang et al., 2018; Jerbi et al., 2022). This

highlights the vital role of water availability in driving the

distribution of AMF microorganism in Tibetan soils. First, water

is widely recognized as a main limiting factor for soil microbes and

plays a key role in structuring soil microbial communities (Allsup

et al., 2022; Liang et al., 2022; Guo et al., 2024). Hence, it is

persuasive to assert that water availability may directly drive the

AMF distribution on the Tibetan Plateau. Second, water availability

is also a determinative factor for plant growth and community

composition (Lin et al., 2021; Joachin et al., 2023; Lin et al., 2023),

affecting the availability and quality of organic carbon and light, and

thus indirectly drives the distribution of soil AMF. Collectively,

water content might influence the distribution of Tibetan soil AMF
FIGURE 3

Distance–decay relationships of arbuscular mycorrhizal fungi communities (based on Bray–Curtis distances) in alpine meadow and steppe.
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in both direct and indirect manners, which is also supported by the

pathway analysis in previous studies (Wilson et al., 2016). While

AMF played a role in the absorption of phosphorus (P) and

nitrogen (N) in plants, there was no significant correlation

between P and N and AMF composition in this study. On one

hand, the study area was located on the Tibetan Plateau, where

altitude significantly influenced the composition of AMF

communities (Li et al., 2018). The high altitude of this study may

have contributed to the differences in the results. On the other hand,

in alpine regions, AMF not only assists plants in nutrient absorption

but also helps plants cope with environmental stress. As Chen et al.

(2013) have suggested, although plants reduced their dependence

on AMF for nutrient absorption under nutrient-sufficient

conditions, they still required AMF to help them resist

environmental stress. Therefore, the combined effects of these two

factors contribute to the insignificant impact of nitrogen and

phosphorus on the composition of AMF communities.

It is of great significance to reveal the assembly mechanism of

undergroundmicrobial community from the perspective of microbial

ecology (Nemergut et al., 2013), which had been explored extensively

(Zhou and Ning, 2017), yet it is widely acknowledged that both

deterministic and stochastic processes influence the biogeographic

patterns of microbial communities and distance–decay relationships.

(i.e., microbial community similarity decreases as geographical

distance increases) (Wang et al., 2017). Deterministic processes

involve nonrandom and niche-based mechanisms (Vellend, 2010),

including environmental filtering and interspecific interactions. In
Frontiers in Plant Science frontiersin.o06
,

contrast, stochastic processes mainly reflect random changes in the

relative abundance of species, involving random birth, death, and

dispersal events (Hubbell, 2001; Chase and Myers, 2011). Species

interactions, which could determine the functional attributes or niche

occupancy of microbial communities (Freilich et al., 2010; Becker

et al., 2012), play important roles in stimulating ecosystem processes

(Bardgett et al., 2014).
5 Conclusion

The alpine grassland ecosystem, serving as a pivotal research

focus in the context of global climate change, is also a crucial

ecological barrier in China. It holds a significant role in sustaining

the ecological balance, particularly in arid, alpine, and other

environmentally disadvantaged regions, thus possessing

exceptional ecological importance. Our study showed that the

AMF microorganisms on the Tibetan Plateau grassland soils were

dominated by Glomus and Paraglomus. The distribution patterns of

soil AMF diversity and community composition on the Tibetan

Plateau alpine grasslands are strongly affected by latitude and ET.

There was a significant attenuation relationship between

community composition and geographical distance. Moreover,

the random assembly was dominant (>50%) in AMF community

assembly. This was an important finding in the understanding of

alpine ecosystems, predicting their responses to climate change, and

informing effective conservation and management strategies.
TABLE 1 Mantel tests between environmental variables and the arbuscular mycorrhizal fungi community composition using Pearson and
Spearman correlation.

R P Method R p Method

Latitude 0.13 0.01 Pearson 0.10 0.032 Spearman

Elevation 0.07 0.138 Pearson 0.06 0.145 Spearman

NDVI 0.05 0.168 Pearson 0.04 0.18 Spearman

ET 0.13 0.016 Pearson 0.09 0.0127 Spearman

NPP 0.05 0.126 Pearson 0.07 0.061 Spearman

OM 0.06 0.134 Pearson 0.06 0.148 Spearman

TN 0.04 0.242 Pearson 0.06 0.154 Spearman

TP 0.09 0.073 Pearson 0.07 0.13 Spearman

SM -0.02 0.646 Pearson -0.02 0.634 Spearman

DOC 0.08 0.165 Pearson 0.04 0.253 Spearman

NH4
+–N -0.02 0.551 Pearson -0.04 0.713 Spearman

NO3
–N 0.01 0.423 Pearson 0.03 0.319 Spearman

pH 0.07 0.06 Pearson 0.06 0.07 Spearman

EC -0.01 0.467 Pearson 0.04 0.284 Spearman

Fe 0.01 0.34 Pearson 0.02 0.259 Spearman

Mo -0.02 0.613 Pearson -0.03 0.684 Spearman
NDVI, normalized difference vegetation index; ET, evapotranspiration; NPP, net primary production; OM, soil organic matter; TN, total nitrogen; TP, total phosphorus; SM, soil moisture; DOC
dissolved organic carbon; NH4

+–N, soil nitrate N contents; NO3
—N, soil ammonium N contents; EC, electroconductibility.
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Further studies are now needed to elucidate linkages between AMF

function and biogeography. However, in this study, the AMF

microorganisms were analyzed using DNA-based methods which

failed to identify the AMF’s activity.
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FIGURE 4

Percentage of the total variance in arbuscular mycorrhizal fungi
(AMF) a-diversity explained by environmental factors and the
correlations between them. DOC, dissolved organic carbon; TN,
total nitrogen; MAP, mean annual precipitation; Lat, latitude; SM, soil
moisture; EC, electroconductibility.
FIGURE 5

Structure equation model to quantify the effects of geographic
factors, climate elements, soil nutrition, and plant factors on soil
arbuscular mycorrhizal fungi community in Tibetan alpine
grasslands. The red and blue lines stand for positive and negative
correlations, respectively; the bold lines stand for significance at p =
0.05 level. ns indicates that there is no significant difference
between treatments.
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