
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiao Ming Zhang,
Yunnan Agricultural University, China

REVIEWED BY

Eunice Kariñho Betancourt,
National Autonomous University of Mexico,
Mexico
Zhengwei Wang,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Zhen Yan

yzhen@implad.ac.cn

Depo Yang

lssydp@mail.sysu.edu.cn

RECEIVED 13 May 2024

ACCEPTED 29 July 2024
PUBLISHED 16 August 2024

CITATION

Yue J, Yan Z, Liu W, Liu J and Yang D (2024)
A visual pollination mechanism of a new
specialized pollinating weevil-plant
reciprocity system.
Front. Plant Sci. 15:1432263.
doi: 10.3389/fpls.2024.1432263

COPYRIGHT

© 2024 Yue, Yan, Liu, Liu and Yang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 August 2024

DOI 10.3389/fpls.2024.1432263
A visual pollination mechanism
of a new specialized pollinating
weevil-plant reciprocity system
Jianjun Yue 1,2, Zhen Yan 3*, Wei Liu2, Ju Liu1

and Depo Yang1*

1School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China, 2School of
Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, China, 3Yunnan
Key Laboratory of Southern Medicine Utilization, Institute of Medicinal Plant Development Yunnan
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Introduction: Pollinating flower-consuming mutualisms are considered

exemplary models for studying coevolution due to their rarity. Visual cues are

considered to have a major role in facilitating the evolution of floral patterns in

these systems. We present a new specialized pollinating flower-consuming

mutualism from the plant Wurfbainia villosa, which is a traditional Chinese

herbal medicine, by a pollinating weevil, Xenysmoderes sp.

Methods: In this study, We utilizedmonochrome plates for binary-choice tests to

determine weevil color preferences, conducted behavioral choice experiments,

using trackballs, photographed flowers and weevils, and employed blue sticky

boards to attract weevils in the field.

Results: Tests were conducted using colorpreferring weevils in both indoor and

outdoor field systems, and validation experiments were performed. Behavioral

tests were conducted to investigate the role of the visual cues in the pollinator

attraction of W. villosa, which is a selfcompatible insect-pollinated plant that

relies primarily on the Xenysmoderes sp. weevil for pollination due to its

specialized gynandrium-like structure. Behavioral tests demonstrated that a

blue color wavelength of 480 nm and the blue color system, as along with the

UV-style pattern of the flowers, particularly the parts with specialized

gynandrium-like structures in the labellum, were significantly attractive to both

male and female weevils. These results were further confirmed through the field

blue sticky board trap method.

Discussion: These findings indicated that the interaction between W. villosa and

Xenysmoderes sp. weevil was a novel symbiotic relationship involving pollinator

flower consumption. Additionally, Wurfbainia villosa flowers developed specific

visual cues of UV patterns and specialized structures that played a crucial role in

attracting pollinators.
KEYWORDS

Wurfbainia villosa, pollinating weevil, ultraviolet pattern, gynandrium-like structure,
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Introduction

The evolutionary relationship between plants and insects has

been a popular topic in evolutionary ecology research. Plants use

direct or indirect defenses, such as releasing volatiles to attract

pollinating insects (Dufa et al., 2004; Baldwin et al., 2006; Terry

et al., 2007; Salzman et al., 2020) and natural enemies of herbivores

(Rasmann and Turlings, 2007; Xin et al., 2012; Aartsma et al., 2017),

and using neighboring plants for defense (Baldwin et al., 2006). The

plant-pollinator mutualism is a classic model for studying adaptive

evolution. Plants have diversified strategies for attracting

pollinators. Insects use olfactory signals to locate host plants, and

these signals are especially important for long-distance localization

(Salzman et al., 2020). Pollinating insects often need to combine

olfactory signals with visual cues at close range to locate hosts

(Koski and Ashman, 2014). Weevils are among the oldest

pollinating insects and are often used as a classic model for

studying animal-plant evolutionary relationships (Salzman et al.,

2020). These pollination systems are representative but relatively

rare and have been found only in individual plant lineages, such as

oil palm-E. kamerunicus weevils (Dhileepan, 1994; Yue et al., 2015;

Haran et al., 2020), cycad-R. furfuracea weevils (Salzman et al.,

2020), and orchid-orchid weevils (Nunes et al., 2018), among other

exclusive pollination systems. The mechanism by which pollinating

weevils locate host plants through specific mediating compounds

has been identified through long-distance searches (Salzman et al.,

2020). However, the mechanism by which pollinating weevils use

visual cues to search for and locate host plant flowers in exclusive

pollination systems remains unclear.

The investigation of the factors that contribute to the diversity

of the flower colors has long been a subject of interest for botanists

and evolutionary biologists. Various hypotheses have been

proposed regarding the shifts in the floral color (Narbona et al.,

2018). These hypotheses include non-adaptive evolution due to

genetic drift (Wright, 1943) and the multidirectional effects of genes

related to physiological or vegetative adaptations to environmental

conditions (Rausher and Fry, 1993; Levin and Brack, 1995;

Schemske and Bierzychudek, 2001; Warren and Mackenzie, 2001;

Armbruster, 2002; Strauss and Whittall, 2006; Arista et al., 2013).

Furthermore, the maintenance of flower color divergence may be

attributed to the pleiotropic effects of the flower color genes on the

herbivores and seed predators (Irwin et al., 2003; Carlson and

Holsinger, 2010, Carlson and Holsinger, 2013). The evolution of

flower color may also be influenced by a combination of genetic

processes, biotic agents, and abiotic factors (Herrera, 1996; Galen,

1999a, Galen, 1999b; Ellis and Johnson, 2009; Ito et al., 2009;

Schreiber et al., 2010; Steffan et al., 2024).

However, the role of selection pressure by pollinators is crucial

in studies of adaptive evolutionary relationships between the plants

and pollinators (Darwin, 1862; Schiestl and Johnson, 2013; Souto-

Vilarós et al., 2018; Ramos and Schiestl, 2019). Pollinators are often

considered important drivers of evolutionary shifts in plant flower

color (Grant and Grant, 1965; Fenster et al., 2004; Harder and

Johnson, 2009; Schiestl and Johnson, 2013; Gervasi and Schiestl,

2017; Johnson et al., 2020). Pollinators have a significant impact on

the evolutionary adaptations of plants by transferring pollen
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between them (Waser and Price, 1981; Barrett and Harder, 1992;

Waser et al., 1996; Schemske and Bradshaw, 1999). Pollinators

exhibit convergent evolutionary selection for the flower color,

especially in floras pollinated by the same pollinator or functional

groups of similar pollinators (Fenster et al., 2004). Several studies

have reported that animals that visit flowers have innate color

preferences and can develop color preferences through associative

conditioning (Lunau et al., 1996; Weiss, 1997; Pohl et al., 2008; Ings

et al., 2009). Pollinator-mediated color preference selection

behavior is a significant driver of the evolution of the floral

pattern diversification (Kay and Sargent, 2009; van der Niet and

Johnson, 2012).

Furthermore, pollinator selection and behavior can be

influenced by visible light patterns (McCrea and Levy, 1983) and

ultraviolet color patterns (Koski and Ashman, 2014; Peterson et al.,

2015; Brock et al., 2016; Papiorek et al., 2016). For instance, certain

flowers have developed ‘bull’s eye’ patterns to lure their pollinators

(Manning, 1956; Free, 1970; Lunau et al., 1996; Johnson and Dafni,

1998; Dinkel and Lunau, 2001; Koski, 2020), which reduces the time

taken for pollination by insects (Waser and Price, 1985; Leonard

and Papaj, 2011; De Jager et al., 2017). Other flowers have

developed human-visible and ultraviolet bull’s-eye patterns to

attract pollinators. These patterns have been linked to the visual

system of the pollinating insects (Asker, 1985; Briscoe and Chittka,

2001; Koski and Ashman, 2016; Koski, 2020). Assessing the

relationship between the diversity of the plant flower patterns and

the visual response of pollinators has been a popular topic in

pollination ecology research in recent years. Currently, the focus

is on Lepidoptera (Koski, 2020; Rodrıǵuez-Castañeda et al., 2020),

Hymenoptera (Koski, 2020; Rodrıǵuez-Castañeda et al., 2020) and

Diptera (Koski, 2020), as well as a few Coleoptera beetles (Johnson

et al., 2020). These include pollen-feeding animals (Vernon and

Gillespie, 1990; Gaum et al., 1994; Farnier et al., 2014). To date,

studies on pollinator visual response mechanisms in pollinator

weevil-plant mutualism are rare.

Wurfbainia villosa var. villosa (Lour.) Škorničk. & A. D. Poulsen

(homotypic synonym: Amomum villosum Lour.) is a perennial

semi-shade plant of Amomum Roxb. in the family Zingiberaceae

(Yang et al., 2022; Chen et al., 2023). It has been cultivated for more

than 1,300 years and is the most famous traditional Chinese

medicine in China (Commission of Chinese Pharmacopoeia,

2020; Chen et al., 2023). Wurfbainia villosa is mainly found in

the provinces of Yunnan, Guangdong, Guangxi, and Hainan in

China and in Southeast Asian countries such as Laos and Thailand

(Yue et al., 2021; Chen et al., 2023). It is a typical self-compatible

insect-pollinated plant. Wurfbainia villosa has a specialized

gynandrium-like structure, with the stigma positioned higher

than the pollen sacs. Currently, key information on the ecology of

insect-pollination in W. villosa remains unclear. In 2016, we

conducted a study on the flowering characteristics of W. villosa

and discovered a diverse range of flower colors. We hypothesized

that a specific pollinating insect could be attracted to the color of the

flowers of W. villosa and pollinate it. In 2017, we identified a small

weevil that exclusively pollinatedW. villosa. In 2024, a new strategy

for pollination was validated using a specific part of the flower with

a UV pattern that attracted a specific pollinating weevil.
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A pollinating weevil (Xenysmoderes sp.) is a specialist pollinating

insect ofW. villosa. A reciprocal pollination system between this weevil

andW. villosa has been identified. Our observations on the behavior of

pollinating weevils of W. villosa revealed that diminutive (ca. 3 mm)

weevils from the genus Xenysmoderes specialize in pollinating flowers.

Based on our evidence that most pollination is performed by the

pollinating weevils, these insects increase the initial fruit set of plants

by 42%. We demonstrated that the pollinating weevil is the most

efficient insect pollinator and mutualistic partner of W. villosa in

Xishuangbanna Dai Autonomous Prefecture, Yunnan Province,

China (Yan Z, unpublished data). Therefore, this system serves as a

research model that is particularly suitable for investigating the effect of

the flower color on the attractiveness of the pollinating weevil in an

exclusively pollinating insect system. Specifically, we raise the following

questions: (1) doW. villosa flowers have ultraviolet flower patterns? (2)

do pollinating weevils prefer visual cues from the host plant flower color

patterns? (3) Can UV patterns on specific parts of the host plant

improve the ability of the pollinating weevil to select a location? (4) Does

the pollinating weevil in this system use a visual pollination mechanism

that relies on a proximity search to locate W. villosa through

color preference?
Materials and methods

Test insects

The Xenysmoderes sp. weevils were collected from the Jinuo

Wurfbainia villosa Planting Base (JN), Xishuangbanna Dai

Autonomous Prefecture, Yunnan Province, China (GPS coordinates,

21°46’1’’N, 100°42’34’’E; Alt., 655 m). The site belongs to the tropical

monsoon climate zone, with an average annual temperature of 22.9°C

and an average annual rainfall of 1440 mm. The rainy season mainly

occurs from May to September, and the planting mode is the natural

understory. Dr. Chunyan Jiang (Institute of Zoology, Chinese Academy

of Sciences) for identifying the weevils, Xenysmoderes sp.

(Supplementary Figure S1 and Supplementary Movies S1) and this

weevil specimen is deposited in the laboratory of Prof. Yang Depo,

School of Pharmaceutical Sciences, Sun Yat-Sen University. The adult

weevils were placed in an insect rearing device and transferred to an

artificial climate chamber with fresh W. villosa flowers. The device was

kept under controlled conditions of 25 ± 1°C, a relative humidity (RH)

of 75 ± 5%, and a photoperiod of light:dark (L:D) of 12 h:12 h. The

reared adults were used as the source of the test insects. We collected

approximately 19,562 adult weevils, which were reared in the laboratory

for 1 week and then used in the experiment; a total of 18,540 adults were

used in the experiment, and the rest continued to be reared for the

establishment of an experimental population of this weevil.
Color selection

Li et al. (2017) investigated the color tendency of Bactrocera tau

using virtual wavelengths and value letters. They implemented a

transformation between the RGB values of the colors and the virtual

wavelengths with improvements. Thirteen colors were selected for
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the experiment, and the virtual wavelengths ranged from 400 nm to

640 nm (see Supplementary Table S1). White was used as the

control. The RGB values of the wavelengths were entered into a

computer system and printed on copper plate paper as test material.
Experimental set-up design

The experimental setup consisted of a monochrome plate and a

screen box. The screen box was 75 cm in length, 50 cm in width, and

50 cm in height. The screen had a mesh size of 0.0750 mm. A

semicircular zipped opening with a radius of 15 cm was mounted on

one side of the rectangle to serve as the insect release hole.
Monochrome plate selection

Robust adult weevils were selected and acclimatized in a dark

box for more than 2 h prior to being placed in the central position at

the bottom of the experimental box. The control color (representing

the control group) and the experimental color (representing the

treatment group) were placed on the outside of the A-side and the

B-side, respectively, with the remainder of the sides covered with

black cardboard. The number of weevils on both side A and side B

were counted 30 minutes after the insects were placed in the box.

The experiments were conducted separately for females and males.

Following each experiment, the inner wall and bottom of the

experimental setup were wiped with 75% alcohol. The A-side and

B-side of the experiment were separately changed in color and

position, and the above experimental operations were repeated until

all 13 colors were tested. The experiments were conducted in a

separate laboratory room at a temperature of 25-28°C. Each release

of 75-120 adult weevils was used as a replicate and repeated seven

times for each color, with only one trial conducted per insect. The

resulting data were recorded and analyzed separately using

statistical methods. On the basis of personal observations, 30

minutes provided sufficient time for weevil activity to begin, and

the results were not sensitive to this specific cutoff. For this reason,

we chose to use the results from the 30-minute data.
Behavioral choices of the weevil in
response to different colors on a trackball
insect behavior record

For the multicolor plate experimental setup, its experimental setup

consisted of a cylindrical structure with openings at both ends. The

outer ring of the cylinder was a rectangle 10.80 cm in width and 17.00

cm in height corresponding to the 10 different colors. Based on the 13

different colors in Supplementary Table S1, A total of 10 test colors

(Table 1) were used, including a white control.

An LC-300 trackball insect behavior recorder (OCKENFELS

SYNTECH GMBH, Germany) was used to monitor behavioral

parameters of the weevil; these included the crawling distance and

speed. The trackball was configured with a 30 cm diameter white ball,

and a color device consisting of 10 test colors was added. The
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experimental conditions were maintained at a temperature of 24-26°C

and a relative humidity of 70%-75%. Prior to the commencement of

the experiment, the insects were allowed to acclimatize to the dark box

for more than 2 h. Thereafter, they were placed in the center of the

trackball. The camera settings were then calibrated and adjusted,

including exposure (-6), brightness (6), contrast (4), white balance,

saturation, focus (auto), offset (5-40), add (0-4), and K-factor (0.2-0.4),

and the light intensity and other main parameters were adjusted to

successfully identify the motor behavior trajectory of each insect using

the device. Then, the insect was placed in the center of the trackball and

allowed to adapt for approximately 60 seconds before the crawling

parameter data were recorded. The behavioral parameters of the insects

were recorded every 300 seconds using a head-mounted trackball. The

crawling behavior of the insects was also recorded using video, and

their color preference was noted. The experiment was repeated six

times for accuracy.
Ultraviolet photographs of flowers and
pollinating weevils

Wurfbainia villosa flowers and Xenysmoderes sp. adult weevils

were collected from the base of JN. The flowers, including the labella,

gynandrium-like structures, and pollen sacs, were photographed under

UV light (UV lamp specification 40 W, Beijing Donglian Har

Instrument Manufacturing Co., Ltd.). The control group consisted of

photographs of the flowers under daylight conditions. The objective of

the experiment was to elucidate the ultraviolet (UV) patterns offlowers

and gynandrium-like structures, including the UV patterns of pollen

carried by weevils.
Behavioral selection of flowers by
pollinating weevils under ultraviolet light

The experiment occurred in a screened experimental box

measuring 75 cm in length, 50 cm in width, and 50 cm in height.
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The box was photographed under UV light. A number of robust

adult weevils were selected and acclimatized in a dark box for more

than 2 h prior to the experiment. They were then placed in the

central position at the bottom of the experimental box (denoted by

o), with the control flowers (paper model flowers were used as a

control). The experimental group consisted of both W. villosa

flowers (the treatment group), and a control group of paper

model flowers placed at the left a-end (15 cm away from the o-

point) and the right b-end (15 cm away from the o-point) at the

bottom of the experimental box. The paper model flowers in the

experiment were made by using flowers with the labellum of W.

villosa removed, and its labellum was replaced with a fake labellum

made of white paper. The number of weevils was counted at both

the a-end and b-end 30 minutes after the insects were placed.

Following each experiment, the inner wall and bottom of the

experimental setup were wiped with 75% alcohol. The positions

of the a-end and b-end were then exchanged, and the above

experimental operations were repeated until the end of the

experimental test. The test was conducted in a laboratory room at

25-28°C. In each replicate, 20-30 weevils were released, and the

experiment was repeated 30 times. Only one test was allowed per

insect, during which the flowers were replaced with fresh ones every

2 h. The experimental data were recorded and statistically analyzed.
Blue sticky boards for the attraction of
Xenysmoderes sp. weevils in the field

To test the attraction effect of the UV pattern of W. villosa

flowers on field weevils, we conducted a series of experiments using

blue-board sticky traps. These experiments were then extended to

the natural breeding area of the weevil in Yunnan, China.

The field experiment occurred at the Jingha Wurfbainia villosa

plantation (JH) (21°89’77’’N, 100°87’87’’E, Alt., 582.6 m), which is

located in the tropical monsoon climate zone. The rainy season is

concentrated from May to September each year. The mean annual

temperature is 22.9°C, and the mean annual rainfall is 1140.2 mm.
TABLE 1 Principal component scores of the pollinator weevil inspired by different colors on the trackball insect behavior recorder.

Test color
Virtual wavelengths
(nm)

Lively factor score
Convergence
factor score

Aggregate score

Light blue 420 2.53 ±0.06 0.43 ±0.15 1.83 ±0.08

Blue 440 1.09 ±0.52 0.56±0.24 0.88 ±0.42

Indigo violet 400 0.00±1.74 0.48±0.33 0.11±1.27

Sky blue 460 0.94±0.04 0.78±0.23 0.84±0.08

Orange 600 -1.30±0.89 -0.54±1.41 -1.02±0.95

Green 540 -2.55±0.58 0.02±0.96 -1.74 ±0.16

Yellow 580 -0.58±1.19 -0.63±0.70 -0.55 ±0.99

Indigo 420 0.09 ±0.83 0.23±0.95 0.11 ±0.80

Red 640 0.11±0.84 -0.44±1.43 -0.03±0.92

White — -0.33±3.86 -0.88 ±2.07 -0.44 ±2.11
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Wurfbainia villosa was grown in a natural understory. The

experimental design is shown in Figure 1A. Three plots were

selected, and each had an area of no less than 2 ha and were

spaced 30 m or more apart. Each plot was divided into 40 squares

measuring 4×4 meters, with a 4-meter interval between each square.

Two sticky boards were placed in each square: one blue sticky board

measuring 25.0 cm in length and 18 cm in width and another white

sticky board of the same dimensions; additionally, the specifications

of the treatment group and the control group were the same. The

sticky boards were erected vertically and placed 2.0 m apart. The

same operation was carried out for 20 plots, with the other 2 plots

set up in the same way as plot 1. The experiment was conducted in

June 2023 at a temperature range of 26-32°C on a sunny day from

8:00 a.m. to 11:00 a.m. The number of weevils captured by the sticky

boards was counted after 24 h.
Statistical analysis

The preference of Xenysmoderes sp. weevils for the different

color cues was assessed by calculating the convergence rate (CR),

which was determined by the following formula:

CR = number of weevils responding in the different color palette

areas/number of weevils supplied for testing

Analysis of variance (ANOVA) was employed to assess the rate

of convergence in the color preferences of the Xenysmoderes sp.
Frontiers in Plant Science 05
weevils for the different wavelengths. Prior to the application of

ANOVA, the normality and heteroscedasticity of the variance were

evaluated. Multiple comparisons of means were subsequently

conducted via ANOVA. When the ANOVA results were

statistically significant, multiple comparisons were made using

Fisher’s protected least significant difference (LSD) test. The

percentage data were transformed to a cosine square root prior to

analysis. A t test was employed to assess the rate of convergence in

color preference for the same wavelength between the weevil males

and females, as well as for experiments involving comparisons

between only two treatment groups. All data analyses were

conducted using the statistical software SAS 9.1 (SAS Institute

1999), with the exception of the trackball insect behavioral

recorder-multicolor selection tests; these tests were analyzed using

the software SPASS18 to perform principal component analysis of

convergent responses to color. Unless otherwise stated, the

significance level for all tests was set at 5%.
Results

Behavioral responses of the pollinating
weevils to different color plates

The results from the study demonstrated that for the

monochromatic plate selection test, the convergence rate of the
FIGURE 1

Blue sticky board attracts weevils to the planting base.(A) Schematic of the field trapping experiment at the Jingha Wurfbainia villosa planting base.
(B) Number of captured weevils in the control (white sticky board) and blue sticky board groups in three blocks. (C) Average number of the captured
weevils per board in the blue sticky board group (n =120 boards); this number was greater than that in the control group (n = 120 boards). All values
are expressed as the mean ± SE. P values were determined by t tests.
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Xenysmoderes sp. weevil females exhibited a significant peak at 460-500

nm and a minor peak at 560-580 nm in their overall color preference

across the different wavelengths. At 480 nm, the tendency rate of this

weevil reached its maximum value (55.20%), and this value was

significantly greater than those of the other treatment groups and the

control group (F1, 13 = 331.64, P < 0.0001). At 560 nm, the tendency rate

of this weevil reached its second largest value (47.02%), and this value

was significantly greater than those of the other treatment groups and

the control group, with the exception of a nonsignificant difference at

500 nm. At 400 nm, this weevil showed a certain preference (27.48%),

which was significantly greater than those of the other treatment and

control groups, with the exception of an insignificant difference at 460

nm (Figure 2). The convergence rate of the male weevil exhibited a

primary peak in overall color preference across different wavelengths

(460-500 nm), and this value was significantly greater than those of the

other treatment and control groups (F1, 13 = 280.74, P < 0.0001). At 540

nm, the tendency rate of this weevil reached the next largest value

(27.71%), which was significantly greater than those of the other

treatment groups and the control group, with the exception that the

difference at 640 nm was not significant (Figure 2).

The main peaks of the convergence rate of the weevil were more

consistent for both females and males. Additionally, both sexes

exhibited a similar color preference pattern, with a clear preference

for the blue color at 480 nm (Figure 2). The wavelengths with the

highest convergence rates were identical for both males and females.

The convergence rate of this weevil reached its maximum at 480 nm,

and this rate was significantly greater than those of the other treatment

groups and the control group (female, F1, 13 = 331.64, P < 0.0001; male,

F1, 13 = 280.74, P < 0.0001). Second, the 560-580 nm region of the green

−yellow color system was the preferred wavelength for the weevil;
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moreover, the females exhibited a significant preference for 560 nm in

yellowish-green color region, and the males exhibited a significant

preference for 540 nm in the greenish color region. Also, some

differences were observed between the two sexes. For the treatment

groups with the same wavelength color, the convergence rates between

both males and females were significantly different (except for 480 nm, t

test, P < 0.05; for the other treatment groups, t test, P < 0.0001).With the

exception of 460 nm, 540 nm and 640 nm, where the convergence rates

of the males were significantly greater than those of the females, the

convergence rates of the females were significantly greater than those of

the males in the remaining treatment groups. These results indicated

that the sensitivity to color differed between males and females.
Behavioral choices of the pollinating
weevils toward different colors as
determined by the trackball insect
behavior recorder

In this study, the convergent selection behavior of pollinating

weevils were measured using ten different colors with a trackball insect

behavior recorder. The following parameters were recorded: average

speed, track length, vector length, straightness, upward length, and

upward straightness. The results from the principal component

analysis, using the maximum variance method for axis rotation,

showed a Kaiser-Meyer-Olkin (KMO) value of 0.683. This result

indicated that the sample capacity collected in this study was

sufficiently large. The approximate chi-square value of Bartlett’s test

of sphericity was 339.464, with a significance level of 0.000, indicating a

high correlation between the original recorded parameters.
FIGURE 2

Convergence rates of male and female adult Xenysmoderes sp. weevils to monochromatic boards. All data are expressed as the mean ± SE. Mean
values with different letters indicate significant differences between the color treatment groups (P < 0.05; Fisher’s LSD). * indicates a significant
difference between the male and female treatment groups (P < 0.05; t test), and ** indicates a highly significant difference between the male and
female treatment groups (P < 0.01; t test).
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During the principal component extraction process, two

principal components were extracted. These components

accounted for 92.802% of the total variance. The first principal

component, also known as the active factor, accounted for 68.417%

of the total variance. The second principal component, known as

the convergent factor, accounted for 24.385% of the total variance.

Table 2 shows the component matrix, and the regression

expressions between the active factor (y1), the convergence factor

(y2), and the original crawling parameters are as follows:

y1 = 0.458ZAverage speed+0.458ZTrack length+0.470ZVector length

+0.405ZStraightness+0.337ZUpward length+0.288ZUpward straightness

y2=-0.248ZAverage speed-0.248ZTrack length-0.238ZVector length-

0.135ZStraightness+0.598ZUpward length+0.667ZUpward straightness

In the above equation, Z represents the normalized raw

crawling parameters.

Our results indicated that the colors with the highest activity factor

scores were light blue, blue, sky blue, red, indigo, indigo−violet, white,

yellow, orange, and green. Similarly, the colors with the highest

tendencies were sky blue, blue, indigo−violet, light blue, indigo,

green, red, orange, yellow, and white. Regarding the composite score,

the colors that rank highest in terms of the insect excitation composite

score, in descending order, were light blue, blue, sky blue, indigo, indigo

violet, red, white, yellow, orange, and green. Evidently, the colors with

high insect-stimulating activity were determined by the activity factor

score, the tropism factor score, and the composite score and were light

blue, blue, and sky blue (Table 1).

In summary, the study results indicate that pollinating weevils have

a preference for colors in the blue family. The most attractive colors for

pollinating weevils were found to be light blue, blue, and sky blue

(Tables 1, 2). These findings were further validated through the use of

the trackball insect behavior recorder method, as shown in Figure 2.
Behavioral selection by the pollinator
weevils on flowers of W. villosa under
UV light

The results of the study indicated that W. villosa has a unique

gynandrium-like flower structure. The stigma protrudes from the

middle of the two petal pollen sacs, and it is taller than the pollen
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sac. The stigma is connected to the pollen sacs and wrapped by a

spatulate labellum. The labellum has a diverse color pattern and has

a prominent and forked yellow−green ear-shaped structure at its tip

(Figures 3A, B). Additionally, the W. villosa flower and its

gynandrium-like structure, including the pollen of the pollen sacs,

exhibited a bluish tinge under UV light compared to the control in

daylight. Furthermore, the two purplish-red lines on the labellum

also showed a bluish tinge under UV light (Figures 3A–D).

Additionally, compared with those of the control, the adult

Xenysmoderes sp. weevils, which have sheath wings and carry W.

villosa pollen, exhibited overall bluish-purple coloration under UV

light, regardless of sex (Figures 3E, F). The selection rate of the

weevil group was significantly greater than that of the control

group. The weevil showed a preference for the UV flower

treatment group, regardless of sex (male, F1, 58 = 33.27, P <

0.0001; female, F1, 58 = 59.43, P < 0.0001; Figure 3G).

W. villosa exploited the UV pattern of its flowers and the diverse

color patterns of its labellum to attract pollinators. The results from

Figure 2 and Tables 1 , 2 were combined with those of Figure 3 and

Tables 1 , 2 to verify that the preference of the weevil for the blue

color family matched the UV pattern of the flowers and the color

patterns of its labellum (Figures 2, 3, Tables 1, 2).
Blue sticky boards for the attraction of
Xenysmoderes sp. weevils in the field

The results of field trapping experiments showed that the blue

sticky board had a strong attraction effect on Xenysmoderes sp.

(Figures 1A–C). Compared with that in the white sticky board

control group, the number of weevils captured in the blue sticky

board treatment group was significantly greater than that in the

control group within 24 h. The number of weevils captured in the

treatment group was greater than 4 per sticky board, while that in

the control group was less than 1 per sticky board (Figure 1B). For

example, in block 3, the blue sticky board treatment group captured

the greatest number of weevil adults in 24 h, and the number of

weevil adults captured was 7 per sticky board (Figure 1C).
Discussion

The results from our indoor and field experiments indicated

that the Xenysmoderes sp. weevil exhibited a preference for the blue

color scheme, and a significant preference for the 480 nm blue color

was observed in both males and females. Second, the 560-580 nm

region of the green−yellow color system was shown to be the

preferred wavelength for the weevil, and females exhibited a

significant preference for the yellowish-green color at 560 nm.

Our new method involving the use of a trackball insect behavior

recorder + swatch device further confirmed that the weevil also

preferred the blue color scheme in its natural locomotion state. The

UV pattern of the flower, particularly its unique gynandrium-like

structure and labellum, was highly attractive to the weevil. Field

experiments confirmed that the pollinating weevil showed a

significant preference for blue plates. Therefore, our study
TABLE 2 Component matrices for the principal component analysis of
the crawling parameters of Xenysmoderes sp. weevil.

Test indicators Ingredients

Active factor Convergence
factor

Vector length 0.951 -0.288

Average speed 0.928 -0.300

Track length 0.928 -0.300

Straightness 0.821 -0.163

Upward straightness 0.583 0.807

Upward length 0.682 0.723
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clarified that the weevil has a visual preference for the blue color

scheme and that the host plant W. villosa has UV patterns in its

flowers and a specialized gynandrium-like structure, which

significantly attracts the weevil. Thus, we discovered that the host

plant W. villosa attracted pollinating weevils through the UV

patterns in its specialized gynandrium-like structure in the W.

villosa - Xenysmoderes sp. weevil specialized pollination system.

Additionally, we revealed that pollinating weevils were drawn to the

blue color schemes of flowers through the UV signal of the host

plant. The visual pollination mechanism of the pollinating weevil

was revealed through the UV signals emitted by the host plant’s

flowers, aiding in proximity searching and localization. Wurfbainia

villosa is a representative plant that is self-compatible and prone to

insect pollination. Its flower pattern is unique and reflects the

subtlety of the evolution of its pollination strategy. The

specialized gynandrium-like structure is a key feature of this

exclusively reciprocal pollination system. This model serves as a

representative example and provides a new perspective for studying

the adaptive evolution of the plant-pollinator reciprocal system.

In studies of adaptive evolutionary relationships between

plants and pollinators, pollinator selection pressures have played

an important role in evolution (Darwin, 1862; Schiestl and

Johnson, 2013; Ramos and Schiestl, 2019). Several researchers

have suggested that pollinator-mediated selection behavior for

color preference is a key driver of floral pattern evolution (Grant

and Grant, 1965; Lunau et al., 1996; Waser et al., 1996; Weiss, 1997;

Schemske and Bradshaw, 1999; Fenster et al., 2004; Pohl et al.,

2008; Ings et al., 2009; Kay and Sargent, 2009; van der Niet and
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Johnson, 2012; Gervasi and Schiestl, 2017; Johnson et al., 2020).

Our findings showed that the pollinator Xenysmoderes sp. weevil

preferred the blue lineage in an exclusive pollination system. This is

the first report of the color preferences of an ancient pollinating

beetle in such a rare, exclusive pollination system. The results from

our study align with the tendency of generalized pollinating insects

to favor flower UV-style patterns, as noted by Koski and Ashman

(2014) and Peterson et al. (2015). Compound eyes are important

visual sensory organs in insects whose main function is to

discriminate between colors, shapes and other visual cues

(Briscoe and Chittka, 2001), and their shape, size, color, number

of auricles and photoreceptor cells can influence the size, acuity

and sensitivity of an insect’s vision (Rutowski, 2000; Briscoe and

Chittka, 2001; Xue et al., 2015). Therefore, we hypothesize that one

of these factors must have influenced the color preference of this

weevil. However, they contrast with the inclination of bees and

birds toward yellow flowers, as observed by Papiorek et al. (2016).

Different pollinator species exhibit similarities or differences in

color preference, which may be related to biological factors such as

the structure of their visual system (Briscoe and Chittka, 2001),

flower structure and color patterns (McCrea and Levy, 1983;

human-visible Asker, 1985; Lunau et al., 2009 ; Koski and

Ashman, 2016; Koski, 2020), as well as the selection pressure of

pollen-feeding animals (Vernon and Gillespie, 1990; Johnson et al.,

2008; Farnier et al., 2014). Therefore, future studies investigating

the evolutionary relationships between different pollinator systems

and flower color patterns need to integrate the multifaceted effects

of biological and other factors.
FIGURE 3

Flower color selection behavior of pollinators in a specialized pollinating mutualisms, Wurfbainia villosa – Xenysmoderes sp. weevil. (A), W. villosa
flower and its gynandrium-like structure (red box); L is the labellum. (B), Diagrammatic representation of the gynandrium-like structure of a W.
villosa flower, where S is the stigma, P is the pollen sac, and Dsp is the distance from the tip of the pollen sac to the stigma. (C), Photograph of a W.
villosa flower, along with the fuchsia double line on the flower’s labellum and the protruding and forked yellow−green ear-shaped structure at the
tip of the labellum (red squares). (D), Photograph of a sunburst sand flower under UV light, along with the blue-tinted double line on the flower’s
labellum and the protruding and forked yellow−green ear-shaped structure at the tip of the labellum (red squares). (E), Photograph of a sunlit
Xenysmoderes sp. Weevil (white arrow indicates pollen). (F), Photograph of a UV-lighted weevil (white arrow indicates pollen), and (G), Convictive
selection of the weevils on the flower and a control (pseudoflower) under UV light. All data are ± SEs. Different capital letters and lowercase letters
indicate significant differences (P < 0.01, t test); * indicates significant differences (P < 0.05, t test).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1432263
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yue et al. 10.3389/fpls.2024.1432263
The findings from this study indicate thatW. villosa flowers exhibit

UV patterns, particularly at sites with special gynandrium-like

structures. Additionally, the pollinating weevil displays a significant

preference for the flower, particularly at the site of the gynandrium-like

structure. The flowers attract the pollinator weevil through UV

patterning and the evolution of specialized gynandrium-like

structures. Host plant flowers have evolved pollinator-attractive

colors or structures mediated by selection pressure for pollinator

color preferences; for example, some flowers have evolved

representative ‘Bull’s-eye’ patterns to attract their pollinators

(Manning, 1956; Dinkel and Lunau, 2001; Lunau et al., 2009; Koski

(2020), while some plants have evolved human-visible or UV bull’s-eye

patterns to attract pollinators (Asker, 1985; Koski and Ashman, 2016;

Koski, 2020). These patterns are related to the visual system of

pollinators. Our results revealed a new structural and ecological

function of the specialized gynandrium-like structure evolved by the

flower. This structure attracts pollinators to the pollinator weevil, in

addition to the reproductive function of its UV patterns, in a phallicW.

villosa-weevil exclusive reciprocal pollination system. The diversity of

the pollinator-mediated adaptive strategies for plant flower color

patterning and structure is evident.

However, some flower-specific color signals can attract

particular herbivores (Raguso, 2008). This can endanger the

plant’s reproductive organs and reduce its reproductive success

(Gómez, 2003; Irwin et al., 2003). This selective pressure from

pollinators may have changed in intensity and direction due to

herbivore feeding (Strauss, 1997; Hambäck, 2001; Herrera et al.,

2002; Irwin et al., 2003; Irwin and Strauss, 2005; Agren, 2019;

Ramos and Schiestl, 2019). The diversity of floral patterns evolves

due to a balancing effect under the co-selective pressure of

reciprocators and antagonists, as well as the variability in the

evolution of the floral traits in host plants. This effect has been

demonstrated by various studies (Fineblum and Rausher, 1995;

Irwin et al., 2003; Caruso et al., 2010; Veiga et al., 2015; Ramos and

Schiestl, 2019). Agren et al. (2013) and Vaidya et al. (2018)

demonstrated the importance of pleiotropic influences from both

biotic and abiotic factors in achieving a balanced strategy of

evolutionary stability while maintaining evolutionary costs

(Simms and Bucher, 1996; Strauss and Whittall, 2006).

Our study revealed that W. villosa flowers exhibited UV

patterns, including a specialized gynandrium-like structure

(Figures 3A, B), which attracted pollinating weevils. Additionally,

the flowers had a variety of colors, including color patches, patterns,

and veins on the labella. For example, the labellum has apical,

middle, and basal color patches, with a prominent and forked

yellow−green ear-shaped structure at its tip. In particular, the

labellum has a high and striking yellow−green tip. The diversity

of structures and colors in this labellum is determined by the curved

ridge raised at the middle of the labellum, a pair of two nearly

parallel lines extending across the entire labellum, and the two

curved ridges appearing in a purplish-red color, as well as a blue tint

in the UV pattern. The pollinating weevil is attracted to the diverse

structure and color of the flower. The color pattern on the flower’s

labellum helps the weevil detect the flower and then shows the

correct direction to increase the chances of its successful

pollination. This is due to a system of specialized pollinating
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insects. These findings are consistent with previous studies on the

ecological roles of petal color patterns in attracting pollinators in

other species (Manning, 1956; Lehrer et al., 1995; Hansen et al.,

2012; Koski and Ashman, 2014). However, further systematic

investigations and related assessment studies are needed to

determine whether the flower color patterns of W. villosa can also

discourage nectar predators and deter or attract floral predators.

The plants have diversified strategies for attracting pollinators.

Pollinating insects use olfactory signals to locate host plants, and

these signals are especially important for long-distance localization

(Salzman et al., 2020). The results indicated that the visual

pollination mechanism of the pollinating weevil was revealed

through visual cues emitted by the host plant’s flowers, aiding in

proximity searching and localization. The results of our study are

similar to those reported by Koski and Ashman (2014). Pollinating

insects often need to combine olfactory signals with visual cues at

close range to locate hosts (Koski and Ashman, 2014). Weevils are

among the oldest pollinating insects and are often used as a classic

model for studying animal-plant evolutionary relationships

(Salzman et al., 2020). These specific pollination systems are

representative but relatively rare and have been found only in

individual plant lineages (Dhileepan, 1994; Yue et al., 2015;

Nunes et al., 2018; Haran et al., 2020; Salzman et al., 2020). The

mechanism by which pollinating weevils locate host plants through

specific mediating compounds has been identified through long-

distance searches (Salzman et al., 2020). However, the mechanism

by which pollinating weevils use visual cues and olfactory signals to

cooperative search strategy for and locate host plant flowers in

exclusive pollination systems remains one of the priorities for

future research.
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