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Wheat stripe rust (WSR), a fungal disease capable of inflicting severe crop loss,

threatens most of global wheat production. Breeding for genetic resistance is the

primary defense against stripe rust infection. Further development of rust-

resistant wheat varieties depends on the ability to accurately and rapidly

quantify rust resilience. In this study we demonstrate the ability of visible

through shortwave infrared reflectance spectroscopy to effectively provide

high-throughput classification of wheat stripe rust severity and identify

important spectral regions for classification accuracy. Random forest models

were developed using both leaf-level and canopy-level hyperspectral

reflectance observations collected across a breeding population that was

scored for WSR severity using 10 and 5 severity classes, respectively. The

models were able to accurately diagnose scored disease severity class across

these fine scoring scales between 45-52% of the time, which improved to 79-

96% accuracy when allowing scores to be off-by-one. The canopy-level model

demonstrated higher accuracy and distinct spectral characteristics relative to the

leaf-level models, pointing to the use of this technology for field-scale

monitoring. Leaf-level model performance was strong despite clear variation in

scoring conducted between wheat growth stages. Two approaches to reduce

predictor and model complexity, principal component dimensionality reduction

and backward feature elimination, were applied here. Both approaches

demonstrated that model classification skill could remain high while simplifying

high-dimensional hyperspectral reflectance predictors, with parsimonious

models having approximately 10 unique components or wavebands. Through

the use of a high-resolution infection severity scoring methodology this study

provides one of the most rigorous tests of the use of hyperspectral reflectance

observations for WSR classification. We demonstrate that machine learning in

combination with a few carefully-selected wavebands can be leveraged for

precision remote monitoring and management of WSR to limit crop damage

and to aid in the selection of resilient germplasm in breeding programs.
KEYWORDS
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1 Introduction

Stripe rust, primarily affecting cereals such as wheat, rye, barley,

and various grass species, is one of the most severe and widespread

plant diseases globally (Chen et al., 2002; Wellings, 2011; Figueroa

et al., 2018).Wheat stripe rust (WSR) is caused by Puccinia striiformis

f. sp. tritici (Pst), an airborne fungal pathogen capable of transmitting

over extensive distances and resulting in total crop loss in severe cases

(Waqar et al., 2018). Characteristically stripe rust manifests through

the formation of yellow to orange stripes on the leaves, leaf sheaths,

glumes, and awns of susceptible plants (Chen et al., 2014). Like many

rust fungi, Pst is an obligate biotrophic parasite that absorbs nutrients

and water from living tissue (McIntosh et al., 1995; Lin et al., 2018;

Chen, 2020). Stripe rust can cause up to 100% yield loss in susceptible

cultivars, especially when the disease starts early and continues to

develop during the growing season (Chen, 2005). An estimated 88%

of global wheat production is susceptible to Pst, threatening the wheat

industry as a whole (Schirrmann et al., 2021). In 2021, the United

States Department of Agriculture (USDA) reported a 5.9 million

bushel loss of wheat due to wheat stripe rust, highlighting the

economic and agricultural impact of this disease (Kolmer and

Fajolu, 2021). The appearance of new highly aggressive Pst races

with broader virulence profiles and tolerance to high temperature

(Milus et al., 2009; Hovmøller et al., 2015) have prompted the

expansion of Pst epidemics to warmer areas (Hovmøller et al.,

2011). The long-range dispersal and rapid evolution of these new

races (Hovmøller et al., 2008; Milus et al., 2009; Ali et al., 2014) have

brought about a rapid erosion of effective resistance genes,

dramatically reducing the number of effective sources of resistance

available for breeders to protect new varieties (Lowe et al., 2015).

Integrated management strategies that combine genetic resistance

and crop management can help mitigate the effects of the disease

(Beres et al., 2020). Early detection is crucial for effective Pst

management, to prevent spore production and dispersal, but also

reduce fungicide usage overall (Moshou et al., 2004; Carmona et al.,

2020; Prahl et al., 2022). Modern fungicides represent a convenient

alternative to control wheat rusts, though their application adds a

significant cost to production (Chen, 2005; Chen et al., 2014) andmay

lead to health and environmental risks when not used properly (Cobo

et al., 2018). Breeding resistant varieties to replace those susceptible to

new Pst races is the most effective, economic, and environmentally

friendly way to control current stripe rust epidemics (Hovmøller et al.,

2010; Liu et al., 2017; Cobo et al., 2019; Zhou et al., 2021) and prevent

their further expansion (Cao et al., 2012). Developing genetic

resistance has been at the forefront of efforts to reduce the threat of

stripe rust globally (Singh et al., 2005; Chen, 2020). However, this

strategy requires permanent efforts to identify and deploy new sources

of resistance against the rapidly evolving Pst populations (Cobo et al.,

2018; Zhou et al., 2021). The identification of genes associated with

stripe rust resistance, and the type and strength of resistance, requires

field evaluations of segregating populations that have been inoculated

to promote strong and even infection (Cobo et al., 2018; Qiao et al.,

2024). Remote sensing offers tremendous potential to provide

accurate, non-invasive and repeatable assessments of plant disease

status and resistance (Nilsson, 1995; Mahlein, 2016), particularly as
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advances in imaging technologies and machine learning converge

(Arsenovic et al., 2019; Saleem et al., 2019; Sishodia et al., 2020; Weiss

et al., 2020; Schirrmann et al., 2021).

The timely and reliable discovery and characterization of new

sources of resistance to highly virulent Pst races and the continued

advancement of genetic resistance will depend on new capabilities

to detect and quantify stripe rust through high-throughput

techniques (Schirrmann et al., 2021), ideally providing objective

and repeatable assessments of the response of plants to the

pathogen to allow for more precise selection of resistant

genotypes. Feature detection in imagery has proven to be a

powerful technique for plant disease detection in general (Saleem

et al., 2019), and WSR detection specifically (Azadbakht et al., 2019;

Schirrmann et al., 2021), but requires high-resolution imagery and

sufficient lighting conditions to produce reliable and reproducible

results. Visible through shortwave infrared (VSWIR) spectroscopy,

often referred to as hyperspectral sensing or imaging spectroscopy,

provides a rich source of information on a variety of plant

biophysical traits, e.g. water, pigment and nutrient contents

(Ustin et al., 2004; Goetz, 2009; Kokaly et al., 2009; Ustin et al.,

2009; Krishna et al., 2014; Asner et al., 2015). Hyperspectral VSWIR

sensing offers significant potential to advance plant disease

detection and rating through detection of changes to plant

biophysical traits impacted by disease, rather than image analysis

(Mahlein et al., 2018). Terentev et al. (2022) recognize the

capabilities of hyperspectral sensing for early plant disease

detection before symptoms are visible to human observers or

typical RGB cameras. The latent period in WSR, the time from

first infection to the appearance of symptoms, can be 10-14 days

under ideal conditions (Murray, 2005). Early detection of WSR

would allow commercial producers to take advantage of early acting

treatments, reducing overall costs and preventing further disease

spread (Carmona et al., 2020). Automation of disease monitoring

methods promises to expand the capabilities of wheat producers to

protect their fields but has met with several challenges on the

quantification of disease severity and risk (Ashourloo et al., 2016;

Shafi et al., 2022, 2023).

Prior work on wheat disease monitoring has primarily focused

on disease detection and severity assessment through

measurements of the diseased percentage of leaf coverage (Wang

et al., 2007; Zhang et al., 2014; Ashourloo et al., 2014a, b; Yao et al.,

2019; Maqsood et al., 2021; Jiang et al., 2023; Zhao et al., 2023). In

this study, we use a modified 10-class severity scale (Peterson et al.,

1948) which is designed to better capture early symptoms of disease

infection providing a rigorous basis for breeders to evaluate WSR

resistance in new accessions. This large number of finely resolved

classes provides a unique challenge for our assessment of the ability

of hyperspectral reflectance and machine learning to classify

WSR severity.

Here we assess the ability of the information contained in

hyperspectral VSWIR sensing to effectively classify WSR disease

severity at both the leaf and canopy in two susceptible varieties with

different stages of infection. We used random forests as the machine

learning framework, along with dimensionality reduction approaches

to produce efficientmodels that demonstrate significant skill in disease
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severity identification. Feature importance is used to identify the

specific spectral regions that are most important at both leaf and

canopy scales. This work provides a path to effective utilization of

hyperspectral VSWIR reflectance for the automated scoring of disease

severity in breeding programs and will likewise facilitate timely

precision treatment applications in production contexts to maximize

the efficiency of anti-fungal treatments at field-scale.
2 Materials and methods

2.1 Experimental design

Figure 1 provides a schematic of the analytical process used in

this experiment. Leaf samples and reflectance spectra were collected

from two susceptible cultivars with a range of stages of Pst infection.

Leaf and canopy-level hyperspectral reflectance samples were

collected across the range of rust infection spanning a 10-class and

5-class severity classification scale, respectively. Random forests was

used to examine the ability of reflectance across the 450-2400nm

spectral range to classify stripe rust severity across these fine scales

typical of breeding population evaluations. Model performance and

feature importance were quantified. The sub-sections below describe

each component of this process in greater detail.
2.2 Study site and plant material

Field experiments were initiated in mid-November at the

University of California field station near Davis, California (38°

31” N, 121°46” W) in a Yolo loam soil (fine-silty, mixed,

superactive, nonacid, thermic Mollic Xerofluvents). Fertilization

consisted of 224 kg N ha−1 applied as (NH4)2SO4, half at pre-

planting and the rest at the beginning of jointing.

Highly susceptible common wheat lines ‘DS6301’ (MAYO-54//

(SEL.29-1-C)NORIN-10/BREVOR) and ‘Anza’ (LERMA-ROJO-

64//NORIN-10/BREVOR/3/3*ANDES-ENANO) were used as Pst

spreader border at the University of California-Davis wheat

breeding program and replicated throughout the breeding site.

Although natural and strong Pst infections occurred regularly in

this region (Maccaferri et al., 2015) and no fungicides were applied,

a stripe rust nursery located at an edge of the site was inoculated in

February (at jointing stage) with a mix of Pst spores collected at the

University of California–Davis experimental field station during the
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previous season to ensure a strong disease pressure (Cobo et al.,

2018; Dang et al., 2022). The variable distance (0-500m) of ‘DS6301’

and ‘Anza’ non-inoculated replications to the inoculated trials

produced a natural gradient of the progression of the Pst

infection across the field. Data collection was performed on two

dates, March 25th and April 22nd 2016. Both dates were preceded by

approximately two weeks of no rainfall, with a daily maximum

temperature of 74°F on March 25th and 75°F on April 22nd.

Monthly average daily maximum temperatures for March and

April were 68°F and 76°F respectively. Both data collection days

were characterized by clear skies providing ideal conditions for

canopy reflectance collection. A total of 597 leaf samples were

scored with associated hyperspectral observations collected on two

collection days, 278 samples on March 25th and 319 samples on

April 22nd, 2016. In addition, on March 25th, 313 canopy

hyperspectral observations were collected.
2.3 Wheat stripe rust scoring

Leaves for the leaf-level analysis were sampled from ‘DS6301’

(sown in 1-m rows) and ‘Anza’ (4.4 m2 plots), while canopy-level

hyperspectral reflectance samples were collected from ‘Anza’ plots

only to ensure the sensor field of view was completely composed of

the plot canopy. Along with hyperspectral reflectance sampling, we

used a modified severity index to estimate the progression of the Pst

infection as the proportion of the flag leaf affected by rust (Peterson

et al., 1948). We modified the commonly used severity index,

measured as the percentage of the leaf affected by the disease, and

used a 10-step scale to capture early symptoms of infection. Severity

class 0 indicates no visible infection symptoms, class 1 shows traces

of chlorotic dots, class 2 possess chlorotic spots with traces of

sporulation, class 3 shows small stripes with sporulation, and class 4

presents well defined stripes with some sporulation. Severity classes

5-9 all present broad stripes with active sporulation, gradually

increasing in percent leaf coverage from 50% (class 5) to 100%

(class 9) of disease coverage. Figure 2 provides example

photographic representations of individual leaves in each of the

10-step classification scale used here. Canopy observations were

scored using a simplified 5-step scale derived from the more

detailed 10-step scale used for individual leaf samples.

Consecutive classes are merged together, such that classes (0, 1);

(2, 3); (4, 5); (6, 7); and (8, 9) for leaf samples become classes 0, 1, 2,

3, and 4 for canopy observations respectively. Experiments were
FIGURE 1

Schematic of the experiment and analytical process.
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scored between the heading (Z50) and grain filling (Z80) stages

(Zadoks et al., 1974). The Pst races detected at the UCD field during

the 2016 season, together with their virulence profiles were

described previously (Cobo et al., 2018).
2.4 Hyperspectral data collection

Visible through shortwave infrared (VSWIR) reflectance

spectra were collected with a FieldSpec4 Standard Res field

spectroradiometer (Malvern Panalytical, Boulder, CO, USA). This

instrument collects radiometrically calibrated radiance observations

that are then normalized to reflectance using a standard white

reference. The instrument contains three detectors spanning the full

350-2500nm range of the instrument, providing 3nm resolution in

the visible through near infrared (VNIR; 350-1000nm) and 10nm

resolution at longer wavelengths. Each spectrum sampled is the

average of ten spectral samples collected by the system over an

approximate one second period. The spectra were then interpolated

to 1nm resolution (2151 integer wavelengths) across the full spectral

range. Wavelengths less than 450nm and greater than 2400nm were

removed due to measurement noise. Model development and

analysis was conducted using the reduced spectral range of 450-

2400nm (1951 wavebands).

For each leaf sampled on March 25th and April 22nd, leaf-level

reflectance was measured with the optical fiber attached to a plant

probe connected to a leaf clip assembly. This attachment provided a

light source, white reference, and black background against which leaf

reflectance was collected. OnMarch 25th and April 22nd, 278 and 319

leaf-level spectra were collected, respectively. A combined total of 61,

62, 57, 65, 64, 66, 63, 56, 55, and 48 samples were collected for classes

0 through 9 respectively, approximately evenly split between the two

days. Each leaf spectrum represents the average of three unique leaf

samples assessed to be at the same rust severity class from the same

plot. Themodels developed here include leaf-level models for samples

collected on each day, as well as a model developed using all leaf-level

data spanning the two collection days.

Immediately following the collection of reflectance spectra all

leaf samples were weighed to obtain fresh weight. The samples were
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then dried for several days in an oven at 40°C until the samples were

completely dry. The samples were then weighed again to provide

dry weight. Water content was then calculated as the percentage of

the fresh weight that was water: (fresh weight – dry weight)/fresh

weight * 100.

Canopy-scale reflectance spectra were collected on March 25th

using the bare fiber of the spectrometer pointed down onto a wheat

plot from a height of approximately one meter above the canopy top.

The bare fiber has a 25-degree field of view, producing an

approximate 40 cm diameter circular area viewed at the top of the

canopy. Measurements were made at the center of each plot, ensuring

the entire field of view of the fiber did not extend beyond the plot

canopy. A total of 313 canopy spectra were collected across plots

spanning the full range of canopy-level severity classes. 67, 55, 70, 54,

and 67 samples were collected for classes 1 through 5 respectively.

The 1350-1500nm and 1800-1950nm ranges were excluded from the

canopy spectra analysis due to noise from atmospheric moisture

content in the path of the observation.
2.5 Machine learning methodology

Random forests (RF) is a widely utilized machine learning

method that determines the classification of each sample from the

majority ‘vote’ from an ensemble of decision trees (Breiman, 2001;

Ham et al., 2005). This ensemble approach addresses the concern

that any single tree might not be optimal due to a random

partitioning of the data that results in a bias. This approach

likewise improves overall model reliability, particularly in the case

of highly collinear features as is often the case with hyperspectral

data (Ma et al., 2013; Maxwell et al., 2018). RF has been shown to

have superior accuracy and reliability in classifying multispectral

data in a suite of case studies relative to other state-of-the-art

machine learning techniques (Lawrence and Moran, 2015). In the

context of hyperspectral data, RF ensembles require relatively low

computational time and demonstrate robustness and high

performance relative to other machine learning techniques (Ham

et al., 2005; Joelsson et al., 2005), in part due to the ability of RF to

handle data characterized by a large number of features and

relatively small sample size (Ghamisi et al., 2017).

In addition to the extensive demonstrations of RF performance

across disparate problem domains, RF provides valuable analytical

tools such as out-of-bag error estimation and feature importance

estimation that provide insights on model reliability and the

significance of specific spectral features, aiding in the interpretation

of the classification results (Li et al., 2023).

Here we utilize random forests for the classification of wheat stripe

rust severity at both the leaf and canopy scales, utilizing dimensionality

reduction to reduce noise while improving model performance and

reliability. We contrast two feature reduction methods, principal

component analysis (PCA) and backward feature elimination, which

are further detailed in the following section.

For each of the four datasets (March 25th leaf dataset, April 22nd

leaf dataset, combined leaf dataset and canopy dataset) the optimal

number of PCA components was determined by minimization of the

Corrected Akaike Information Criterion (AICC) scores. The average
FIGURE 2

Photographic representations of individual leaves in each of the 10-
step classification scale used here for foliar WSR severity
assessment. These images were taken from leaves of the highly
susceptible ‘DS6301’ line.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1429879
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cross et al. 10.3389/fpls.2024.1429879
AICC for a given number of PCA components was calculated from

60 repetitions, using a 20% validation holdout partition of the dataset

for PCA models spanning from 1 to 150 components. In each

training repetition, random forest hyperparameters were tuned

following MATLAB’s hyperparameter optimization scheme for the

“fitcensemble” function on a 5-kfold internal cross-validation. We

narrowed this optimization to adjust only the number of learning

cycles and the learning rate of the model. The number of ensemble

trees was set to 100 and bagging was selected for the ensemble

aggregation method. Other hyperparameters were left at default

values and are the same for all models developed in this study. The

AICC scores for each dataset were fit to a smoothing spline to reduce

variance for identification of the optimal number of PCA components

that provides the best trade-off between model complexity and

performance (i.e. parsimonious model selection). Once the optimal

number of components to use for each dataset was determined, the

final models were retrained with a 20% validation holdout across 200

repetitions. Holdout data was selected at random for each repetition.

A similar framework was employed for models using backward

feature elimination. For each of the four datasets, 100 models were

initialized with individual 20% validation holdouts. Each model

begins with a feature vector spanning wavelengths from 450-

2400nm, 1951 bins for leaf-level models and 1651 bins for

canopy-level models. Models iterate through cycles of training

and pruning, removing the least significant 10% of features based

on feature importance assessment of the trained model to

streamline the dataset to the features that are most impactful for

prediction. As before, a 5-kfold cross-validated hyperparameter

optimization is performed during each training phase.

Performance metrics are calculated from the withheld validation

data, which is unique to each of the 100 repetitions.

Human labels for each sample were used to train and validate

models for rust severity classification. We use two evaluation

metrics: accuracy and “off-by-one” accuracy. Accuracy measures

the fraction of predicted labels that exactly match the human labels.

“Off-by-one” accuracy accounts for human variability by

considering a prediction correct if it matches the human label or

is within one severity class above or below the human label.
2.6 Dimensionality reduction

High-dimensional data such as that produced by spectroscopy

provides unique challenges for classification problems due to high

data volume, multicollinearity, and a tendency towards overfitting

due to the subtle variations in spectral observations (Thenkabail

et al., 2014; Ghamisi et al., 2017; Gewali et al., 2018; Burnett et al.,

2021; Wang et al., 2021). These challenges are often dealt with by

focusing on a limited set of wavelengths (Deng et al., 2023), typically

those taken from existing vegetation indices that have demonstrated

value in other scenarios (Ashourloo et al., 2014a, b). Problems such

as plant disease detection and severity quantification may require

unique combinations of wavelengths to optimize model

performance (Ashourloo et al., 2014a), ideally taking advantage of

relevant information across the full spectral domain (Ashourloo
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et al., 2016; Schirrmann et al., 2021). High-resolution spectra

inherently contain many correlated bands, each potentially

providing relevant information that may be redundant with other

portions of the spectrum. This redundancy can diminish the

performance of classification models by introducing unnecessary

complexity and noise (Dormann et al., 2013), while simultaneously

incurring the costs of Hughes phenomenon (Li et al., 2023).

Determining a reasonable trade-off for complexity and accuracy

is crucial for model simplification. In cases with limited sample

sizes, the Corrected Akaike Information Criterion (Equation 1)

provides a metric for quantifying model performance as a function

of complexity, where N is the number of samples and K is the

number of features (Sugiura, 1978; Akaike, 1998; Portet, 2020).

AICc = MLE − K +  
2K(K + 1)
N − K − 1

(1)

For classification problems with a large number of classes, the

maximum likelihood error (MLE) is equivalent to cross entropy,

which was calculated here using votes of individual learners

(regression trees) within each ensemble to estimate class

likelihoods for each data sample (De Boer et al., 2005).

2.6.1 Principal component
dimensionality reduction

Dimensionality reduction techniques such as Principal

Component Analysis (PCA) are used to preserve data

information while reducing dimensionality. PCA aims to produce

an orthogonal set of basis vectors that maximally describe the

variance in data (Jolliffe, 1990; Jolliffe and Cadima, 2016). This

application of PCA centers on maximizing the information content

in the input spectra while reducing redundancy, without any

influence of a predetermined output or desired classification

result. Using this approach a significant reduction of the

dimensionality of the input data is possible, greatly enhancing the

computational efficiency of ML model development (Herrig

Furlanetto et al., 2021). It is important to note however that PCA

might overlook fine-scale, yet critical details to the problem of

interest, as it is limited by the number of specified components and

to patterns in the input data, rather than the classification target

(Shafizadeh-Moghadam, 2021; Li et al., 2023).

A key characteristic of PCA is the potential to capture the

majority of the variation in a dataset in relatively few components.

This allows an approximate reconstruction of the complete spectral

observation from only a few components and can aid in associating

feature importance as well. Supplementary Figure S1 (see

Appendix) displays the relative PCA feature importance

determined for the datasets examined here. These scores were

transformed by multiplication of the absolute value of the PCA

coefficients by feature importance scores to yield importance score

spectra. The resulting spectra were summed to yield a single

importance spectrum. Through this process, the relative

importance of each waveband can be approximated, without

directly training on the complete spectral dataset. A similar

approach is used in Ginsburg et al. (2015) to rank features on

both their PCA embedding and class correlations.
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2.6.2 Backward feature elimination
Backward feature elimination is a supervised method that

iteratively trains a model and prunes the least relevant features for

the task (Speiser et al., 2019). Starting with the entire reflectance

spectrum, backward feature elimination methodically removes the

least important wavebands, streamlining the dataset to those

wavebands that are most important for prediction. The rationale

behind selecting only a few wavebands lies in the simplicity and

efficiency it offers. We evaluate the optimal selection of features

through an iterative backward feature elimination approach,

removing the least significant 10% of features based on feature

importance assessment in each iteration. We use the built-in feature

importance metrics of MATLAB’s Classification Ensembles, which is

derived from Gini Importance (Menze et al., 2009). In contrast to

PCA, this method removes wavebands from the dataset and focuses

on the wavebands that are most relevant for prediction. This difference

may make the results of feature elimination more meaningful for the

development of vegetative indices and low-cost multispectral

instruments for managing wheat stripe rust (Liu et al., 2016).
3 Results

3.1 Model complexity and
dimensionality reduction

The results of applying PCA dimensionality reduction to the

four datasets are presented in Figure 3. The red lines represent

smoothing splines fit to the average AICC scores found for models

using from 1 to 150 PCA components. The minimum AICC values
Frontiers in Plant Science 06
define the optimal number of PCA components used in the

development of the final models for each dataset, and were found

to be 20, 22, 18, and 16 for the March 25th leaf model, April 22nd leaf

model, combined leaf model and canopy model, respectively. The

corresponding optimal number of features resulting from feature

elimination are 9, 7, 11, and 9 respectively (see Table 1).
3.2 PCA classification accuracy

In evaluating the effectiveness of hyperspectral data for

classifying WSR severity, we developed four random forest

models. Three of these models focused on leaf-level observations

and utilized data collected on March 22nd and April 25th, as well as

the combined leaf dataset from both dates. The fourth model

analyzed canopy-level observations from March 22nd, which

exhibited distinct spectral characteristics compared to the leaf-

level data. The results presented here are the average performance

of the 200 unique models developed for each dataset, specifically on

the 20% of validation data held out during each repetition.

Confusion matrices describing the predictive accuracy of each

of the four models on the held-out validation data are presented in

Figure 4. The leaf-level models for March, April and the combined

leaf-level dataset exhibit overall accuracies of 45%, 52%, and 48%,

respectively. Similar to early results from Franke and Menz (2007)

we find that the presence of fungal spores become easier to detect

over time as the symptoms become more pronounced.

We note that for all models and all classes the predicted class is

correct more often than an estimation for any single erroneous class.

An exception is observed in the April leaf model’s class 2.
FIGURE 3

Corrected AIC curves against the number of PCA components used for dimensionality reduction. Individual points (black dots) are the average AICC

of 60 independent models for each number of PCA components evaluated. Fitting splines (red lines) were used to find the minimum AICC (blue
triangles), which determined the optimal number of components to use in the development of the final random forest models. Results are presented
for the 10-class severity scale used for leaves: (A) March 25 dataset, (B) April 22 dataset and (C) combined leaf dataset; and (D) the 5-class severity
scale used for canopy-scale observations.
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Observations labeled as class 2 are more frequently predicted as class

3 (35.2%) rather than class 2 (30.7%). We also note that the largest

percentage of class mis-predictions occur for classes off-by-one, i.e.

that differ from the correct class by one higher or lower severity class.

This is true in all instances except for a small number of cases. This

suggests that in addition to inherent error that may exist in the RF

models that human error in class identification in the field may play

an important role in these small errors in class identification.

Previous studies have resolved this by reducing the granularity of

their classification indices to improve class distinction (Shafi et al.,

2023), often using three to four categories that include descriptions
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such as “asymptomatic”, “pre-symptomatic”, “highly symptomatic”,

etc. Here we maintain the original class structure that represents the

state-of-the-art in breeding assessments but use an additional “off-by-

one”metric, which considers a classification as correct if it falls within

one class of the expert human label. Applying this metric, the

accuracies for the March, April, and combined leaf-level models

improve significantly to 79%, 86%, and 82%, respectively. This

approach provides a more realistic assessment of the models’

performance relative to the ground truth observations.

The canopy-level model achieves an overall 78% accuracy and a

96% accuracy using the off-by-one metric. One aspect of this

improved performance relative to the leaf-level models is the use

of five classes when applying expert human labels in the field for

canopy-scale observations, relative to the ten classes used for the

leaf-level observations. Similar to the leaf-level models, the canopy-

level model exhibited the largest number of misclassifications in

classes adjacent to the true class of an observation.
3.3 Severity class representation

The mean spectra for each class for each of the foliar datasets

and the canopy-scale spectra are presented in Figure 5. Generally,

an increase in WSR severity class results in increased reflectance

across the full 450–2400nm spectral range for the leaf samples.

Some variation in the mean reflectance for each severity class can be
FIGURE 4

Confusion matrices for RF models following PCA dimensionality reduction. Cell values are the percentage of classifications made for each class.
Classification results presented here are for the 20% of data held out for validation, averaged over the 200 model repetitions performed for each
dataset. Diagonal (blue) cells show the percentage of accurate wheat stripe rust severity classifications made for each class. Results are presented for
the 10-class severity scale used for leaves: (A) March 25 dataset, (B) April 22 dataset and (C) combined leaf dataset; and (D) the 5-class severity scale
used for canopy-scale observations.
TABLE 1 Optimal wavelengths retained in the parsimonious models
selected using backward feature elimination.

Dataset Optimal Number
of Wavelengths

Optimal Wavelengths [nm]

Canopy 9 454, 643, 668, 680, 690, 702, 758,
766, 782

Combined 11 457, 501, 561, 596, 625, 676, 697, 703,
719, 1425, 1471

March 9 452, 515, 613, 632, 653, 680, 694,
709, 726

April 7 686, 697, 701, 705, 772, 1410, 1470
Wavelengths are presented in numerical order, not in the order of importance for model
prediction. The optimal number of wavelengths is determined from minimum AICC

(see Figure 3).
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seen in the two leaf-level datasets collected approximately one

month apart. The April 22nd dataset shows larger increases in

reflectance in the visible range as severity increases, relative to the

data collected on March 25th. The highest severity classes in

the April 22nd data show higher reflectance in the red portion of

the spectrum, and a reduced red-edge transition, perhaps due to

increased severity of disease symptoms during this latter data

collection period and the onset of necrosis by this date. For

canopy-level data the mean spectra show more subtle variations

across the 5 severity classes. There is a similar increase in reflectance

as severity increases in the visible, but this trend reverses itself in the

near-infrared portion of the spectrum. Despite these more subtle

variations in reflectance the canopy-scale models showed strong

predictive performance across the five severity classes (Figure 4).

Figure 6 emphasizes the difference between the March 25th and

April 22nd human labelling practices, along with different stages of the

disease and characteristics of the lesions produced (orange fungal

tissue vs. necrotic tissue). The trend toward higher reflectance in the

April 22nd data is apparent with higher severity classes showing more

pronounced differences with the March data. Up to severity class 5,

there is a significant degree of overlap between the respective classes

of March and April, indicating a reasonable similarity between them.

From the first two PCA components, classes 7, 8, and 9 show both an

increased difference between the two dates as well as an increased

variance within class labelling relative to the lower classes. These

changes are seen in Figure 6B which shows the mean reflectance

difference between identical classes for the two leaf collection dates.

These differences highlight the variability in human labelling and

point to the need for objective and repeatable approaches to quantify

severity, particularly in programs targeting the development of

resistant germplasm. These differences in foliar scoring between the

two dates could be expected to have a confounding effect on the

performance of the model developed for the combined leaf dataset,
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relative to the performance of the models developed for each

collection date, but in general this was not found to be the

case (Figure 4).

The feature importance for each model projected onto the spectral

(450–2400nm) space is presented in Figure 7. This measure, derived

from the final ensemble of decision trees, shows the impact of each

wavelength on the model’s prediction by accumulating the impacts of

each PCA component of the final model at each wavelength. The leaf-

level models (Figures 7A–C) exhibit similar feature importance profiles,

with notable peaks at approximately 520, 700, 1400, and 1900nm

(vertical grey lines). The April 22nd leaf-level model, however, shows

less importance at 520nm and more at 1900nm relative to the March

25th model, perhaps due to changes in pigment and water contents as

the plants aged. The combined leaf-level model’s importance profile

combines elements of importance seen in the individual models, with

lower variability across the 800-2400nm range.

In general, the canopy-level model shares these regions of

spectral importance with the leaf-level models but includes new

regions of importance at approximately 920 and 1100nm that are

not evident in the leaf-level models. The importance peaks located

at 1350, 1800, and 1950nm occur at the edges of the regions

removed from the analysis due to influences of atmospheric water

content. Due to the removal of adjacent wavelengths, these

important wavelengths are those that contain information on

plant water content, which is likely the reason that the regions

around 1400 and 1900nm are important for the leaf-level models.

The symptoms of severity class vary as the plants age as seen in

Figures 5A, B, 7A, B. Despite this, the similarities between leaf-level

feature importance for the two individual leaf-level models suggest

that similar patterns in reflectance are consistent with WSR classes

as disease symptoms become more severe.

An evaluation of leaf-level model performance when applied to

datasets for which the model was not specifically trained are
FIGURE 5

Mean reflectance spectra for each severity class for the two foliar datasets that use 10 severity classes (A, B), the combined foliar dataset (C) and the
canopy-scale dataset using 5 severity classes (D). Severity class of 0 indicates no infection. The gray regions show the full range of reflectance
observed for each dataset.
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presented in Figure 8. Confusion matrices for the models developed

using March and April data and applied to observations from the

other month are presented in Figures 8A, C. The performance of the

model developed using the combined leaf datasets, and applied to
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March and April observations is presented in Figures 8B, D. These

applications allow us to assess the impacts of temporal variability on

model performance. When the March model is used to predict April

data, performance accuracy drops from 45% (79% off-by-one) to 25%
FIGURE 7

Relative feature importance (black lines) projected across the full spectral range for the final models using PCA dimensionality reduction for each of
the (A) March, (B) April, and (C) combined 10-class leaf datasets, and the (D) 5-class canopy dataset. The average spectral reflectance (red lines) is
presented for each dataset for reference. Vertical grey lines indicate regions of importance in the spectra.
FIGURE 6

Differences between mean severity class spectra observed on March 25th and April 22nd. (A) PCA projected distance between the means of classes
of March (circles) and April (triangles) reflectance spectra. Ovals are centered on class means and their size is proportional to the spread of points
within the class. (B) Difference between the mean reflectance spectrum of each class for the two leaf datasets (April – March).
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(60% off-by-one). A bias is apparent in the predictions, with very few

samples being accurately predicted in the severity classes 3, 4, and 5.

In contrast, when the April model is applied to March data it shows a

decrease in accuracy from 52% (86% off-by-one) to 22% (54% off-by-

one), with a noticeable bias towards overpredicting classes 3 and 8.

The combined model, which incorporates data from both periods in

model development, demonstrates improved performance. It

maintains relatively consistent accuracies of 47% (79% off-by-one)

on the March data and 48% (85% off-by-one) on the April data,

suggesting that a model trained on a broader range of data can better

account for variations due to changes in time of data collection and

variability in human labeling on the symptoms and manifestations of

wheat stripe rust.
3.4 Feature elimination and
model parsimony

In addition to the PCA-based dimensionality reduction

approach we also implemented a backward feature elimination

strategy to select individual wavelengths as model features, rather

than the composite values of PCA. This method progressively

eliminates the least effective wavebands, allowing us to identify

parsimonious models that utilize a reduced set of wavelengths

(reduced model complexity) and provide near-optimal model

performance. Figure 9 shows how model accuracy for the

four datasets changes as the number of features (wavebands)

is increased.

For the case of the canopy model adding relevant features

enhances model accuracy from approximately 75% correct off-by-
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one classifications to over 90% when using 10 features. Beyond this

point a performance plateau is reached where additional features do

not improve model performance. This behavior is consistent across

all models with only slight variations. In each model the most

significant wavebands are predominantly between 680-705 nm (see

Table 1), except for the March leaf-level model, which also includes

450nm and 522nm. These two wavelengths correspond to the

regions of peak chlorophyll b absorption (Sauer et al., 1966) and

peak reflectance in the green portion of the spectrum, respectively.

In comparison with PCA dimensionality reduction all models

exhibit a slight decrease in accuracy when using backward feature

elimination, while responses to the off-by-one metric are mixed.

Specifically, the combined leaf-level model shows a slight decrease

in accuracy from 48% (82% off-by-one) with PCA selection to 45%

(83% off-by-one) with backward selection. Similarly, the March and

April leaf-level models experience slight drops from 45% (79% off-

by-one) to 41% (79% off-by-one) and from 52% (86% off-by-one) to

46% (87% off-by-one), respectively. The ideal number of wavebands

was determined using the minimized AICC score resulting in 9, 7,

11, and 9 wavebands for the March leaf model, April leaf model,

combined leaf model and canopy model, respectively. This

contrasts with the number of components found with PCA

dimensionality reduction at 20, 22, 18, and 16 components

respectively, while maintaining a similar level of accuracy.

While these two approaches to reduce the dimensionality of the

predictor variables show comparable performance, they differ in

how and why they are applied. PCA dimensionality reduction is an

unsupervised method which seeks to explain the variance contained

in the predictor dataset without consideration of a specific modeling

goal. Feature elimination is designed to find the features best suited
FIGURE 8

Confusion matrices for leaf models (A) developed on March data and applied to April data, (B) developed on April data and applied to March data, (C)
developed on the combined dataset applied to April and (D) March data. Cell values are normalized against the number of observed samples in each
class. Results are averaged over 200 repetitions of 20% data holdout. Diagonal (blue) cells indicate the fraction of accurate classifications.
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to the specific modeling task to which it is applied. Speiser et al.

(2019) acknowledges that feature elimination methods are well-

suited for random forests but are more at risk of overfitting than

other feature selection methods. Applications of feature elimination

need to consider the specific feature importance metric and how it is

used to assess the utility of each feature. This process can be

impacted by the general challenges associated with high-

dimensional data, particularly sparsity and collinearity.

4 Discussion

4.1 Feature selection

The two contrasting methods of feature selection and

dimensionality reduction (DR) were utilized in this study to

provide insights into the most important wavebands for WSR

severity quantification, leveraging datasets with high resolution in

disease severity scoring and high spectral resolution spanning the

full VSWIR region. PCA DR resulted in the identification of regions

of importance around 520, 700, 1400, and 1900nm for leaf-level

reflectance. The canopy-scale proximal sensing approach also

identified 950 and 1100nm as important wavebands. Backwards

feature elimination identified narrow regions at 450, 510, 560, 590,

640, 670-700, 720, 760, and 1420nm. These bands include those in

the blue (450nm), green (510, 520, 560, and 590nm), and red (670-

700nm) as well as the red edge (690-720nm) spectral regions,

highlighting the importance of visible color changes associated

with fungal growth and possibly changes in pigment contents.

When using high spectral resolution data as we have done here

(1nm resolution) several neighboring wavelengths may be needed

to leverage their relative values, similar to narrow-band vegetation

indices (Gupta et al., 2003).
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Previous studies have identified a number of wavebands and

indices useful in assessing wheat stripe rust incidence and severity.

Broadly, wavelengths spanning the green (450–550nm) and red

(550–700nm) portions of the spectrum have previously been

identified for wheat leaf rust detection (Azadbakht et al., 2019).

Several two-band indices commonly used in vegetation remote

sensing (i.e. NDVI: [675nm, 800nm], NBNDVI: [680nm, 850nm]

and PRI: [531nm, 570nm]) have been shown to be effective for

wheat leaf rust assessment (Azadbakht et al., 2019) and detection

(Ashourloo et al., 2014b). In a search for optimal combinations of

wavebands Deng et al. (2023) identified several wavebands

spanning the green, red and red-edge regions of the spectrum as

particularly effective for severity assessment, confirming similar

findings of Ashourloo et al. (2014a). The findings of these studies

support the significance of our identified wavebands for wheat rust

assessment. Simultaneously, we identify a few spectral regions that

may yield improvements for wheat rust assessment: 640nm, 760nm,

1100nm, 1400nm, and 1950nm.

Previous research has demonstrated that increased reflectance

around 1400nm and 1950nm correlates with decreased water

content and increased rust severity in wheat (Moshou et al.,

2004). Figure 10 supports these findings for the detailed

classification used in this study, showing how leaf water content

and its influence on reflectance spectra change with severity class

for the March 22 dataset. Figure 10A shows that as wheat stripe rust

severity increases the water content in the wheat leaves decreases,

providing support for an area of relative importance in the

reflectance spectra in the region where sensitivity to water

content exists. We see that at 1400 and 1950nm a significant

increase in correlation is evident across all classes (black line). At

the most severe stages of infection (yellow line) correlation is

increased overall, particularly across the near-infrared region

(800-1100nm) and longer wavelengths.
4.2 Extension to multi-spectral
sensing technologies

Remote sensing applications in agriculture are often constrained

by trade-offs related to sensor cost, size and performance attributes

such as spectral coverage and resolution. Multispectral sensors have

gained popularity and are now widely deployed in agricultural

monitoring due to these considerations. These sensors typically

utilize on the order of ten waveband ranges, with some sensors

offering flexibility in the selection of the wavebands. Previous studies

have demonstrated positive results in the use of multispectral imaging

for WSR severity assessment (Su et al., 2018; Heidarian Dehkordi et al.,

2020). Our results demonstrate that roughly ten narrow wavebands

result in parsimonious models that while much simpler than models

utilizing the complete spectra available to us offer excellent

performance in WSR severity estimation. Here we further simplify

the information in our dataset to explore how common multi-spectral

instruments would perform for this problem. We use the five

waveband ranges of the MicaSense RedEdge-M (MicaSense, Seattle,

WA, USA) instrument which spans the visible through near infrared

regions with bandwidths ranging from 10 to 40nm: blue (475 ± 10nm),
FIGURE 9

Classification accuracy and feature importance from backward
feature elimination. Results are averaged over 100 repetitions using
an 80%/20% training-validation split. Mean off-by-one accuracy for
each of the four datasets is presented as retained features
(wavebands) increase from one to over one thousand. Triangular
points indicate the point of minimum AICC and define the number
of features retained for each of the final models, providing a
parsimonious trade-off between model complexity and accuracy.
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green (560 ± 10nm), red (668 ± 5nm), red edge (717 ± 5nm) and NIR

(840 ± 20nm).

To assess the potential of a multispectral instrument for

classification tasks across our fine-scale classification system we

convolved our hyperspectral reflectance data to the spectral

responses of this 5-band sensor, using the waveband ranges above.

We note that there are numerous factors (sensitivity, signal to noise

ratio, illumination, blur, and pixel uncertainty) which would

ordinarily introduce additional noise into a real-world application

of this sensor, so these findings should be considered an upper-bound

on classification performance.

Using spectra that have been adjusted to represent this much

reduced spectral domain we developed RF models using 60

repetitions with an 80%/20% training split. This “multi-spectral”

(MS) model produced an average classification accuracy of 58.76%

(89.92% off-by-one). In comparison, applying our backwards feature

selection methodology on our original 1-nm resolution spectra to

derive an optimal five-wavelength model resulted in average

classification accuracy of 61.18% (93.58% off-by-one) under the

same training conditions. This model used wavelengths at 453nm,

628nm, 689nm, 694nm, and 764nm, confirming the importance of

visible wavelengths for this problem, particularly in the red and red-

edge regions of the spectrum. Both models produced similar

distributions in predictions and misclassifications, suggesting that

no significant bias was introduced by the MS model.

In a study using a MS instrument to assess yellow rust severity

through unmanned airborne vehicles (UAVs), Su et al. (2018)

achieved an accuracy of 89.3% across three severity classes.

Spectral indices were derived from the five wavebands and used

as features. Due to the nature of how field measurements were

conducted, these results are not directly comparable to ours, but

generally provide confirmation that sensors providing information

in a carefully-chosen small set of wavebands can provide excellent
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performance and promise to dramatically advance WSR

monitoring and management practices.

When applied to our leaf-level data we see an off-by-one

accuracy of 74.30%, 87.14%, and 81.36% on the March, April,

and Combined leaf datasets for the MS model. When we use

backwards feature selection to develop an optimal 5-band model

for our leaf data we found that five wavebands can yield off-by-one

accuracies of 81.36%, 88.54%, and 84.08% for the March, April, and

Combined leaf datasets, respectively. We find that the optimal 5-

band model outperforms the MS model for the March dataset for

classes 0-4 by approximately 10%. This points to the need to

carefully select the specific waveband regions, and spectral

resolution, when developing sensors targeting this specific

classification problem, particularly when early detection is critical.

We found that adding a waveband centered between 640 and

650nm could increase overall off-by-one accuracy to 79.67%,

improving early-stage off-by-one accuracy from 64.13% to 79.50%

for severity classes 0-4.
5 Conclusion

This study focused on the application of hyperspectral reflectance

observations to classify wheat stripe rust severity for a 10-class and 5-

class scale for leaf-level and canopy-level spectra, respectively. We

developed and evaluated four random forest models to assess the

ability of machine learning to accurately classify WSR severity across

this finely resolved severity classification system. The three leaf-level

models (one for each collection date, and one for combined data

across both collection dates) exhibited overall accuracies between 45%

and 52%. The introduction of an “off-by-one”metric, which considers

a classification correct if it falls within one class of the expert human

label, provides a more meaningful comparison given the error-prone
FIGURE 10

(A) The mean (black triangles) and +/- one standard deviation (vertical lines) of leaf water content across severity classes observed for the March 22
dataset. (B) Correlation coefficients calculated between the reflectance observed in aggregated severity classes and leaf water content for the March
22nd dataset. The dashed black line shows the correlation over all classes. The gray region indicates the upper and lower bounds of the 95%
confidence interval. (C) Mean (black line) and standard deviation (gray region) of March 22nd reflectance profiles.
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nature of human classification. This approach realized accuracies

between 78% and 82%. This suggests that severity classes have

distinct spectral features that become more pronounced as the

disease symptoms become more severe. The canopy-level model,

with a 5-class system, achieved an overall accuracy of 78%,

increasing to 96% using an “off-by-one” assessment. This study

provides one of the most rigorous tests of the use of hyperspectral

reflectance observations for WSR classification and provides evidence

that machine learning and hyperspectral reflectance observation can

be leveraged for precision remote monitoring and management of

WSR to limit crop damage and to aid in the selection of resilient

germplasm in breeding programs.

Analysis of reflectance spectra for severity classes identified both

temporal and structural variation in human labelling, complicating

the classification problem. Leaf-level data revealed that human

labeling can vary over time as observations made at different

growth stages may be biased by the progression in disease severity

across an experiment, or phenological changes of the plants. Leaf-

level and canopy-level (proximal) reflectance classification

experiments demonstrated consistency in the important regions of

the reflectance spectrum required for accurate class identification.

Overall, feature importance analysis across models indicated

that wavelengths in the green, red, and red-edge portions of the

spectrum were important for WSR classification, as well as regions

associated with variations in plant water content. Commonly

deployed multispectral instruments may be adequate for late-

stage wheat rust classification. We find that the addition of a

single narrowband observation around 640nm has the potential

to significantly improve early-stage wheat rust detection in standard

(3-5 band) multi-spectral instruments.

We contrasted two approaches to reduce the dimensionality of

high-dimensional hyperspectral reflectance data. Methods based on

both PCA projection and waveband feature elimination demonstrated

that hyperspectral observations can be greatly simplified while

maintaining a high degree of classification accuracy. Parsimonious

models were identified that required approximately ten wavebands

for both leaf and canopy-level data, providing an optimal trade-off

between model complexity and performance. This points to the

potential to develop multi-spectral sensors specifically for fine-scale

classification of WSR for precision treatment and enhancing breeding

program evaluations. This study demonstrates the potential of

hyperspectral measurements to accurately distinguish and classify

WSR severity during the critical early stages of leaf infection for

targeted and efficient stripe rust management.
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