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Taphrina deformans is a plant-pathogenic fungus and a responsible agent for

causing peach leaf curl disease. Taphrina deformans affects peach fruit

production and contributes to global economic losses. Commercial fungicides

may provide temporary relief; however, their overuse resulted in adverse

environmental consequences as well as led to drug-resistant strains of

T. deformans. Therefore, the discovery of novel drug targets for the future

synthesis of antifungal drugs against Taphrina deformans is needed. Here we

studied Taphrina deformans by computational proteomics approaches. The

whole genome and proteome of T. deformans were subjected to subtractive

proteomics, high-throughput virtual screening, and molecular dynamic

simulations. We employed subtractive proteomics analysis of 4,659 proteins

extracted from UniProtKB database; after filtering out homologous and non-

essential proteins, we identified 189 essential ones, including nine that

participated in the crucial metabolic pathways of the pathogen. These proteins

were categorized as nuclear (n = 116), cytoplasmic (n = 37), and membrane (n =

36). Of those essential proteins, glutamate–cysteine ligase (GCL) emerged as one

promising target due to its essential function for glutathione biosynthesis process

which facilitates T. deformans survival and pathogenicity. To validate GCL as an

antifungal target, virtual screening and molecular docking studies with various

commercial fungicides were carried out to better characterize GCL as a drug

target. The data showed strong binding affinities for polyoxin D, fluoxastrobin,

trifloxystrobin, and azoxystrobin within the active site of GCL. Polyoxin D showed

a strong affinity when the measured docking score was at -7.34 kcal/mol, while

molecular dynamics simulations confirmed stable interactions (three hydrogen

bonds, two hydrophobic bonds, and one salt bridge interaction), supporting our
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findings that GCL represents an excellent target for antifungal drug development

efforts. The results showed that GCL, as an innovative target for future fungicide

designs to combat T. deformans infections, provides an avenue toward creating

more effective peach leaf curl disease treatments while mitigating environmental

harm caused by its current use.
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1 Introduction

Taphrina deformans (T. deformans), a prevalent plant pathogen,

infects peach trees, causing the very well-known peach leaf curl

disease (PLCD). Peach leaf curl is a globally important disease in

which nectarines, peaches, and sometimes other stone fruits’ leaves

are affected, such as those of apricots and almonds (Pecknold, 2015b).

The fungus T. deformans is phylogenetically classified in subphylum

Taphrinomycotina, a basal lineage of the phylum Ascomycota that

includes fission yeast and members of the genus Pneumocystis. The

genus T. deformans is one of the most extensively studied species

because it is the most widespread plant pathogen, infecting the

cultivars of nectarine and peach (Cissé et al., 2013). PLCD causes

$2.5 to $3 million losses annually in the United States (Chester, 1947).

In northern Italy, it can affect 60% to 90% of shoots, representing an

important threat to the host tree (Kern and Naef-Roth, 1975). The

severity of the disease as well as the resulting economic impact on

yield can vary based on the microclimate as well as the different

resistance responses of selected cultivars (Rossi et al., 2007).

The fungus induces a fast and spontaneous proliferation of the

developing cells at the leaf margins, resulting in a curled, puckered,

and blurred shape. The color of the leaves also varies, from variants

of yellow and green to brown, purple, and pink. On the surface of

the leaves, spores are formed as leaves mature, causing a dusty look

(Kurtzman et al., 2011). T. deformans enter the leaves’ cells through

the stomata (Svetaz et al., 2017). The mycelial growth of fungus in

the stomata and interstitial spaces of leaves effects the metabolic

activity of the plant (Kolattukudy, 1985). In comparison, the

interface between the leaf cell wall and fungus is changed to

facilitate fungal nutrition (Bassi et al., 1984). During the infection,

changes in the cell host anatomy were also identified (Giordani

et al., 2013). When cold and moist conditions are persistent during

bud growth, the probability of extreme leaf curl outbreaks is high

(Giosuè et al., 2000).

Pathogenicity inTaphrina deformans, the causal agent of peach leaf

curl, is a multifaceted process that involves a complex interplay of genes

and metabolic pathways. These virulence genes belong to cutinase

activity, fat metabolism, and other oxidative stresses, favoring the

pathogenesis of T. deformans in peach plants. The genes enable the

fungus to adapt and thrive within its host environment. Research
02
indicates that the synthesis of chitin, a critical component of the fungal

cell wall, is essential to maintain cell integrity and facilitate successful

infection. Genes that regulate chitin production and modification are

therefore pivotal in the pathogenicity of this fungus (Tsai et al., 2014).

In terms of fungal management, several fungicides are employed to

control T. deformans. Remarkably, certified bio-fungicides like

polyoxin D target chitin synthase directly compromise the fungus’

ability to maintain its cell wall structure. Additionally, strobilurin

fungicides such as fluoxastrobin, trifloxystrobin, and azoxystrobin

inhibit the mitochondrial cytochrome bc1 complex, disrupting ATP

production and ultimately leading to fungal cell death. These

mechanisms highlight the importance of targeting both structural

components, like the fungal cell wall, and energy production

pathways in the development of effective fungicides against

T. deformans (Tsai et al., 2014).

The genome of T. deformans has been sequenced, revealing

approximately 5,735 protein-coding genes, many of which are

implicated in plant cell wall degradation, secondary metabolism,

and the biosynthesis of plant hormones, all of which contribute to

its virulence and pathogenicity. In addition, the presence of drug

detoxification enzymes in its genome suggests that T. deformans can

develop resistance to fungicides, complicating control efforts (Cissé

et al., 2013). Knowing the genetic and biochemical pathways

involved in the pathogenicity of T. deformans is crucial for the

development of targeted management strategies and novel

fungicides that can effectively mitigate the impact of this

significant agricultural pathogen (Maniatis et al., 2024).

Understanding the molecular basis of pathogens that threaten

agriculture, like Taphrina deformans, and their resistance

mechanisms against fungicides is crucial in combatting fungal

pathogens. Widely utilized strategies include a single spray in

early spring that can effectively combat the disease due to the

monocyclic nature of this pathogen (Fitzpatrick, 1934). Spraying

fungicides, such as Chlorothalonil, Bordeaux, and copper-based

products, is able to prevent PLCD by killing fungal spores, thus

preventing the spread of infection (Gogorcena Aoiz et al., 2020; La

Torre et al., 2018). The fungicides are sprayed twice a year in spring

and autumn; however, fall season is mostly deemed suitable for

effective control (Thomidis et al., 2018). The excessive use of

fungicides has adverse effects on the environment. Furthermore,
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fungal pathogens developed resistance against commercial

pesticides (Zhang et al., 2015). Currently, the scientific

community is trying to discover and develop new drug and drug

targets in fungal pathogens. In this study, we have identified novel

drug targets in T. deformans and characterized them with

commercial fungicide using in silico methodology.

Furthermore, due to the extensive and long-term use of

fungicides, the pathogens develop resistance against registered

ones (Zhang et al., 2015). Therefore, the use of new fungicides

against novel targets, which can emerge as effective alternatives to

the fungicides currently used, is important. Our research is focused

on glutamate–cysteine ligase (GCL), an essential enzyme involved

in glutathione biosynthesis that plays an essential role in managing

oxidative stress—an integral factor of pathogen viability directly

influencing its ability to infect and damage the host plant.

Traditional fungicides like polyoxin D and azoxystrobin target

this essential protein, disrupting essential metabolic pathways. In

this study, a more detailed examination of this interaction is being

undertaken in order to validate GCL as a potential new drug target,

potentially leading to more effective fungicidal strategies.

To identify the drug target, the proteome of T. deformans was

subjected to subtractive proteome analysis; the non-homologous and

essential proteins (uncharacterized) were identified against the Prunus

persica proteome. Moreover, virtual screening and molecular dynamics

(MD) simulations, which are efficient computational biology strategies,

were used to identify inhibitory compounds and reaffirm their stability.

We identified glutamate–cysteine ligase (GCL) as a target for antifungal

drugs by virtual screening, molecular docking simulations, and

protein–protein and protein–drug interactions. To our knowledge,

this is the first report that shows GCL as a target for future drug

development against T. deformans. The docking results show strong

binding and stability of the GCL active site with polyoxin D,

fluoxastrobin, trifloxystrobin, azoxystrobin, vincozolin, and

propiconazole. These results validate that GCL could be a novel

target to control the growth of T. deformans and PLCD.
2 Materials and methods

2.1 Retrieval and identification of
uncharacterized proteins

The whole protein contents of T. deformans were downloaded

from the UniprotKB database (https://www.uniprot.org/) that

comprised of 4,659 protein sequences (Consortium, 2019). The

uncharacterized proteins of T. deformans were identified for further

analysis. The graphical workflow of methodology is illustrated in

Figure 1. A list of the tools used in the study is provided in

Supplementary Table S1.
2.2 Identification of paralogous sequences

The selected uncharacterized proteins were subjected to the

Cluster Database at High Identity with Tolerance CD-HIT server, a

cluster database at high identity with tolerance (http://weizhong-
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lab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi) for the

identification and subsequent removal of paralogous proteins.

Paralogous proteins are duplicates that arise during evolution

(Li and Godzik, 2006). Redundant proteins that are duplicated or

repeated proteins that are irrelevant were considered as targets for a

potential fungicide. Generally referred to as paralogous, these

proteins have no specific target-based details, so it was convenient

to exclude them prior to analysis (Ahmad et al., 2022). For the CD-

HIT analysis, a threshold value of 80% sequence identity was

deemed to be paralogous in nature (Li and Godzik et al., 2006).
2.3 Non−homology analysis against
Prunus persica

The non-paralogous proteins were searched for non-homology

against the whole proteome of Prunus persica. NCBI-BLASTp

search (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins)

against the proteome of Prunus persica was carried out with an e-

value 0.0001 and bit score threshold >100 for the identification of

proteins that are non-homologous to the host (Gul et al., 2020). It is

an essential step in subtractive proteomics analysis that ensures that

the fungicide will not damage the host since the target protein has

no similarity to the host proteins.
2.4 Identification of essential proteins

The non-homologs were subjected to the identification of

essential proteins that play a key role in the survival of the

pathogen by searching the Database of Essential genes (http://

www.essentialgene.org/). The e-value was set to 0.0001 and bit

score >100 to classify the essential proteins (Zhang et al., 2004).
2.5 Sub−cellular localization

The non-homologous and essential uncharacterized proteins

are divided into two categories depending on protein localization:

cytoplasmic proteins that can better serve as candidates for

fungicide target and non-cytoplasmic proteins. Localization of the

essential proteins was performed by using CELLO2GO server

(http://cello.life.nctu.edu.tw/cello2go/) (Yu et al., 2006).

CELLO2GO employs the BLAST algorithm to find homologous

sequences, which are GO annotations in a search database used in

the work modified from UniProtKB/SwissProt. The cytoplasmic

proteins were set forth for further analysis. The confidence score for

the target proteins was set from 0 to 1, where 0 indicates low

clustering and 1 corresponds to the likelihood of presence in the

desired cluster.
2.6 Pathway analysis

Pathway analysis was carried out for selected cytoplasmic

proteins using KEGG database. To identify the metabolic pathway
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of non-homologous proteins in T. deformans, Kyoto Encyclopedia

of Genes and Genomes (KEGG) or Genome Database (https://

www.genome.jp/kegg/kaas/) was used (Moriya et al., 2007).

Similarly, a metabolic pathway study of the host was also

conducted. A manual comparison was carried out using the

KAAS server for qualitative insights into the similarity of

pathogen–host metabolic pathways. Finally, proteins have been

distinguished according to their corresponding role in the

metabolic pathways present only in the pathogen and absent in

the host; the workflow of this study is shown in Figure 2.
2.7 Homology modeling

The 3D model is not accessible within the Protein Data Bank

(PDB) for the hypothetical protein due to the lack of clarity in the

descriptions of conserved areas. Thus, homology modeling was used

to construct this 3D model. Phyre2 server was utilized for homology

modeling of the new target protein for fungicides (Kelley et al., 2015).

The concept of homology modeling is to create 3D models of protein

structures through referring to the templates of relatives of the same

family. The Phyre2 server is based on the creation of 3D models of

proteins that evaluate proteins based on templatemodels of particular
Frontiers in Plant Science 04
protein families, the structures of which nuclear magnetic resonance

(NMR) spectroscopy or X-ray is able to solve in a laboratory

environment. Phyre2 employed sophisticated remote homology

detection techniques to create 3D models.
FIGURE 2

Subtractive proteomics filtering for novel fungicide
target prioritization.
FIGURE 1

Detailed methodological workflow of the study. UMP, unique metabolic pathways; RMSD, root mean square deviation; RMSF, root mean square
fluctuation; ROG, radius of gyration.
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2.7.1 Tertiary structure prediction and validation
of glutamate–cysteine ligase

The primary amino acid sequence of glutamate–cysteine ligase

(GCL), consisting of 647 amino acids, was subjected to tertiary

structure prediction using the Phyre2 web-based modeling server.

The sequence was input into Phyre2, and structural modeling was

carried out by utilizing multiple templates (Saccharomyces

cerevisiae, Salmonella Typhimurium, and Escherichia coli). The

modeled structure was generated with 90% confidence level,

indicating reliable structural accuracy. The COFACTOR server

was used to predict the active site of the modeled protein

according to Kelley et al. (2015).
2.8 Validation of protein model

The Phyre2-constructed model was subjected to 3D protein

model validation. ERRAT and Ramachandran plot evaluation are

widely used for structural assessment. Evaluation of the protein

models was carried out to determine if the model is correctly

configured (Khan et al., 2019, 2022). In general, structure

validations evaluate the acceptable and not acceptable

conformations of the models. The validation of most structures

seeks to track the R-value and resolution as a greater resolution

indicates a higher precision of molecular structures.

ProSA (Protein Structure Analysis) is a widely used method

comprising a diverse user base and is mainly used to analyze and

validate the predicted protein mode (Wiederstein and Sippl, 2007).

ProSA specifies the analysis of X-ray and NMR spectroscopy. The

errors in protein structure were recognized by the server to identify

the regions and promote the method of interpretation. Procheck

carries out protein model validation through the Ramachandran

plot (Laskowski et al., 1993). The analysis was carried out to classify

the amino acids of the protein models within the preferred and

disallowed regions. The high-quality model should show a

cumulative score of more than 90% for amino acids in the

centralized and approved regions. The ERRAT plot was utilized

to verify the protein models by producing the “overall performance

factor” of the non-bonded atomic interactions (Dym et al., 2012).

This step evaluates the protein 3D model generated utilizing

homology modeling as well as the higher score model

representing high-quality models.
2.9 High-throughput virtual screening

Fungicides were virtually screened using AutoDock Vina

against the binding sites of a protein. The identified binding sites

have features about the degree of exposure, enclosure, hydrogen

bonding, size, tightness, hydrophobicity, linking site points, and

hydrophilic nature. Firstly, the complete database was screened

using AutoDock Vina, and then finally, to confirm the final hits for

the best scoring compounds, induced-fit docking (IFD) was done

through 64 exhaustiveness. For IFD AutoDockFR, AutoDock with

flexible receptors (ADFR) was done (Ravindranath et al., 2015). It

utilizes the AutoDock4 scoring characteristic to lower the internal
Frontiers in Plant Science 05
electricity of the receptor. It also handles the side chain of the

receptor conformational optimization of up to 14 unique facet

chains that enhance the docking rate. AutoDockFR has better

accuracy over AutoDock Vina in skip-validation docking, and the

speed of docking is much more efficient.
2.10 Molecular dynamics simulation of
protein–ligand complexes

In order to perform all-atoms MD simulation, Amber18

package was used for top hits from in-house fungicide database

(Case et al., 2005). The topologies of drug small molecules were

predicted using an antechamber module, while for complex

simulations, the Amber general force field (GAFF) and ff14SB

force fields were employed. A TIP3P container of water and Na+

counter ions have been used to solvate and neutralize each device

eventually. The energy minimization of systems was carried out in

two stages, followed by heating and equilibration. The Particle Mesh

Ewald (PME) algorithm is used to quantify lengthy-range

electrostatic interactions (Price and Brooks III, 2004). A 1.4-nm

cutoff value was set for Van der Waals interactions as well as for

columbic interactions of short range. Langevin thermostat was

employed to temperature constant at 300 K, whereas for pressure

control, Berendsen barostat was considered. A time step of 2fs and

total simulation time of 50 ns for each complex were performed.

The dynamics, stability, and other features of the ligand–protein

complexes were evaluated by using CPPTRAJ and PTRAJ within

AMBER software suite (Roe and Cheatham III, 2013).
2.11 Calculations of binding free energy

For all of the protein–ligand complexes, the binding free energy

was calculated using the MMPBSA.PY script (Python-based script

used to perform molecular mechanics Poisson–Boltzmann surface

area) by considering 500 snapshots. This method is widely used to

estimate the total binding energy (TBE) of various ligands, as

referenced in several studies. Binding free energy is computed

using the equations below (Hou et al., 2012; Miller III et al., 2012;

Sun et al., 2014b; Chen et al., 2016). Different studies broadly use

this unfastened energy calculation approach to estimate the TBE of

various ligands (Wang et al., 2018).

DGbind¼ DGcomplex�½DGreceptorþDGligand� (1)

DGbind: overall free binding energy—the energy change

associated with the binding of a ligand to a receptor,

DGcomplex: free energy of the complex or the energy state of the

receptor–ligand complex

DGreceptor: free energy of the receptor or the energy state of the

receptor alone (without the ligand)

DGligand: free energy of the ligand or the energy state of the

ligand alone (without the receptor)

Equation 2 was used to calculate the specific energy term

contribution to the total free energy:
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G ¼ GbondþGeleþGvdWþGpolþGnpol (2)

G: total free energy

Gbond: bonding energy (or bond stretching energy)

Gele: electrostatic energy (or Coulomb energy)—energy due to

electrostatic interactions between charged particles

GvdW: van der Waals energy (or dispersion energy)

Gpol: polarization energy—energy associated with the

polarization of molecules (e.g., induced dipoles)

Gnpol: non-polar energy (or hydrophobic energy)

This equation accounts for bonded interactions, electrostatic

energy, van der Waals forces, polar solvation energy, and non-polar

solvation energy, thus providing a comprehensive view of the

binding interactions involved.
3 Results

3.1 Retrieval and identification of
uncharacterized proteins

The complete proteome of Taphrina deformans (Proteome ID:

UP000013776) comprised 4,659 proteins—1,581 of which were

identified as uncharacterized proteins. The molecular functions of

more than 30% of proteins remain unknown in most organisms; such

proteins are referred to as hypothetical or uncharacterized proteins.

The functional characterization of such proteins can help us to

consider their functions in various metabolic pathways essential for

the survival of the pathogen and to classify previously novel fungicide

targets in plant pathogens (Shahid et al., 2016). There are several

bioinformatics services available for the functional classification of

uncharacterized proteins, like databases and software. The functions

of uncharacterized proteins in different microbial pathogens have

been successfully annotated using these resources, including Borrelia

burgdorferi (Khan et al., 2016), Chlamydia trachomatis (Naqvi et al.,

2017)], Haemophilus influenza (Shahbaaz et al., 2013), and Vibrio

cholerae (Islam et al., 2015), and can be utilized to identify potential

fungicide candidates in T. deformans. The subtractive proteomics

analysis is graphically illustrated in Figure 2.
3.2 Identification of non-
paralogous proteins

By importing the FASTA format of uncharacterized proteins into

the CD-HIT server, the non-paralogous proteins were identified. This

server implements greedy incremental algorithms to remove

redundancy and cluster protein sequences. The proteins were

sorted depending on a chosen sequence identity cutoff depending

on the requirement. The sequence identity of 80% was chosen as a

cutoff to preserve a rigid parameter in this analysis. The entire

proteome was clustered, and proteins with 80% identity were

identified and analyzed as paralogous. After the CD-HIT suite

study, no duplicates or paralogs with more than 80% identity were

found (Figure 2). The proteins were set forth for identification and

subsequent removal of proteins similar to the host.
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3.3 Non−homology analysis against
Prunus persica

Uncharacterized proteins were subjected to NCBI-BLASTp

search against Prunus persica proteome, with a threshold e-value of

0.0001, to identify the non-homologous sequence. The homologous

sequences were identified and ultimately excluded from the study.

Only those sequences specific to the pathogen and can be regarded as

potential fungicide targets were selected after excluding the

homologous sequences. In this step, 1,262 uncharacterized non-

homologous proteins were identified (Figure 2).
3.4 Essential proteins for
T. deformans survival

The non-homologous proteins of T. deformans against plant

proteome was further treated for the identification of essential genes

in T. deformans. From the non-homologous sequences, essential

proteins were separated with the Blastp technique against the

eukaryotic set of the Database of Essential Gene (DEG). We

identified a total of n = 244 critical proteins (Figure 2). A gene

product’s practical contribution to an organism’s survival and

pathogenicity determines how crucial it is. The output of the

sequence from the last phase was locally aligned against the

Database of Essential Gene in order to determine essentiality (van

Vlijmen et al., 2017). Protein alignments linked to an anticipated

value of less than 0.0001 were deemed to be more significant hits.

Crucial proteins are essential to pathogen survival and could be

viewed as a first step toward developing new fungicide targets.
3.5 Subcellular localization

The subcellular locations of these proteins were identified by

utilizing the CELLO2GO server. The overall prediction revealed n =

116 proteins in the nuclear region, 37 proteins in the cytoplasm, and

36 proteins in the plasma membrane. Cytoplasmic proteins have a

strong possibility of being a suitable fungicide target. The complete

results of the CELLO2GO prediction are provided in the pie

chart (Figure 3).
3.6 Unique pathway analysis

The 13 uncharacterized proteins that are essential for the survival

of T. deformans and located in the cytoplasm were subjected to

pathway analysis using the KAAS tool available in the KEGG

database. These proteins were classified into distinctive pathways

according to their functions and significance in unique metabolic

pathways. Not only do KAAS outputs provide convenient metabolic

routes but they also have remarkable informational features, such as

KO list projects and opportunity pathways of enzymes and Enzyme

Commission (EC) numbers. The KO list of T. deformans

uncharacterized proteins was compared to host metabolic pathways
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that revealed nine proteins having key roles in metabolic pathways

unique to the pathogen. The unique metabolic pathways (UMPs) are

shown in Table 1. The uncharacterized protein glutamate–cysteine

ligase (Uniprot ID: R4XJV2) was identified as the most suitable

fungicide target. It is involved in the cysteine and methionine

metabolism, glutathione metabolism, and ferroptosis pathways. The

target protein is involved in step one of the subpathway that

synthesizes glutathione from L-cysteine and L-glutamate (Fahey

and Sundquist, 1991).
3.7 Tertiary structure prediction and
validation of target protein

The primary amino acid sequence of glutamate–cysteine ligase

was processed for 3D structural modeling using Phyre2 web
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modeling server. A 647-amino-acid-long sequence was modeled

with 90% confidence by using multiple templates. The query

sequence shares 97% sequence identity with glutamate–cysteine

ligase from Saccharomyces cerevisiae and 21% sequence identity

with glutamine synthetase of Salmonella Typhimurium and

Escherichia coli. The visual analysis shows that the structure has

proper folding with uniformly interspersed secondary structural

elements. The structure possesses 44% alpha-helices, 10% beta-

sheets, and 18% disordered and 8% trans-membrane helices. The

protein’s active site was identified using COFACTOR server and

revealed residues Glu50, Glu110, Tyr111, His195, Gln272, Ser427,

Trp430, Arg434, and Arg451 as active sites. The modeled 3D

structure and the binding site residues are shown in Figure 4A as

a cartoon and surface representation. Evaluation of the 3D structure

was performed using various algorithms, which revealed that most

of the residues lie in the favored region while only five residues are

in the disallowed region. The ProSA-web (interactive web service

for the recognition of errors in the 3D structures of proteins) further

confirmed that the Z-score of the modeled structure is -5.71, which

reflects the best quality of the 3D structure. Overall, the structural

evaluation shows that the structure could be used for further

analysis—the evaluation results obtained from different servers as

shown in Figures 4B, C.
3.8 Identification of fungicides as control
agents against T. deformans

A computational virtual screening algorithm was employed using

PyRx to screen the 31 selected fungicides against the active site of

glutamate–cysteine ligase. Residues Glu50, Glu110, Tyr111, His195,

Gln272, Ser427, Trp430, Arg434, and Arg451 were confirmed as

active site residues that can bind to fungicides. The initial screening

results revealed the range of docking from -7.34 to -2.38 kcal/mol.

Fungicides with this score greater than -6.0 were subjected to a

second round of screening using the induced-fit docking approach,

which owns the advantage of efficient conformational optimization

for better binding. In the first screening, fungicides, i.e., polyoxin D

zinc salt, with this score (-7.34 kcal/mol) were identified as the best

fungicide. Among the other best hits, fluoxastrobin (docking score =

-6.81 kcal/mol), trifloxystrobin (docking score = -6.49 kcal/mol),

azoxystrobin (docking score = -6.37 kcal/mol), pyraclostrobin

(docking score = -6.31 kcal/mol), vinclozolin (docking score =

-6.18 kcal/mol), and propiconazole (docking score = -6.03 kcal/

mol) were identified as the best hits which could potentially inhibit

the peach fungus T. deformans by targeting the glutamate–cysteine

ligase protein. The docking results along with the names, PubChem

IDs, first screening, and induced fit docking scores of the top hits are

given in Table 2.

Next, the top hits were again subjected using the IFD protocol to

select strong control agents for T. deformans infection. The docking

score range for the IFD protocol was -7.88 to -6.08 kcal/mol

(Table 2). Fungicides in the IFD protocol with docking scores

greater than -7.50 kcal/mol were selected as the best hits for

interaction evaluation and structural–dynamic feature estimation.

Among the top hits, polyoxin D zinc salt (with docking score =
TABLE 1 Identified unique metabolic pathways (UMPs) in the
T. deformans essential proteins located in the cytoplasm.

Uniprot ID KO ID UMPs Pathway

R4XM80 K16186 mTOR signaling pathway ko04150

R4XDE1 K11559 Chromosome and
associated proteins

ko03036

R4XAL9 K10416 Phagosome ko04145

R4XFC4 K01078 Thiamine metabolism ko00730

Riboflavin metabolism ko00740

R4XAA5 K13238 Fatty acid degradation ko00071

R4XJV2 K11204 Cysteine and
methionine metabolism

ko00270

Glutathione metabolism ko00480

Ferroptosis ko04216

R4XL75 K03068 mTOR signaling pathway ko04150

R4XEZ0 K15206 Transcription machinery ko03021

R4XD17 K15620 Transcription machinery ko03021
FIGURE 3

Subcellular location prediction of essential proteins by CELLO2GO
server. The respective location is represented by a different color
with the percentage of proteins.
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-7.88 kcal/mol) formed 10 hydrogen bonds, and 23 hydrophobic

interactions were reported. Only two hydrophobic interactions were

formed by the two arginine active site residues at positions 434 and

451. In the case of the hydrogen bonds, Glu50, His195, Tyr111,

His195, Gln272, Ser427, Trp430, Arg434, and Arg451 amino acids

were involved (Figure 5A). Unlike the polyoxin D zinc salt,

fluoxastrobin established only three hydrogen bonds and two

hydrophobic bonds, and a single salt bridge was observed. The

interaction pattern revealed that Tyr111, Trp430, and Arg451 are

involved in hydrogen bonding interaction, His108 and Tyr350

formed a hydrophobic interaction, and Glu52 established the only

salt bridge (Figure 5B).

Similarly, the only two hydrogen bonds in the trifloxystrobin

complex (with docking score = -7.63 kcal/mol) were formed by

Tyr111 and Arg451. Only a single hydrophobic interaction with

Tyr350 and a salt bridge by Gly265 were observed (Figure 5C). The

azoxystrobin complex formed four hydrogen interactions, and one
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hydrophobic interaction with Arg197 was detected (Figure 5D). In

conclusion, the results show that the shortlisted fungicides robustly

interact with the fungus target and could potentially inhibit the

growth of T. deformans in the field. This pattern of the top hits is

shown in Figure 5, and the 2D structures of fungicides, PubChem

IDs, hydrogen bonding residues, salt bridges, and hydrophobic

interactions are shown in Table 3.
3.9 Dynamic stability estimation of the top
hits (fungicides)

Two-step fungicide screening approaches shortlisted fungicides,

polyoxin D zinc salt, fluoxastrobin, trifloxystrobin, and azoxystrobin

as the best hits. The complexes of these top hits were subjected to all-

atom molecular dynamics simulation to estimate the thermodynamic

stability, residual flexibility, structural compactness, hydrogen bond

count, and computations of free energy. Every complex’s

thermodynamic stability was determined using the root mean

square deviation (RMSD) as a function of time. The RMSDs for

each complex demonstrate that throughout the 50ns simulation

period, every complex remained stable as shown in Figure 5. No

significant structural perturbation was observed in any complex. In

the polyoxin D zinc salt complex case, the RMSD reached

equilibrium at 3 ns, while a slight deviation between 25 and 30 ns

was observed. No deviation from the mean structure was observed

during the simulation. The average RMSD for polyoxin D zinc salt

was observed to be 2.0 Å. On the other hand, the fluoxastrobin

complex was also observed to be very stable, but the average RMSD

remained higher than the polyoxin D zinc salt complex.

Comparatively, fluoxastrobin remained more stable and reached

equilibrium at 2 ns (Figure 6). Similarly, the trifloxystrobin

complex also remained stable, and no structural perturbation was
TABLE 2 Fungicide names, their PubChem ID, virtual screening docking
scores, and the induced-fit docking (IFD) scores of top hits.

Fungicide
name

PubChem
ID

Rigid
docking score

IFD
score

Polyoxin D
zinc salt

CID72476 -7.34 -7.88

Fluoxastrobin CID11048796 -6.81 -7.7

Trifloxystrobin CID1164966 -6.49 -7.63

Azoxystrobin CID3034285 -6.37 -7.59

Pyraclostrobin CID6422843 -6.31 -7.47

Vincozolin CID39676 -6.18 -6.54

Propiconazole CID43234 -6.03 -6.03
FIGURE 4

Structural modeling and evaluation of the predicted 3D structure. (A) 3D modeled structure with the active site residues. (B) ProSA-Web results
(Z = -5.71), while the Ramachandran plot obtained from SAVES server is given in (C).
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observed, but the RMSD value gradually increased over the

simulation time. The average RMSD was observed to be 3.0 Å.

Furthermore, the RMSD pattern of azoxystrobin and trifloxystrobin,

respectively, was observed to be alike. A gradual increase over the

simulation time was recorded in both cases; however, a slightly higher

average RMSF for azoxystrobin was observed. Consequently, these

results show that all of the fungicides stably remained bound in the

binding cavity of GCL and thus possess stronger inhibitory

properties. The RMSD graphs of each complex are shown in Figure 6.
3.10 Structural compactness evaluation

The compactness of each fungicide-bound complex was then

estimated as its radius of gyration (Rg), and this was assessed to

identify any binding or unbinding events that occurred during the

simulation. All of the fungicides and GCL protein complexes

possess a dynamically compact topology, and no significant

variations were observed except in the polyoxin D zinc salt

complex (Figure 7). The average Rg value for polyoxin D zinc salt

was observed to be 24.80 Å.

During the first 25 ns, no significant deviation was observed; then,

the compactness decreased and reached approximately 25.10 Å during

the last 25 ns. In the case of the other complexes, i.e., fluoxastrobin,

trifloxystrobin, and azoxystrobin, the average Rg value was reported to

be 24.90 Å for each complex. In conclusion, the Rg results show that all

of the fungicides are stably bound inside the protein’s active site and
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possess stably binding dynamics. Figure 7 shows the graphical

representation of each complex as a function of time.
3.11 Residual flexibility of the fungicide-
bound complexes

Residual flexibility plays an imperative role in determining the

inhibitory effects, catalysis, and proteins’ conformational switches.

Herein the residual flexibility was calculated as root mean square

fluctuation (RMSF). The graph given in Figure 8 shows that those

regions 75–100, 225–250, 325–350, 500–540, and 555–575 are

dynamically more flexible than the other regions. It can also be seen

that the binding cavity regions, i.e., 101–175, 251–324, and 355–500,

exhibit a lower dynamic fluctuation, which is reduced by the binding of

each fungicide. This shows that the binding has affected the residual

dynamics by inducing the inhibitory effects. The RMSF graph

presenting each complex with different colors is shown in Figure 8.
3.12 Hydrogen bond count

To evaluate the binding efficiency of each fungicide, the total

number of hydrogen bonds is the best alternative estimate to reveal the

binding robustness. The total number of hydrogen bonds during the

simulation varies from frame to frame and provides a better view of the

binding differences. Using the simulation time as a function of time,
FIGURE 5

Docking representation of the top hits selected from induced-fit docking (IFD) protocol. (A) 3D interaction pattern of polyoxin D zinc salt, (B) 3D
interaction pattern of fluoxastrobin, (C) 3D interaction pattern of trifloxystrobin, and (D) 3D interaction pattern of azoxystrobin.
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FIGURE 6

Thermodynamic stability of the top hits calculated as root mean square deviation. Each complex of polyoxin D zinc salt, fluoxastrobin, trifloxystrobin,
and azoxystrobin is represented with a different color, respectively.
TABLE 3 2D structure representation of fungicides, PubChem IDs, hydrogen bonds, salt bridges, and hydrophobic interactions.

2D structure PubChem ID H-bonds Salt bridges Hydrophobic
interactions

CID72476
Polyoxin D zinc salt

Glu50, His195, Tyr111,
His195, Gln272, Ser427,
Trp430, Arg434, Arg451

– Arg434 and Arg451

CID11048796
Fluoxastrobin

Tyr111, Trp430, and Arg451 Glu52 His108 and Tyr350

CID1164966
Trifloxystrobin

Tyr111 and Arg451 Gly265 Tyr350

CID3034285
Azoxystrobin

Gln272, Trp430, Arg451,
and Arg451

– Arg197
F
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herein the total average number of bonds in the polyoxin D zinc salt

complex was observed to be 320, while in fluoxastrobin during the first

10 ns the average number of bonds was more than that in polyoxin D

zinc salt; however, the bonds are then reduced, and the average number

of bonds was observed to be 310, which was similar in other complexes,

i.e., trifloxystrobin and azoxystrobin. In azoxystrobin, the number of

bonds gradually decreased after 45 ns and thus specified the unbinding

events that occurred during the simulation. This shows that all of these

fungicides exhibit a strong interaction cloud for the interactions and

inhibition of glutamate–cysteine ligase protein. The hydrogen bond

graphs are shown in Figure 9.
3.13 Binding free energy calculations

To connect the dynamic properties with the real-time binding free

energy calculations and reveal the nearly experimental affinity of the

top hits’ fungicides, molecular mechanics/generalized Born surface area

(MM/GBSA) approach was employed. The total binding free energy

for polyoxin D zinc salt was reported to be -41.76 kcal/mol; for

fluoxastrobin, it was -39.06 kcal/mol; the TBE for trifloxystrobin was

-33.77 kcal/mol, and for azoxystrobin, the total binding energy was

-35.75 kcal/mol. This shows that these fungicides bind more robustly

and block the GDP protein of Taphrina deformans. The other factors

such as van der Waal energy (vdW) and electrostatic generalized Born

(EGB) are also given in Table 4.
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4 Discussion

Plant fungal pathogens are evolving and emerging new

strategies to cause infections in plants around the globe (Zeng

et al., 2018). This study addresses the growing need for novel

antifungal targets due to the resistance developed by pathogens

like Taphrina deformans against commonly used fungicides. The

extensive use of these chemicals not only contributes to resistance

but also poses environmental risks, underscoring the urgency for

sustainable alternatives (Pecknold, 2015a). Due to the extensive and

long-term use of fungicides, the pathogens developed resistance

against widely used fungicides (Feng et al., 2020). To understand

fungal pathogenesis and its control, it is important to study the

genome and proteome of pathogens (Sammut et al., 2008). Our

research utilized genomic and proteomic data to pinpoint essential

genes in T. deformans that are promising drug targets because they

show little homology with the host, Prunus persica (Luo et al., 2014;

Sammut et al., 2008). Out of the whole genome, essential genes of

pathogens that do not have a significant homology with the host can

serve as potential drug targets (Luo et al., 2014). As the fungal

infections’ incidence is increasing gradually, the demand for new

antifungal drugs is also increasing. Hence, the key steps in

developing a new drug are target identification and validation. To

implement bioinformatics tools, it helps to identify, select, and

prioritize potential drug targets (Hughes et al., 2011; Yang

et al., 2012).
FIGURE 8

Residual flexibility of the top hits calculated as root mean square fluctuation. Each complex of polyoxin D zinc salt, fluoxastrobin, trifloxystrobin, and
azoxystrobin is represented with a different color, respectively.
FIGURE 7

Structural compactness of the top hits calculated as Rg/Rog (radius of gyration). Each complex of polyoxin D zinc salt, fluoxastrobin, trifloxystrobin,
and azoxystrobin is represented with a different color, respectively.
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Oxidative stress responses have a crucial role in the virulence

and survival of pathogens (Huynh et al., 2003; Mukherjee et al.,

2009). Glutathione plays a key role in redox homeostasis and in

cellular response to oxidative stress (Sipos et al., 2002). The critical

enzyme involved in glutathione biosynthesis is glutamate–cysteine

ligase (GCL). GCL is a cytoplasmic ligase considered as an essential

protein for the survival and pathogenesis of T. deformans. In this

study, we identified a protein, GCL of T. deformans, as a suitable

antifungal target by subtractive proteomics approach. This finding

is supported by our subtractive proteomics analysis, which also

aligns with the methodologies used in previous studies to identify

potential drug targets in pathogenic fungi(González-Fernandez

et al., 2010; Bencurova et al., 2018; Jha et al., 2020; Shahid et al.,

2020). The GCL 3D structure was modeled by comparative

modeling that shows 90% confidence and 97% sequence identity

with glutamate–cysteine ligase of Saccharomyces cerevisiae as shown

in Figure 4. Comparative modeling is the most successful and

accurate method to identify the structure of evolutionarily related

proteins (Errami et al., 2003; Choong et al., 2011). However, in the

previous literature, we could not find any data that shows GCL as an

antifungal target. Furthermore, GCL was studied for active site

identification, docking, molecular dynamic simulations, and free

energy binding calculations against antifungal compounds.

The active sites of GCL were identified as Glu50, Glu110,

Tyr111, His195, Gln272, Ser427, Trp430, Arg434, and Arg451

residues (Figure 4). In a structure-based drug discovery, the

identification of active sites on a target protein has a great

importance (Harigua-Souiai et al., 2015). The fungicides that
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interact by blocking the active sites have a significant effect on

inhibiting the function of proteins (Aamir et al., 2018).

In this study, docking and simulation of GCL with fungicides

were performed to find out the top hits by induced fit docking

protocol, with those that scored greater than -7.50 kcal/mol selected

as the best candidates (Table 2). The efficacy of fungicides like

polyoxin D, fluoxastrobin, trifloxystrobin, and azoxystrobin was

assessed through rigorous computational analyses, which showed a

high binding affinity of these chemicals toward GCL, indicating their

potential as effective fungicides. These fungicides were selected for

their role in inhibiting vital functions within the pathogen, analogous

to how azoxystrobin impedes mitochondrial respiration. Among the

fungicide candidates, poloxin D’s score was the highest (-7.88 kcal/

mol), and that of azoxystrobin was the lowest (-7.59 kcal/mol) as

shown in Table 2. Polyoxin D is an antibiotic that is involved in cell

wall synthesis inhibition as reported earlier (Endo et al., 1970). It has

been studied that the use of polyoxin D against Botrytis cinerea, causal

agent of gray mold on strawberry, has effective results against it

(Dowling et al., 2016). Azoxystrobin inhibits mitochondrial

respiration as it blocks the movement of electrons in the

mitochondrial bc1 complex for mitochondrial electrons (Herms

et al., 2002; Lu et al., 2019). The family of strobilurin fungicides is

widely used around the world to combat white mold, rot, early and

late leaf spot, rusts, and rice blast (Feng et al., 2020).

The MD simulations and free energy calculation of antifungal

compounds polyoxin D zinc salt, fluoxastrobin, trifloxystrobin, and

azoxystrobin with GCL showed that all of the complexes were stable

at 50-ns simulation time (Figure 6). The average root mean square
TABLE 4 Binding free energy of the top hits fungicides.

Complex vdW Electrostatic EGB Total binding energy

Polyoxin D zinc salt -43.04 402.59 -394.97 -41.76

Fluoxastrobin -50.30 -2.28 19.31 -39.06

Trifloxystrobin -42.23 -5.00 19.42 -33.77

Azoxystrobin -44.22 -5.35 19.75 -35.75
vdW, van der Waals interaction energy; EGB, electrostatic generalized Born energy.
All energies are given in kilocalorie per mole.
FIGURE 9

The total number of hydrogen bonds in each complex of polyoxin D zinc salt, fluoxastrobin, trifloxystrobin, and azoxystrobin is represented with a
different color, respectively.
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deviation for polyoxin D zinc salt was 2.0 Å, while for fluoxastrobin,

trifloxystrobin, and azoxystrobin it was 3.0 Å. This shows that

polyoxin D has a higher binding affinity to GCL than the other

compounds. It has been reported in the previous study that the use

of fungicides against Fusarium wilt, the two fungicides

(oxathiapiprolin and famoxadone) with a potential energy of

−113,166.16 and −112,628.96 kcal/mol, respectively, was revealed

best via molecular docking and virtual screening. The stability of the

protein–fungicide docked complexes was measured at 50-ns MD

simulations. The average RMSD for the oxathiapiprolin was 2.49

and 2.42 Å, while for famoxadone it was 2.83 and 1.20 Å,

respectively (Laskowski et al., 1993).

We evaluated the compactness as the radius of gyration (Rg) of

each fungicide with GCL as given in Figure 7. For the structural

compactness of fungicides with GCL active sites, the average Rg

value for polyoxin D zinc salt was observed as 24.80 Å, while for

fluoxastrobin, trifloxystrobin, and azoxystrobin it was 24.90 Å. Rg is

considered as one of the essential parameters to calculate the

binding stability of complexes inside the cavity (Khan et al.,

2021a). This shows that all of the four fungicides can bind

strongly to GCL. The strong binding affinity of fungicides with

GCL can be confirmed by total hydrogen binding and total binding

free energy calculations.

The total number of hydrogen bonds in the polyoxin D zinc salt

complex was n = 320, while for fluoxastrobin, trifloxystrobin, and

azoxystrobin this was n = 310 (Figure 8). Hydrogen bonding is a

crucial stabilizing factor in the formation of biological complexes

(Khan et al., 2021b). Polyoxin D has the highest number of

hydrogen bonds than the other fungicides and can bind more

firmly to GCL. The total binding free energy for all four

fungicides was performed by MM/GBSA calculation (Errami

et al., 2003). TBE for polyoxin D zinc salt was -41.76 kcal/mol;

for fluoxastrobin, it was -39.06 kcal/mol; for trifloxystrobin, it was

-33.77 kcal/mol; and for azoxystrobin, the TBE was -35.75 kcal/mol

(Table 3). The analysis above revealed that polyoxin D shows more

compactness and binding affinity to GCL. The results obtained for

binding energy calculations of the protein–ligand interactions

through MM/GBSA calculation were reported to be more effective

(Genheden and Ryde, 2015). In previous studies, the MM/GBSA

approach has proved to be the most accurate and reliable in

protein–ligand docked complexes (Singh and Warshel, 2010; Sun

et al., 2014). Binding free energy simulations are increasingly used

in industries and academia for drug discovery (Feng et al., 2020).

From our study, it has been understood that GCL plays an

important role in the metabolic processes of T. deformans. Its

blocking and inhibition could control peach leaf curl disease.

Furthermore, this protein has a significant potential for enhanced

utilization in structure-based drug design and catalysis. The data

from this study could drive future experimentation to design novel

antifungal drugs by targeting the GCL of T. deformans. This

approach not only offers a pathway to develop more effective

fungicides but also contributes to the broader goal of achieving

environmentally sustainable disease management practices. By

focusing on specific targets like GCL, which are not present in the
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host organism, we can mitigate the impact on non-target species

and reduce environmental contamination.
5 Conclusions

In conclusion, using subtractive proteomics approach, we

identified the glutamate–cysteine ligase of T. deformans for the

first time as a suitable antifungal target. The critical role of GCL in

essential metabolic pathways, particularly in glutathione

biosynthesis, positions it as an ideal candidate for novel fungicide

development. Moreover, to further explore GCL’s potential as a

fungicide, we performed two-step virtual screening and MD

simulation analysis. The fungicides, such as, polyoxin D zinc salt,

fluoxastrobin, trifloxystrobin, and azoxystrobin, showed strong

binding affinity toward the active site of GCL, suggesting that

GCL may be the best antifungal target in T. deformans. These

findings have far-reaching ramifications. By targeting GCL’s crucial

role in T. deformans survival and pathogenicity, we open new paths

toward creating more effective fungicides capable of counter-

resistance posed by the long-term use of existing ones.

Furthermore, GCL could even be further utilized as part of drug

design using its well-defined active sites for structure-based drug

design; the computational tools used here—virtual screening and

molecular dynamics—proved to be highly efficient at identifying

potential drug targets for validation.

Future research should prioritize the synthesis and

experimental validation of GCL fungicide analogs as potential

next-generation treatments to effectively combat peach leaf curl

disease while being environmentally safer to address concerns over

chemical fungicide use. Furthermore, a rigorous examination into

using GCL as a target against other fungal pathogens beyond T.

deformans may extend these findings and contribute to global

efforts in managing fungal diseases in agriculture.

This research presents an innovative and promising strategy to

combat T. deformans by targeting glutamate–cysteine ligase. Our

insights here could form the basis of future innovations in

antifungal treatments that offer sustainable long-term solutions to

manage peach leaf curl disease or other fungal infections.
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