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Reconstructing the
biological invasion of noxious
invasive weed Parthenium
hysterophorus and invasion
risk assessment in China
Huisen Zheng, Xinjie Mao, Yi Lin, Keyi Fu,
Zanyi Qi and Yongbin Wu*

College of Forestry and Landscape Architecture, South China Agricultural University,
Guangzhou, China
Invasive alien plants (IAPs) present a severe threat to native ecosystems and

biodiversity. Comprehending the potential distribution patterns of these plant

invaders and their responses to climate change is essential. Parthenium

hysterophorus, native to the Americas, has become an aggressively invasive

species since its introduction to China in the 1930s. This study aims to collect and

reconstruct the historical occurrence and invasion of P. hysterophorus. Using the

optimal MaxEnt model, the potential geographical distributions of

P. hysterophorus were predicted based on screened species occurrences and

environmental variables under the current and three future scenarios in the

2030s, 2050s, and 2070s (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), and the

invasion risk of P. hysterophorus in Chinese cities, croplands, forests, and

grasslands was assessed. The results show that: (1) The species initially invaded

highly suitable areas and further spread to regions with non-analogous climate

conditions. (2) Under the current climatic conditions, the overall potential

distribution of P. hysterophorus is characterized by more in the southeast and

less in the northwest. Climate variables, including mean annual temperature

(bio1), precipitation in the wettest month (bio13), isothermality (bio3), and

temperature seasonality (bio4), are the primary factors influencing its

distribution. (3) The potential distribution of P. hysterophorus will expand

further under future climate scenarios, particularly toward higher latitudes. (4)

Forests and crop lands are the areas with the most serious potential invasion risk

of P. hysterophorus. Therefore, we suggest that the government should

strengthen the monitoring and management of P. hysterophorus to prevent its

spread and protect agro-ecosystems and human habitats. Depending on the

potential risk areas, measures such as quarantine, removal, and publicity should

be taken to mitigate the threat of P. hysterophorus invasion and to raise

awareness of P. hysterophorus invasion prevention.
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1 Introduction

Biological invasion entails the intentional or unintentional

introduction of an organism into an area conducive to its habitat

and reproduction, leading to an expanding population and the

gradual and steady expansion of its range (Pysěk et al., 2004). After

extensive adaptation and dispersal, they pose a threat to the growth of

local organisms and cause harm to the ecosystem (Costan et al., 2023;

Daly et al., 2023; Derham et al., 2018). The rapid development of

economic globalization has resulted in the emergence of biological

invasion as a pervasive global issue. The number of invasive species is

increasing, with a significant negative impact on the environment,

economy and society in many countries and regions worldwide

(Camacho-Cervantes and Wong, 2023; Cuthbert et al., 2022;

Turbelin et al., 2023). The situation surrounding the prevention

and management of invasive alien species is dire and complicated,

and there is a concerns among governments and academics

worldwide that this topic represents one of the major

environmental challenges. Research suggests that biological

invasions will become one of the foremost worldwide

environmental challenges of the 21st century (Vantarová et al.,

2023). It is estimated that the number of IAPs will continue to

increase on most continents by 2050 (Sardain et al., 2019; Seebens

et al., 2021). In China, IAPs of the Asteraceae family dominate among

all invasive alien plant species, comprising 20.3% of the total (Weber

et al., 2008; Zhang et al., 2021). Therefore, it is imperative that we

synthesize the various factors and gain a comprehensive

understanding of the changes in the distribution of IAPs under

climate change to prevent the threat of further spread. Global

warming and land use change are important drivers of the spread

of IAPs (Brook et al., 2008; Corlett andWestcott, 2013; Humair et al.,

2015). One of the reasons for the expansion of the area of suitable

habitat for many species is the increase in temperature, which further

affects the geographical distribution patterns of plants (Fernández

et al., 2024; McDonald et al., 2023). Changes in land use led to the

fragmentation of plant habitats, disrupting native ecosystems and

creating opportunities for the invasion of alien plants (Thomas and

Moloney, 2015). Drivers of changes in species distribution dynamics,

influenced by future climate and land use changes, interact rather

than act alone (Bowler et al., 2020). Therefore, conducting risk

assessments of potential invasive areas under combined climate

change and land use conditions can lay a stronger foundation for

the future control and management of IAPs.

In recent years, predicting the dynamic potential distribution of

IAPs can be done with different species distribution models (SDMs)

(Baer and Gray, 2022; Mahmoodi et al., 2022; Yang et al., 2023).

Using SDMs to estimate species’ range shifts and threat levels under

future climate change scenarios is crucial for developing effective

conservation and management decisions (Sofaer et al., 2019;

Mahmoodi et al., 2023). Having the advantage of requiring

presence-only data, simplicity in operation, and high accuracy,

the MaxEnt model is widely employed (Rewicz et al., 2022).

However, many studies often predict the potential suitable

habitats for species under climate change scenarios without

focusing on the practical aspects of land use for actual prevention

and management efforts. This oversight could result in
Frontiers in Plant Science 02
inconsistencies between predicted outcomes and actual

application scenarios.

Parthenium hysterophorus, a member of the Asteraceae family,

is a fast-growing, annual, poisonous, aggressive herb often found in

wasteland, roadsides, riversides, and farmland. Currently, this

invasive weed has spread to over 46 countries outside its native

range (Mexico), particularly in Africa, Asia and Oceania (Mao et al.,

2021). Its invasion has become a significant issue, affecting

agricultural production, carrying capacity in rangelands, and

human health across numerous Asian countries, especially Nepal,

Bangladesh, and Pakistan. Owing to its invasiveness, spreading

potential, economic, environmental, and health impacts, this

invasive weed has been under focused monitoring in invasive

regions, especially in China, where it has been placed on the ‘List

of Priority Managed Invasive Alien Species’ for strict management

and control (de Lange and van Wilgen, 2010; Shackleton and

Shackleton, 2018; Wang et al., 2019). In the face of a

deteriorating global environment, P. hysterophorus appears to be

better adapted than native plants to survive rising temperatures and

increased CO2 concentrations, which poses a threat to the growth of

native plants, disrupts ecosystem functioning, and heightens the

risk of reduced species diversity (Liu et al., 2017). It’s worth noting

that changes in temperature and precipitation are vital climatic

factors that determine plant distribution and invasiveness

(Jaramillo and Cárdenas, 2013; Lamprecht et al., 2018; Vitasse

et al., 2018).

This noxious invasive weed produces allelopathic effects

chemicals that inhibit crop and pasture plants, potentially

resulting in reduced crop yields and herbivore poisoning through

accidental ingestion, hence impacting crop production and

livestock development (Asif et al., 2017; Shabbir et al., 2019).

Moreover, airborne pollen grains from this invasive weed may

negatively affect humans, increasing the risk of severe atopic

dermatitis or respiratory illnesses like hay fever and asthma in

various individuals (Bajwa et al., 2016; Mao et al., 2021). This

noxious invasive weed can contribute to the spread of malaria by

providing more food and shelter for mosquitoes in East Africa

(Nyasembe et al., 2015). Parthenium hysterophorus is a very

harmful weed and has been included in the control list of China.

However, its suitable and overlapping areas are still unknown.

Therefore, it is crucial to study the species distribution of

P. hysterophorus in China.

In this study, we used the optimal MaxEnt model to predict the

potential geographic distribution pattern of P. hysterophorus in China

under current and future climate change scenarios. The objectives of

this study include: (1) mapping the current potential distribution and

revealing important predictor variables of P. hysterophorus; (2)

reconstructing the dispersal routes of P. hysterophorus in China;

and (3) predicting changes in P. hysterophorus’s potential distribution

under different future climate conditions; (4) assessing the risk of

invasion by P. hysterophorus to cities, croplands, forests and

grasslands in China. Our study is not only to assess the predicted

changes in the potential distribution of P. hysterophorus, but also to

identify the areas that should be monitored to prevent it from causing

further negative impacts on the economy, ecology, and the safety of

human life and health.
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2 Materials and methods

2.1 Occurrence records of
P. hysterophorus

The occurrence records of P. hysterophorus were obtained from

the Global Biodiversity Information Facility (GBIF) (http://

www.gbif.org/, accessed September 2023). Distribution data of P.

hysterophorus from the China Virtual Herbarium (CVH) (http://

www.cvh.ac.cn, accessed September 2023) were also utilized.

Combining these with field surveys (Supplementary Table S1), all

occurrence records were thoroughly examined, removing duplicate

and non-terrestrial points, resulting in a preliminary dataset of 7533

occurrences. Spatial clustering of occurrences can lead to overfitting

and inflated model performance values (Boria et al., 2014; Hijmans,

2012; Veloz, 2009). To avoid overfitting, we applied spatial

autocorrelation reduction techniques (Boria et al., 2014; Phillips

et al., 2009). The records were spatially filtered using ArcGIS 10.8,

with SDMtoolbox v2.6 (Brown et al., 2017) employed to retain only

one species distribution point within every 2.5 arc-minutes,

resulting in the final dataset of 4,822 distribution points for P.

hysterophorus. Finally, the final dataset was saved for subsequent

MaxEnt model construction (Figure 1).
2.2 Dispersal routes of P. hysterophorus

Parthenium hysterophorus occurrence records were collected

from CNKI, CVH, and official reports. The dates of the earliest

published articles and the uploaded specimens or images can be

employed as evidence to confirm the time of the invasion of P.

hysterophorus in China. The dispersal routes for China were

reconstructed using the minimum cost arborescence approach, as
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implemented in the ‘ecospat v4.1’ package (Hordijk and

Broennimann, 2012; Marchioro and Krechemer, 2024).

Occurrence times were randomly reassigned to available

locations, with a subsequent comparison of the minimum and

observed value of the total length of the dispersal route.

Irrespective of the actual time of occurrence, the nearest

neighboring site can be chosen as the antecedent to achieve the

minimum possible value. The randomization process was

conducted 100 times, culminating in the creation of a histogram

that illustrates the obtained total dispersal routes for each iteration.
2.3 Environmental variables

This study considered four environmental factors highly

correlated with the life cycle and geographic distribution of P.

hysterophorus, and modeling selected 27 different variables

(Table 1). These include 19 bioclimatic variables (bio1-bio19), 3

terrain variables (dem, slope, aspect), 4 soil variables (sand, silt, clay,

pH), and NDVI (Table 1). Natural environmental factors can be

divided into four categories, climate factors, soil factors, topographic

factors, and NDVI. Climate factors are the most important drivers

affecting IAPs dispersal, and soil, terrain, and NDVI also play an

important role for them dispersal (Khan et al., 2019; Shiferaw et al.,

2019). The 19 bioclimatic variables were downloaded from

WorldClim 2.1 (https://www.worldclim.org/), while the 3 terrain

variables, including dem (https://cmr.earthdata.nasa.gov/search/

concepts/C1546314043-LPDAAC_ECS.html), slope, and aspect, 4

soil variables, including sand, silt, clay, and pH (https://

www.isric.org/), and an NDVI (https://data.nasa.gov/dataset/

MODIS-Terra-Vegetation-Indices-16-Day-L3-Global-50/diay-vffa/

data) were obtained from Google Earth Engine processing

(Supplementary Table S2).
FIGURE 1

Screened geographical distribution of P. hysterophorus in the world.
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The current (1970-2000) climate data includes 19 bioclimatic

variables. The future climate data come from the Beijing Climate

Center Climate System Model 2 Medium Resolution (BCC-CSM2-

MR), which is a medium-resolution climate system model of the

National Climate Center in the Sixth International Coupled Model

Intercomparison Project (CMIP6), for three time periods: 2021-2040,

2041-2060, and 2061-2080, respectively. BCC-CSM2-MR has seen

widespread application in research across East Asia and has

demonstrated strong performance in China (Qiu et al., 2023; Wu

et al., 2019, 2021). The future climate data of CMIP6 contains three

shared socioeconomic pathways (SSPs), namely SSP1-2.6, SSP2-4.5,

and SSP5-8.5, representing optimistic, moderate, and pessimistic

scenarios, respectively (Eyring et al., 2016). To avoid multicollinearity

among environmental factors causing model overfitting, this study, all
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species occurrences of P. hysterophorus and related environmental

factors were entered into MaxEnt 3.4.3 to establish initial Species

Distribution Models (SDMs) were used to determine the percent

contributions of each environmental factor (Supplementary Table

S3). Additionally, Pearson correlation analysis on the environmental

variables was conducted using the ‘ggcorrplot v0.1.4.1’ package

(Wickham, 2016) (Supplementary Figure S1). Environmental factors

with a correlation coefficient |r| ≥ 0.8 and low contribution to the

model were excluded from the modeling process (Brun et al., 2020). As

a result, a set of 8 environmentally significant variables, both

statistically and biologically relevant, was chosen for the model

(Table 1). These selected variables had a spatial resolution of 2.5 arc

minutes spatial resolution, ensuring that the model’s predictions were

based on meaningful and non-redundant environmental data.
TABLE 1 The predictor variables used in this study.

Predictor variables Abbreviations Final inclusion

Annual Mean Temperature (°C) bio1 Yes

Mean Diurnal Range (°C) bio2

Isothermality (bio2/bio7) × 100 bio3 Yes

Temperature Seasonality (SD × 100) bio4 Yes

Max Temperature of Warmest Month (°C) bio5

Min Temperature of Coldest Month (°C) bio6

Temperature Annual Range (bio5-bio6) (°C) bio7

Mean Temperature of Wettest Quarter (°C) bio8 Yes

Mean Temperature of Driest Quarter (°C) bio9

Mean Temperature of Warmest Quarter (°C) bio10

Mean Temperature of Coldest Quarter (°C) bio11

Annual Precipitation (mm) bio12

Precipitation of Wettest Month (mm) bio13 Yes

Precipitation of Driest Month (mm) bio14

Precipitation Seasonality (Coefficient of Variation) bio15

Precipitation of Wettest Quarter (mm) bio16

Precipitation of Driest Quarter (mm) bio17

Precipitation of Warmest Quarter (mm) bio18

Precipitation of Coldest Quarter (mm) bio19 Yes

Digital Elevation Model dem

Slope slope

Aspect aspect

Normalized Difference Vegetation Index NDVI Yes

Proportion of sand particles (>0.05mm) in the fine earth fraction sand Yes

Proportion of clay particles (<0.002mm) in the fine earth fraction clay

Proportion of silt particles (0.002-0.05mm) in the fine earth fraction silt

Soil pH pH
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2.4 Modeling approach

The SDMs were developed with the maximum entropy

algorithm implemented in software MaxEnt v.3.4.3 (Phillips et al.,

2006b). The ‘ENMeval v2.0’ package (Kass et al., 2021) was used to

calculate the regularization multipliers (RMs) and feature

combinations (FCs) in the MaxEnt model (Warren et al., 2010),

which can optimize the model and prevent overfitting, ensuring that

the model’s predictions are accurate. By adjusting the RMs and FCs

of the MaxEnt model, it becomes more reliable in predicting the

potential distribution of P. hysterophorus under varying

environmental conditions and climate scenarios. To account for

spatial autocorrelation, the ‘checkerboard2’ blocking method (k = 4)

was used for model training and validation (Fielding and Bell, 1997;

Hastie et al., 2009; Peterson et al., 2011). The features of the MaxEnt

model include linear (L), quadratic (Q), hinge (H), product (P), and

threshold (T). This study tested 9 different feature combinations (L,

LH, LQ, LQH, LQHP, LQHPT, LQP, QHP, QHPT) and 8

regularization multipliers ranging from 0.5 to 4 with a 0.5 interval

(Maruthadurai et al., 2023). Subsequently, the ‘ENMeval’ package

tested the above 72 combinations for parameter tuning, ultimately

selecting the best parameter combination with DAICc=0 for

MaxEnt modeling. Among them, DAICc is a measure of the

goodness of fit of statistical models, which can weigh the

complexity of the model and the goodness of the fitted data, and

it prioritizes the model with the smallest DAICc value (i.e.,

deltaAICc=0) (Akaike, 1998). When the feature combination is

QHP and the regularization multiplier is 0.5, DAICc=0.
MaxEnt was configured to import distribution and

environmental data, with 25% of the distribution data selected for

model testing and 75% for training. The model was trained for 10

repetitions (Phillips et al., 2006b), generating response curves and

conducting jack-knife analysis to measure the importance of

environmental variables (Elith et al., 2011).
2.5 Modeling evaluation and analysis

The accuracy of the model results was assessed using the Area

Under the Curve (AUC) in the Receiver Operating Characteristic

(ROC) curve analysis generated by MaxEnt (Phillips et al., 2006b).

A higher AUC value indicates better prediction performance, with

values below 0.6 indicating a failed prediction (Peterson et al.,

2008). Additionally, the “ecospat” package was used to calculate the

True Skill Statistic (TSS) and Kappa to assess the accuracy of the

MaxEnt model (Allouche et al., 2006).

The result from the MaxEnt model was imported into ArcGIS

and processed using Jenk’s natural breaks to reclass. These results

were divided into four classes: areas with no suitable (0-0.11),

poorly suitable (0.11-0.28), moderately suitable (0.28-0.50), and

highly suitable (0.5-1). The area of different suitable was calculated

by the raster calculator.

Species suitable(presence/absence) were classified using

binary suitability maps: regions with a potential distribution

probability <0.11 were set as absence and assigned a value of 0;

regions with a potential distribution probability ≥0.11 were set as
Frontiers in Plant Science 05
presence and assigned a value of 1, to obtain the binary absence/

presence map matrix for each period. The results under current

climate conditions with those under different future climate

scenarios were calculated using ArcGIS.

Use the “Centroid Changes” tool in SDMtoolbox to calculate

the change in potential distribution between two binary SDMs. This

analysis can illuminate a trend in the potential distribution of P.

hysterophorus observed in the period and reveal the impact of

environmental changes on its potential distribution over time.
2.6 Persistent suitable areas identification

For P. hysterophorus, the persistent suitable areas were analyzed

by overlaying their current potential suitable areas with future

suitable areas in ArcGIS 10.8, with the overlapping areas

identified as persistent suitable areas. The future suitable areas

here refer to the overlap areas of the three emission scenarios

(SSP1-2.6, SSP2-4.5, and SSP5-8.5) for the three decades (2030s,

2050s, and 2070s).
2.7 Invasion risk to cities, croplands,
forests, and grasslands

Parthenium hysterophorus grows mainly in the wild on

wasteland and roads and spreads to cities, croplands, forests, and

grasslands through natural pathways and human activities. Given

its hazardous nature, we evaluated the potential invasion risk of P.

hysterophorus in these specific areas across China. We processed

binary suitability and land-use distribution maps (https://

zenodo.org/records/8176941) at a uniform spatial resolution, with

overlay analysis applied to both datasets to ascertain the potential

distribution of each land category exposed to suitable habitats for P.

hysterophorus and calculate the total area of each land type exposed

to the extent of the invasion.
3 Result

3.1 Model accuracy evaluation

The results reveal that the optimized MaxEnt model achieves a

mean AUC of 0.838, with maximum Kappa and TSS values of 0.736

and 0.787, respectively. These metrics indicate that the model

possesses high predictive accuracy and is reliably precise in

its predictions.
3.2 Dispersal routes

In 1926, the first specimen of P. hysterophorus was documented in

China’s Yunnan Province, subsequently being identified in most

provinces. Taiwan Province has been the most affected by the

invasion, with P. hysterophorus expanding throughout the island since
frontiersin.org
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1988. Subsequently, the provinces of Guangxi, Fujian, Guangdong,

Yunnan, Hainan, and Guizhou have also become crucial areas for the

invasion of P. hysterophorus. The reconstruction of the dispersal routes

of P. hysterophorus is shown in the Figure 2. Our analysis reveals that the

observed dispersal route lengths are relatively consistent with the

simulated stochastic dispersal process, with the observed values (red

line) positioned close to the simulated data (grey histogram), suggests

that there is structured pattern in the dispersal dynamics of P.

hysterophorus in China. A significant divergence between the

minimum dispersal route length (blue line) and the observed

dispersal route length (red line) suggests that P. hysterophorus spread

over long distances in the species’ overall dispersal pattern.
Frontiers in Plant Science 06
3.3 Current predicted potential range

Under the environmental factors and current climate, the

MaxEnt model results indicated that the overall potential

distribution characteristics of P. hysterophorus were more in

southeast and less in northwest (Figure 3). The suitable growth

intensity and suitable growth area gradually decreased from

southeast to northwest, and the areas with highly suitable were

primarily located in Hainan, Guangdong, Guangxi, Yunnan, Fujian,

Taiwan, south Guizhou, southeast Tibet and east Sichuan. Areas

with poorly and moderately suitable conditions are mainly

concentrated in Zhejiang, Jiangxi, Anhui, Shanghai, Jiangsu,
FIGURE 3

Potential distribution pattern of P. hysterophorus under current climate.
FIGURE 2

The dispersal pattern of P. hysterophorus during the biological invasion in China.
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Shandong, Henan, Hubei, Hunan, Chongqing, Beijing, Tianjin,

Shaanxi and the southern part of Shanxi. According to the

statistical results of ArcGIS raster calculator, the poorly,

moderately and highly suitable habitats are 78.20×104 km2,

83.37×104 km2 and 116.63×104 km2, respectively, accounting for

8.12%, 8.66% and 12.12% of China’s total area.
3.4 Significant environmental variables

The MaxEnt model’s variable contribution analysis highlights

climate as the pivotal environmental factor influencing the potential

distribution for P. hysterophorus in China (Figure 4). Significantly,

the annual mean temperature (bio1) and precipitation in the wettest

month (bio13) emerge as the dominant climate variables,

collectively accounting for 71% of the model’s contribution. These

factors stand as the most crucial predictors for the potential

distribution of P. hysterophorus. Additionally, isothermality (bio3)

and temperature seasonality (bio4) contribute 17.7% to the model,

underscoring the importance of temperature fluctuations in

affecting its potential distribution. Besides, NDVI and soil sand

content are also among the factors affecting the potential

distribution of P. hysterophorus.
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The response curves between environmental variables and the

presence of P. hysterophorus in this study are shown. For annual

mean temperature (bio1), the high suitability zone (>0.5) ranged

from 10.69 to 38.81°C, with the peak suitability at 18.44°C

(Figure 4A). For precipitation in the wettest month (bio13), the

high suitability zone extended from 10.49 to 1472.90 mm, with the

maximum suitability reached at 1010 mm (Figure 4B). For

isothermality (bio3) and temperature seasonality (bio4), the high

suitability zones were identified with ranges of 27.32 to 109.06 and

-230.48 to 1.84, as well as 118.00 to 1202.16, with peak suitability

noted at 109.06 and 665.61, respectively (Figures 4C, D).
3.5 Potential distribution of
P. hysterophorus under future
climate scenarios

Under future climate scenarios, the projected invasion area of

P. hysterophorus remains similar to the current potential

distribution, with a concentration in the southeast and a decrease

in the northwest (Figure 5). The total potential suitable area changes

between -4.2% and 0.2%, indicating a relatively minor contraction

in the projected area of P. hysterophorus (Figure 6). However, the
FIGURE 4

Significant environmental variables, including bio1 (A), bio13 (B), bio3 (C) and bio4 (D).
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comparison of different levels of habitable area shows that the

poorly suitable habitat areas exhibited a downward trend over time,

and the range is shrinking. The moderately and highly suitable

habitats showed an increasing trend, and the range gradually

expanded from low latitude to middle and high latitude.

There was an anticipated general increase in moderately and

highly suitable areas by 2030 across all SSPs scenarios for P.

hysterophorus, with a corresponding decrease in poorly suitable

areas. Notably, the Sichuan Basin sees a significant increase in

suitability, while Henan Province experiences a decrease. Under

SSP5-8.5, the moderately and highly suitable areas peak at 107×104

km2 and 103×104 km², respectively, comprising 11.16% and 10.75%

of China’s total area. This represents increases of 2.49% and 2.62%

compared to the current climate.

Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, by 2050,

the overall change of the invaded area of P. hysterophorus exhibited

a trend of descending after ascending. Under the SSP2-4.5 and

SSP5-8.5, the moderately and highly suitable areas of P.

hysterophorus reached the maximum value, which was 102×104
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and 110×104 km2, respectively, accounting for 10.55% and 11.42%

of the total area of China, and the moderately and highly suitable

were 1.89% and 3.29% more, respectively, when compared with the

current climate.

By 2070, the trend shows an increase in both highly and poorly

suitable areas, which may indicate a divergence in habitat

suitability, with some regions becoming more conducive to P.

hysterophorus growth and others less so. The expansion of highly

suitable areas is mainly in Jiangxi and Hunan provinces, with poorly

suitable areas growing in Henan. Under SSP1-2.6 and SSP5-8.5, the

poorly and highly suitable areas reach their maximum at 111×104

km² and 102×104 km², respectively, representing 11.56% and

10.59% of China’s total area. These are increases of 2.89% and

2.46% over the current climate.

In order to identify changes in suitable areas for P.

hysterophorus under the current climate under future climate

scenarios, we mapped areas that are unsuitable (“reduce” areas),

suitable (“expansion” areas), and areas that remain stable (Figure 7).

The findings indicate that the spatial distribution of potential
FIGURE 5

Potential distribution of P. hysterophorus under nine different future climatic conditions.
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suitable habitats varies minimally under different climate change

scenarios. This trend mirrors the current expansion of suitable

habitat northward. Newly suitable regions predominantly

encompass Shandong, Hebei, Shaanxi, Hubei, and Chengdu. The

newly unsuitable areas are primarily located in Hebei, Shanxi,

Gansu, and Tibet.

According to Figure 8, climate change has driven the potential

distribution center of P. hysterophorus southward. The current

center is in Taoyuan County, Changde City, Hunan Province, at

coordinates 29°1’ 53.43”N, 110°55’ 40.13”E. Under the SSP1-2.6

scenario, the center moved 50.48 km southwest to Yuanling

County, Huaihua City (28°34’ 38.99” N, 110°53’ 1.03”E), then

37.85 km northeast back to Taoyuan County (28°53’ 5.26” N,

111°3’ 10.58”E), and finally 27.67 km southwest again to Yuanling

County (28°41’ 35.82” N, 110°52’ 15.22” E). Under the SSP2-4.5

pathway, the center shifted 27.82 km southwest to Yuanling County

(28°46’ 52.99” N, 110°54’ 10.67”E), then 22.91 km northeast within

the same county (28°58’ 51.59” N, 110°57’ 52.14”E), and 9.27 km

southeast towards Taoyuan County (28°54’ 35.61” N, 111°0’ 52.50”

E). Under SSP5-8.5, the center moved 17.26 km northwest to

Taoyuan County (29°1’ 32.99”N, 111°6’ 17.89”E), then 25.50 km

southwest to Yuanling County (28°49’ 17.21” N, 110°59’ 4.56”E),

and 10.46 km northeast back to Taoyuan County (28°53’ 9.30” N,

111°3’ 46.57”E). The most considerable shift, approximately 50.48

km, occurred under SSP1-2.6 in the 2030s. In summary, the

potential distribution center of P. hysterophorus has generally

moved southward, with the main potential distribution area

expanding due to climate change.
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3.6 Risk of invasion of cities, croplands,
forests and grasslands by P. hysterophorus

According to Figure 9, P. hysterophorus threatens various

habitats including cities, croplands, forests, and grasslands. Forests,

which constitute 50% of the potential invasion area, are the most at

risk, followed by croplands at 39%, with cities and grasslands making

up the remaining 11%. This underlines the importance of preparing

for P. hysterophorus invasions, particularly in coastal agricultural

lands, urban areas, and southwestern grasslands. Specifically, forests

vulnerable to invasion span southeast Tibet, Henan, Zhejiang,

southern Jiangsu, and most of Hainan, Yunnan, Guangxi,

Guangdong, Fujian, Hunan, Sichuan, and Jiangxi, covering

139×104 km² (Figure 10B). Croplands facing invasion risks are

predominantly in the North China Plain—encompassing the

Lower Liaohe Plain, Huangpan Plain, Huaibei Plain, and Haihe

Plain—as well as the middle and lower reaches of the Yangtze River

Plain. This includes the Jianghan Plain in Hubei, the Dongting Lake

Plain in Hunan, the Poyang Lake Plain in Jiangxi, the Yangtze River

Coastal Plain and the Chaohu Plain in Anhui, as well as the Yangtze

River Delta region of Jiangsu, Zhejiang, and Shanghai. The Sichuan

Basin, specifically the Chengdu Plain, is also affected, totaling an area

at risk of 108×104 km² (Figure 10A). Urban areas at risk include the

coastal zones of Beijing, Shandong, Shanghai, Jiangsu, Zhejiang,

Guangzhou, Fujian, and Taiwan, summing up to 18×104 km²

(Figure 10D). Grasslands at risk are mainly in the southwest,

particularly parts of Yunnan and Tibet, amounting to 6×104

km² (Figure 10C).
FIGURE 6

The distribution areas of P. hysterophorus under nine different future climatic conditions.
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4 Discussion

As one of the world’s most problematic and pernicious invasive

species, the invasive behavior of P. hysterophorus poses a serious

threat to biodiversity, agricultural and forestry production, and

human health (Bajwa et al., 2015), while the risk of its global

invasion and spread is higher as a result of global climate and land-

use change, and the increase in human activities such as

international trade (Li et al., 2021; Xian et al., 2023). A number of

scholars have already used SDMs to predict potential invasion areas

of P. hysterophorus (Duque et al., 2022; Masum et al., 2022). In

contrast to previous studies on the potential fitness zones of P.

hysterophorus, our study not only predicts the potential distribution

of P. hysterophorus under climate change scenarios, but also

establishes a risk assessment for the species and evaluates the

potential impacts on cities, croplands, forestlands, and grasslands

in China (Kriticos et al., 2015). This in-depth approach

distinguishes our study from previous ones that focused mainly

on potential invasive areas of P. hysterophorus. Furthermore, our

results are in line with Adhikari et al. (2023), highlighting the
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importance of environmental factors such as bio1, bio13 and bio3

on the distribution of P. hysterophorus. In addition, our study

confirms the potential impact of climate change on species

distribution, in line with the observed trend of species range

expansion due to climate change (Chhogyel et al., 2021).

However, the stage and extent of the invasion in China are still

unclear (Liu et al., 2023). Therefore, a fundamental assessment of

the risk of settlement and potential impacts of the species is crucial

to prevent further spread (Egawa and Matsuhashi, 2022).
4.1 Key predictor variables affecting the
potential distribution of P. hysterophorus

While most studies on SDMs typically choose only climatic

variables for modeling and prediction, this study considered

multiple factors, including climate, soil, topography, and vegetation.

Based on the variable contribution results in this study, key drivers

influencing the invasion of P. hysterophorus were identified to gain a

deeper understanding of the environmental conditions conducive to
FIGURE 7

The change of potential suitable area of P. hysterophorus under different climate change scenarios in China.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1430576
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zheng et al. 10.3389/fpls.2024.1430576
the invasion. The prediction results showed that the main factors

affecting the potential distribution pattern of P. hysterophorus were

annual mean temperature (bio1), precipitation of the wettest month

(bio13), isothermality (bio3), and temperature seasonality (bio4). In

this study, we found that temperature and precipitation influence the

growth and development of P. hysterophorus, with bio1 and bio13

being the most important variables affecting its potential distribution.

Previous research indicates that, in the context of global climate
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change, many exotic invasive species can adapt more likely to climate

change than native species. IAPs exhibit greater environmental

tolerance and phenotypic plasticity to elevated temperatures,

increased carbon dioxide concentrations, and changes in the

environment (Molina-Montenegro and Naya, 2012; Nicotra et al.,

2010). Parthenium hysterophorus has the capacity to thrive under

extreme hot weather conditions (Kaur et al., 2017). The seed

germination temperature for P. hysterophorus extends from 8°C to
FIGURE 8

The distribution centers of P. hysterophorus under current nine future climatic conditions.
FIGURE 9

Area of forest, cropland, city’s land, and grassland at risk of invasion by P. hysterophorus in China.
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35°C, accommodating a broad spectrum of temperatures (Tamado

et al., 2002). Particularly during extreme weather conditions, the

invasive weed modifies its reproductive growth, either delaying or

accelerating it. This adaptive behaviour explains the species’ inherent

adaptive potential, enabling widespread dispersion in non-native

regions. Our findings revealed a bio1 range of 10.69 to 38.81°C,

consistent with the characterised seed germination temperatures

(Bajwa et al., 2018). Also, P. hysterophorus has a remarkable ability

to germinate at low humidity levels and is more likely to survive in

arid environments with excellent drought tolerance contrasted with

native plants (Afzal et al., 2022). Consequently, changes in

temperature and humidity conditions, including areas of increased

temperature and decreased precipitation, may favor P. hysterophorus

dispersal and growth because they are more tolerant and able to

maximize suitability for new climatic changes. In particular, exotic

plants of subtropical origin introduced to colder regions will increase

their population size and number under climate change and spread

over an extensive geographic range (Sheppard and Stanley, 2014).

Besides, among the many environmental variables, isothermality

(bio3) and temperature seasonality (bio4) affect the potential

distribution of P. hysterophorus. For bio3, the probability increased

from 0.5 to 0.9, and the isothermality curve maintained an upward

trend. The isothermality value increased from 27.32 to 90.80,

reaching a point where the probability exceeds 0.9 and the

response curve achieves stability. The continuous rise in

isothermality indicates that diurnal temperature fluctuations are

large relative to annual temperature fluctuations (i.e., higher

isothermality), which suggests that P. hysterophorus is capable of

sustained growth under long-term stressful conditions characterized

by persistently decreasing diurnal and annual temperatures,
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consistent with the previous study findings (Jin et al., 2022; Qi

et al., 2022; Shrestha et al., 2024). For bio4, the range of its curve is

less variable compared to the previous variables, suggesting that its

temperature seasonality is less limiting to the potential distribution

probability of P. hysterophorus and that temperature seasonality is

not significant. It is now well documented that under the general

warming trend, the minimum temperature rises about twice as fast as

the maximum temperature, the diurnal temperature range gradually

decreases, and isothermality and temperature seasonality are not

distinct, thus leading to warm and humid climates in the tropics and

sub-tropics (Chemke and Yuval, 2023; Frierson et al., 2013; Walther

et al., 2002). In such environments, P. hysterophorus as an exotic

species are better able to colonize and expand, eventually becoming

invasive (Pys̆ ek et al., 2002). Simultaneously, warmer temperatures

will result in shorter winters and earlier spring phenology. It will

significantly shorten the dormancy of P. hysterophorus seeds,

enabling them to germinate and establish as plants in early

summer (Karlsson et al., 2008; Williams and Groves, 1980).

Therefore, climate change is a crucial driver of invasive plant

behavior and the invasiveness of plants may be intensified by their

invasion capabilities (Parmesan and Hanley, 2015). Despite the

inherent uncertainty of climate change affecting the spread of

P. hysterophorus in China. Based on the potential distribution of P.

hysterophorus, a comprehensive survey of IAPs can be undertaken at

high-risk cities, which can be controlled within a certain range to

prevent it from spreading further and affecting other cities. In cities

with a medium risk of occurrence, emphasis should be placed on

monitoring and observation, with the execution of timely cleanup

and disinfestation measures to minimize future management costs.

For cities at low risk, educational and publicity initiatives will be
FIGURE 10

Distribution of cropland (A), forest (B), grassland (C), and city’s lands (D) at risk of invasion by P. hysterophorus in China.
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conducted, and preventative and control measures implemented

in advance.
4.2 Invasive historical reconstruction

The reconstruction of P. hysterophorus dispersal routes have

unveiled invasion patterns across China. First, the observed

dispersal mirrored stochastic simulations, highlighting a

structured pattern in the dispersal dynamics of P. hysterophorus.

Second, P. hysterophorus first invaded and spread to areas highly

suitable, with climatic conditions akin to its native range. Following

the initial dispersal phase, where the species proliferated across

southern China, its presence in areas with dissimilar climatic

conditions grew increasingly prevalent. Parthenium hysterophorus

has gradually enhanced its dispersal (Phillips et al., 2006a), growth

(Burton et al., 2010), and adaptive capabilities, due to a simple

evolutionary process stemming from reproduction among the most

effective dispersers at the colonization frontier (Colautti and

Barrett, 2013; Shine et al., 2011). The total observed dispersal

route length is higher than the minimum possible length in

China. This implies a frequent occurrence of long-distance

dispersal, underscoring the significant role of trade and

transportation of goods in P. hysterophorus’ spread across China.

For instance, P. hysterophorus was reported to have migrated from

Vietnam to Yunnan Province in southern China between 1924

(Tang et al., 2009) and 1926 (Gao et al., 2013), probably aided by

road traffic (Nguyen, 2011). Furthermore, in 2004, a separate

population was introduced into Shandong Province in northern

China. Speculation suggests that this population was likely

introduced via a major port in Lianyungang, Jiangsu Province,

situated 150 km from Shandong Province (Shou et al., 2014).
4.3 The potential invasive distribution of
P. hysterophorus under current climatic

We observed that the invasive characteristics of P. hysterophorus

display a condition trend in China, with more prevalence in the

southeast and less in the northwest, mainly concentrated in coastal

cities, while the intensity and area of suitable habitat gradually

decrease from the coast to inland. This is consistent with the results

of our response curves, and it is possible that P. hysterophorus is

gradually spreading to cooler and drier environments. Parthenium

hysterophorus is native to the American tropics and prefers sunny and

moist environments (Kohli et al., 2006). This growth characteristic

makes them prefer to grow in southeastern China, thus showing a

trend of increasing growth intensity and suitable area in this region. It

is the result of the subtropical monsoon climate in southeastern China,

characterized by hot summers and warm winters, four distinct

seasons, simultaneous rain and heat, and developed monsoon

winds, creating an ecological environment with superior thermal

and hydrological conditions. Water serving as a crucial dispersal

route for P. hysterophorus seeds, plays a key role in shaping the

dispersal of P. hysterophorus. In the monsoon or rainy seasons, P.

hysterophorus seeds are able to spread through river systems. Even
Frontiers in Plant Science 13
during dry periods, they can come into contact with the soil, thereby

continuously increasing the size of their soil seed bank (Li and Qiang,

2009; Mao et al., 2019, 2022; Zhang et al., 2019). In surveys of dry

savanna reserves, P. hysterophorus also often spreads into open dry

savannas with seasonal streams (Pysěk et al., 2020). It confirms our

research that coastal areas are more vulnerable to invasion by P.

hysterophorus than inland dry areas. Therefore, in the future, measures

such as regular removal of plants from river channels, particularly

after floods to minimize their spread, consistent monitoring of river

and irrigation channel systems, and the early identification of areas

that may be affected by the spread of invasive species seeds.
4.4 The potential invasion dynamics under
future climate

Global climate change, which often comes with environmental

challenges like increasing temperatures, a rise in extreme weather

events, and increasing soil salinity, can cause harm to exist

ecosystems and pose a threat to the growth of native plants (Di

Capua and Rahmstorf, 2023; Sheppard et al., 2012; Thuiller et al.,

2007). Nevertheless, P. hysterophorus is becoming increasingly resilient

to its environment, displaying a broad geographic range, wide climate

tolerance, and resistance (Bajwa et al., 2019b; Cowie et al., 2020). For

example, tolerance to temperature stress is critical for plant

germination and survival of seedlings (Hou et al., 2014). The survival

of P. hysterophorus in these very hot and dry areas suggests that could

potentially survive under more extreme high temperatures conditions

than previously thought (Shabbir et al., 2023). It is consistent with our

findings that under the influence of future climate change, there is a

general upward trend in the mid-to high-performing area of P.

hysterophorus, with the range gradually expanding from low to mid-

to high-latitude districts. Not only that, but warming will lead to a rise

in sea level, which will trigger the salinization of coastal soils, although

salinity had a negative effect on different growth variables elevated CO2

improved P. hysterophorus’s growth and phenolics content regardless

of the salt stress regime. It may benefit from its resistance to invade

these areas (Saravanane et al., 2023). Coastal cities in China, except for

Liaoning Province, have proven to be within the invasive range of the P.

hysterophorus. Hence, it is essential to intensify monitoring and

preventive efforts in new potential distribution areas at higher

latitudes to minimize the risk of spreading invasion. Furthermore,

enhancing surveillance of sea surfaces in coastal regions and

implementing protective measures for vulnerable ecosystems is

crucial. Restoring and safeguarding wetlands and mangrove forests

will not only maximize the prevention of P. hysterophorus invasion but

also slow soil salinization. Collectively, these measures will safeguard

local ecosystems against the detrimental impacts of P. hysterophorus.
4.5 Invasion risk associated with cities,
croplands, forestlands, and grasslands

In this study, we paid particular attention to the possible

invasion risk of P. hysterophorus to the cities, croplands, forests,

and grasslands of China, where its invasion could pose a severe
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health threat and damage to the environment, ecosystem functions,

crop yields, crop production, habitat scarcity, livestock

performance, land degradation, and acute health hazards

complications in cellular (Batish et al., 2007). According to the

latest records, in 2019, an expert performed an ecological survey of

invasive alien species at the Chengdu Customs site in Sichuan,

China, uncovering a P. hysterophorus plant population. This

discovery shows that P. hysterophorus is still expanding its

invasive range in China. The invasion risk assessment indicates

that China should be on alert for the invasion of P. hysterophorus in

cities, the North China Plain, the Middle and Lower Yangtze River

Plain and the Chengdu Plain farmlands, the woodlands in the

southern region, and the grasslands in the southwestern region

(Figure 9). In addition, woodlands have the highest area at risk.

We found that most of the forest land in southern China is within

the invasion range of P. hysterophorus, which is a challenge to the

forest ecosystem (Figure 10B). In particular, most of the forests in the

south of China are subject to road and urbanization development,

with high fragmentation, and the forest ecosystems have become

fragile. Moreover, as an aggressive invader with exuberant growth

habits, P. hysterophorus disrupts the structure of natural ecosystems

and displaces numerous native plant species from those ecosystems

(Adkins and Shabbir, 2014; Gnanavel, 2013; Shabbir et al., 2021),

thereby breaking the balance of the forest ecosystem. This invasive

weed has a negative impact on forest ecosystems and has become a

major threat to forest reserves around the world (Shang et al., 2022;

Strathie et al., 2011). Apart from the lower plant diversity and

unfavorable growth of local plants in the areas invaded by P.

hysterophorus, there have been alterations in soil chemical

properties, characterized by decreased pH values, phenolic

compounds, organic matter content, and concentrations of

nitrogen, phosphorus, and potassium (Boja et al., 2022; Kaur

et al., 2019).

The safety of cropland should also be a top priority. Healthy

arable land is vital for ecological, economic, and socio-economic

development. This study uncovered that P. hysterophorus invasion

encompasses a substantial portion of land used for grain production,

encompassing nine major grain-producing regions in China

(Figure 10A), namely Henan, Shandong, Sichuan, Jiangsu, Hebei,

Anhui, Hunan, Hubei, and Jiangxi. These regions experience

consistently high temperatures, minimal annual temperature

fluctuations, well-established water systems, fertile soils, and a

suitable climate for grain cultivation. However, research shows that

P. hysterophorus inhibits the growth of maize, rice, and forage grass.

With its density increases, it inhibits crop growth, reduces crop yields,

and increases competition with crops (Bajwa et al., 2019a; Khan et al.,

2013; Safdar et al., 2015). As reported by Pratt et al. (2017) annual

economic losses to maize crops caused by P. hysterophorus ranged

from 46.6 to 71.4 million dollars in Ethiopia, 3.8 to 7.7 million dollars

in Kenya, 0.3 to 1.0 million dollars in Tanzania, and 0.7 to 1.8 million

dollars in Uganda. Additionally, Kumar et al. (2016) discovered that

P. hysterophorus can carry Tomato yellow leaf curl virus (TYLCV),

whose infection induces leaf curl symptoms in P. hysterophorus and

tomatoes. It shows that P. hysterophorus can serve as a host for certain

viruses, thereby increasing the risk of spreading tomato leaf curl

disease to some extent. In our research, we have also observed that P.
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hysterophorus is widely distributed in economically developed regions

and areas with relatively high population density, posing a threat to

human life and health due to its invasion (Figure 10D). It is worth

noting that P. hysterophorus is often found in open fields and along

roadsides in the field. However, in most cases, it gradually spreads to

nearby cities areas under the influence of human activities, disrupting

native plant ecosystems (Appalasamy et al., 2020; Potgieter et al.,

2019). The invasion process is driven by a combination of

environmental and anthropogenic factors, with environmental

factors determining how many species can survive in a new

location, and anthropogenic factors affecting the timing, quantity,

and route of species introduction to the site (Chen et al., 2021). In our

study, we also found that P. hysterophorus is abundantly distributed

in economically developed areas and areas with relatively high

concentrations of population density which often results in

conditions such as eczema, skin inflammation, and respiratory

diseases that endanger human safety and health (Akham et al.,

2023). The results that the grasslands invaded by the P.

hysterophorus predominantly occupy low-elevation areas in

southwestern China, notably within Yunnan and Sichuan

Provinces, which offer suitable conditions for cattle and sheep

farming (Figure 10C). However, excessive grazing has exacerbated

the invasion of P. hysterophorus, resulting in higher plant density,

larger plants, and increased seed production. This over-invasion is

also evident in alterations to surface plant communities, leading to a

notable decline in species richness, evenness, and diversity (Shabbir

et al., 2019). Furthermore, the pollen carried by P. hysterophorus itself

can induce dermatitis in animals. Excessive consumption by animals

can lead to mouth ulcers and excessive salivation, resulting in

poisoning (Kaur et al., 2014).

Therefore, enhancing control of existing invasive alien species is

imperative. Through monitoring, hazard surveys, hazard

assessments, and risk analyses, it is critical to identify sources and

mitigate further proliferation and spread. Simultaneously, prioritizing

international and domestic quarantine is essential to prevent the

introduction of new species and to curtail hybridization and gene

flow between populations in different regions (Tang et al., 2009; Fan

et al., 2018).
4.6 Limitations of this study

First, this study only used the MaxEnt model to simulate and

predict the distribution of P. hysterophorus. Previous studies have

found that the prediction results of an ensemble model will

outperform a poorly performing single model and underperform

a better performing single model (Zhu and Peterson, 2017).

However, this study indicated that the MaxEnt model could meet

the demand in simulating the distribution of P. hysterophorus with a

high accuracy. Secondly only environmental variables were

considered in our study. We ignore the effects of human activities

on the dispersal of P. hysterophorus, such as livestock and motorized

vehicles, which can spread large quantities of seeds of many plant

species over great distances (Auffret et al., 2014). The relationship of

these dispersal vectors to the physical environment may influence

the movement of the seeds they spread. Third, the uncertainty in
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predicting the potential invasive potential distribution of P.

hysterophorus arises from the multifaceted nature of future

climate change and the variability among different global

circulation models (GCMs). Utilizing integrated simulations that

combine multiple GCMs could substantially enhance the certainty

and accuracy of such predictions (Puchałka et al., 2023a, 2023).

Forth, the ecological niche requirements of species are conservative,

and we ignore the potential adaptive capacity of species to new

environments. There may be differences in climatic ecological

niches between the place of origin and the place of invasion,

resulting in the phenomenon of “ecological drift” (Manzoor et al.,

2020; Xian et al., 2023). Last, although we realize that in reality,

NDVI is likely to change with climate change, we maintain the

assumption of constant NDVI in the model based on currently

available data and practical considerations for model construction.

In fact, land-cover conversion is likely to occur in the future, which

will result in altered vegetation physiology (Defries et al., 2002).

Future research on the potential invasion potential distribution of P.

hysterophorus should adopt this integrative approach. Although

there are some limitations in our study, we still predict the invasion

dynamics of P. hysterophorus in China under climate change. And

the results of this study were the first step of the macro-planning,

and still had important guiding significance for the management of

P. hysterophorus.
5 Conclusion

In this paper, we reconstructed the dispersal routes of P.

hysterophorus in China and used the optimal MaxEnt model to

predict the potential distribution of P. hysterophorus, a significant

invasive alien weed in China, based on the occurrence of the

screened species and related environmental variables. Our

analysis of dispersal routes revealed structured dispersal dynamics

and suggested a human influence on the spreading of P.

hysterophorus across China. Furthermore, the environment

variables, especially mean annual temperature (bio1) and the

wettest monthly precipitation (bio13), serve as the primary factors

influencing the potential distribution of P. hysterophorus. Moreover,

under the current climate, southeastern China emerges as the

principal potential invasion area for P. hysterophorus. With the

onset of climate change, its potential distribution range will extend

to higher latitudes. Continuous monitoring and enhanced

management of forests and agricultural lands should be

prioritized, as these areas are particularly susceptible to the

invasive impacts of P. hysterophorus. Proactive measures are

essential to prevent its further spread and invasion. The results of

our study provide valuable insights into the potential distribution

patterns and underlying factors driving P. hysterophorus invasion.

This information lays the groundwork for the development of

effective control measures in the future and serves as a valuable

scientific reference for the prevention and management of

biological invasions.
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