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Deep networks play a crucial role in the recognition of agricultural diseases.

However, these networks often come with numerous parameters and large

sizes, posing a challenge for direct deployment on resource-limited edge

computing devices for plant protection robots. To tackle this challenge for

recognizing cotton diseases on the edge device, we adopt knowledge

distillation to compress the big networks, aiming to reduce the number of

parameters and the computational complexity of the networks. In order to get

excellent performance, we conduct combined comparison experiments from

three aspects: teacher network, student network and distillation algorithm.

The teacher networks contain three classical convolutional neural networks,

while the student networks include six lightweight networks in two categories

of homogeneous and heterogeneous structures. In addition, we investigate

nine distillation algorithms using spot-adaptive strategy. The results

demonstrate that the combination of DenseNet40 as the teacher and

ShuffleNetV2 as the student show best performance when using NST

algorithm, yielding a recognition accuracy of 90.59% and reducing FLOPs

from 0.29 G to 0.045 G. The proposed method can facilitate the lightweighting

of the model for recognizing cotton diseases while maintaining high

recognition accuracy and offer a practical solution for deploying deep

models on edge computing devices.
KEYWORDS

cotton diseases, deep learning, model compression, knowledge distillation,
spot-adaptive
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1 Introduction

Cotton is a vital commodity in both the agriculture and textile

sectors, and is an indispensable necessity for life (Feng et al., 2022).

Records from the National Bureau of Statistics of China show that

the cotton plantation has remained around 3.2 million hectares for

the past seven years, achieving a peak output of 6.096 million tons

in 2018. The diseases directly impact cotton yield and quality, with

more than 80 known diseases and more than 20 frequent diseases

(Li et al., 2017). To effectively prevent and control cotton diseases, it

is essential to employ advanced technology for disease recognition.

Currently, field-based investigations of cotton diseases rely largely

on plant protection experts, which is time-consuming, labor-

intensive, and suffer from poor timeliness. This method also faces

difficulties in timely execution across wide areas, and the

classification of disease severity is prone to subjective interference

from investigators, which somewhat compromise the accuracy of

disease monitoring (Shoaib et al., 2023).

With the field of computer vision is rapidly advancing, a large

number of crop disease recognition and diagnosis studies have been

conducted by researchers in various countries (Wani et al., 2022).

The current mainstream disease recognition method is to use deep

learning (Hinton and Salakhutdinov, 2006). Deep neural

demonstrate excellent performance in image recognition and

classification, specifically in agriculture (Ferentinos, 2018; Liu and

Wang, 2021). The commonly used deep neural networks include

AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and

Zisserman, 2015), ResNet (He et al., 2016), DenseNet (Huang

et al., 2017), and so on.

Mohanty et al. (2016) trained a deep convolutional neural

network to recognize 38 diseases of PlantVillage which is an open

plant disease dataset, and found that the trained GoogleNet model

achieved 99.35% accuracy, thereby establishing the method’s

feasibility. Zhang et al. (2019) built a model based on AlexNet

model to effectively classify and recognize six cucumber leaf

diseases. Ramcharan et al. (2019) trained a CNN recognition

model and used it in a mobile application. The accuracy of

disease images and videos achieved 80.6% and 70.4%,

respectively. Jiang et al. (2020) used the convolutional neural

networks for image feature extraction of diseased rice leaves, and

then applied SVM to classify and predict four rice diseases. The

average correct recognition rate of the model reached 96.8%. Zeng

et al. (2022) proposed the SKPSNet-50 network model to solve the

problem of small and irregular early leaf spots in the maize leaf, and

the recognition rate of leaf spots reached 92.90%. Tang et al. (2023)

introduces the development and application of precision agriculture

techniques for pest and disease control. By utilizing methods such

as maize disease recognition based on HSCNN+, intelligent

monitoring systems, and UAV hyperspectral remote sensing

images, they have significantly enhanced the accuracy and

efficiency of disease recognition and monitoring, thus promoting

sustainable agricultural development. Chintalapudi et al. (2023)

proposed voice biomarkers based on improved feature selection

techniques for predicting Parkinson’s disease (PD). Their study

analyzed voice data using Support Vector Machines (SVM) and

Random Forest (RF) models, significantly improving the accuracy
Frontiers in Plant Science 02
of PD prediction, demonstrating substantial potential in early

recognition and diagnosis. Lu et al. (2023) used a modified

EfficientNet to recognize healthy and diseased leaves of cotton

Verticillium wilt while extracting image features, and it was found

that the model achieved 93.00% accuracy in classifying healthy and

diseased leaves. The aforementioned experiments all confirm that

the application of convolutional neural networks to plant

disease identification can effectively assist in plant disease

recognition efforts.

Too et al. (2019) compared deep learning architectures such as

VGG16, InceptionV4, ResNet50, ResNet101, Resnet152 and

DenseNet121 based on PlantVillage. The data used for the

experiment consisted of 38 plant diseases. The experimental

results show that the DenseNet architecture has fewer parameters,

shorter computation time, and the highest test accuracy of 99.75%.

Ferentinos (2018) evaluated five CNNs-AlexNet, AlexNetOWTBn,

GoogleNet, Overfeat, and VGG-using the PlantVillage dataset.

According to their study, VGG emerged as the best model with

an accuracy of 99.53%. Liang et al. (2019) constructed a multi-

functional classification model of plant leaves based on the

ResNet50 network, and estimated the plant species, disease

species and disease severity respectively. The overall accuracy was

91%, 98% and 99%, respectively. Bhatt et al. (2017) compared the

performance of four networks-VGG19, InceptionV3, Xception, and

ResNet50-in terms of accuracy, model size, memory utilization, and

inference time. Among these, ResNet50 achieved the highest

accuracy of 99.7% on the tomato dataset.

VGG16, ResNet164 and DenseNet40 are very popular networks

in the tasks of image classification and have been extensively studied

to demonstrate high accuracy for plant disease identification.

With the increase of the parameters and complexity of neural

networks, the computational and storage capabilities of the system

are facing great challenges. These models can basically only run on

the PCs and it is difficult to run them directly on the edge devices. In

order to realize the application of deep models in the agricultural

field, the models are generally compressed and deployed on the edge

devices (Liu et al., 2021). Model compression technology solves the

problem of model cost by reducing both the model parameters and

computations. Nowadays, the mainstream model compression

methods are knowledge distillation (KD), lightweight network

architecture, pruning and quantization. Chen et al. (2022)

proposed a model combining channel attention and channel

pruning for disease identification. The model achieved 99.7%

accuracy on PlantVillage and 97.7% accuracy on a local peanut

leaf disease dataset. Compared to the base ResNet18 model, floating

point operations (FLOPs) were reduced by 30.35%, parameters were

reduced by 57.97%, and model size was reduced by 57.85%. Chao

et al. (2021) designed a lightweight network to recognize apple leaf

diseases. The network was found to have an average classification

accuracy of 97.01%, which is much higher than MobileNetV1 and

ShuffleNet, and has the least number of parameters. Zhu et al.

(2022) compressed the cotton disease recognition model by pruning

algorithm. It was found that when the pruning rate was 80%, the

accuracy of all the models used was improved, and DenseNet40 had

the best performance, the highest accuracy, and the lowest number

of model parameters.
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Knowledge distillation (Hinton et al., 2015), which serves as a

prominent technique for model compression, effectively transfers

the intricate knowledge encoded within the cumbersome teacher

model to a more streamlined student model. This transfer is

achieved by designing the student model to closely emulate the

output of the teacher model, thereby ensuring maximum retention

of valuable information. Based on ensuring the model’s accuracy,

the size and computation load of the model are substantially

reduced. Tang and Huang (2021) used tomato diseases in

PlantVillage dataset as the researched object, and utilized the

knowledge distillation method for training, and compared five

kinds of networks such as AlexNet and VGG16. The results

demonstrate that the distilled custom model exhibits remarkable

accuracy in both identifying and localizing leaf disease areas,

highlighting its efficacy in precision agriculture applications. The

average recognition accuracy reached 97.6%, and the model size was

only 4.4 M. Peng and Wang (2021) used pruning to reduce the

neural network size and computational cost, and then re-trained the

model through knowledge distillation to reduce the performance

loss. Wang et al. (2021) proposed a DNN-based compression

method using a lightweight fully connected layer to accelerate

inference, pruning to remove redundant parameters, knowledge

distillation to improve accuracy, and then quantization to further

compress the model, which ultimately compresses the model to 0.04

Mb with an accuracy of 97.09%. Dai and Fan (2022) proposed a new

network structure YOLO V5-CAcT to recognize crop diseases.

Knowledge distillation is used to reduce the loss of accuracy, and

then the average recognition accuracy is 94.24% by continuing to

optimize the model. The model size is only 2MB, which is 88% less

compared to the original model. Li and Ai (2022) used

MobileNetV3 as the student model and ResNet101 as the teacher

model for knowledge distillation. The accuracy on the data

validation set reached 98.8%, and the model size was 23M.

In this study, they are selected as the teacher models of cotton

disease recognition for knowledge distillation. Two kinds of

lightweight networks, including the homogeneous and the

heterogeneous networks, are selected as the student networks.

The homogeneous networks with the same structure as the

teacher networks include VGG8, ResNet8, and DenseNet10, while

the heterogeneous networks include MobileNetV2 (Sandler et al.,

2018) and ShuffleNetV2 (Ma et al., 2018). The latter two lightweight

networks, are designed with a strong emphasis on improving

computational efficiency and reducing runtime memory. First, we

train the teacher models over the plant disease dataset. Then, in

order to facilitate the knowledge transfer from a teacher model to a

student model and achieve excellent classification performance, we

employ spot adaptive strategy for the nine knowledge distillation

algorithms. During the whole distillation process, this strategy can

adaptively determine the distillation spot of a teacher model and

improve the optimization efficiency. We compare the classification

performances of the student models achieved from the different

knowledge distillation algorithms, and try to find the optimal

combination of knowledge distillation algorithm and network

structure that satisfies the requirements of high accuracy, high

inference speed, and small storage space, and realizes the
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identification of cotton diseases while satisfying the deployment

situation of edge devices.

The rest of the paper is organized as follows: in Section 2, we

introduce the material and methodology, including experimental

data, introduction of the teacher networks used in our study,

generic knowledge distillation algorithms, spot-adaptive

knowledge distillation algorithms and evaluation metrics. Section

3 describes the experimental setup and results. The student

networks include homogeneous and heterogeneous lightweight

networks. We compare the compression effect and recognition

accuracy of the teacher-student combination models with

different distillation algorithms. Section 4 summarizes the work of

this paper.
2 Materials and methods

2.1 Database

The cotton disease dataset used in our study encompasses a

diverse range of images, including those sourced from the internet

as well as those captured firsthand in agricultural fields. Image

acquisition is carried out using an industrial-grade camera (model

MS-SUA133GC, resolution 1280×1024 pixels) and a fixed focal

length lens (model FA5M06, 5 megapixels, 6 mm focal length). The

images are captured from May to August over 2021-2022.This

dataset contains the healthy and seven kinds of diseases and with a

total of 2,151 images. The image sizes are all resized to 32×32 in the

experiment. Some of the original images are shown in Figure 1.

The self-built cotton disease dataset encompasses eight distinct

categories, exhibiting the following distribution of images: 34 instances

of areolate mildew, 418 cases of curl virus, 499 occurrences of bacterial

blight, 264 instances of brown spot, 58 target spot samples, 419

fusarium wilt cases, 34 verticillium wilt samples, and 425 depictions

of healthy leaves. It is noteworthy that the dataset does not exhibit a

uniform distribution of images across these categories. Consequently,

during the training phase, there exists a potential risk of the trained

model exhibiting a bias towards categories that are represented by a

higher number of image samples. This imbalance in the dataset’s

categorical representation may have significant implications on the

model’s overall performance and generalization capabilities. To solve

the problem, data enhancement methods such as rotation, random

color, and horizontal flip are employed to expand the number of

samples of the categories with the small samples. The enhancement

example is shown in Figure 2.

The augmented dataset comprises 170 instances of areolate

mildew, 418 cases of curl virus, 499 occurrences of bacterial blight,

264 instances of brown spot, 357 target spot samples, 419 fusarium

wilt cases, 170 verticillium wilt samples, and 425 depictions of

healthy leaves. Subsequently, for the sake of brevity and clarity in

our discussions, we shall refer to this self-constructed cotton disease

dataset as SCDD (Self-built Cotton Disease Dataset).

In our experiments, the images of each category in SCDD are

divided into a training set and a test set according to a ratio of 8:2,

with 2,181 images in the training set and 542 images in the test set.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1433543
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1433543
2.2 Knowledge distillation

Network Compression refers to the process of reducing the size

and computational complexity of neural network models through

various techniques and methods while aiming to maintain their

performance. The goal of network compression is to enable deep

learning models to operate more efficiently in resource-constrained

environments (such as mobile devices and embedded systems),

thereby reducing storage requirements, computational costs, and

energy consumption.

The network compression technique employed in this study is

based on spot-adaptive knowledge distillation. Knowledge

Distillation is a process where a smaller neural network (referred

to as the Student Model) is trained to emulate a larger neural

network (referred to as the Teacher Model). The Teacher Model is

characterized by its large size, computational complexity, and

superior performance, while the Student Model is smaller,

structurally simpler, and relatively less performant. Through this
Frontiers in Plant Science 04
emulation process, the Student Model typically achieves

comparable accuracy to the Teacher Model while significantly

reducing the number of model parameters. Hence, knowledge

distillation effectively compresses the model.

2.2.1 Knowledge distillation algorithm
The knowledge distillation algorithm exploits the feature

interpretability of teacher-based models to transform the training

dataset into soft labels, simplifying the data representation and

preserving important features. When training the student model,

the original data is no longer used. However, the soft labels are

directly used as the objective function to reduce the overfitting of

the student model. The knowledge distillation algorithm can not

only reduce the size of the student model but also improve the

inference speed. In addition, it can improve the generalization

performance of the small model to achieve higher accuracy and

efficiency with limited computational resources. In this paper, a

variety of knowledge distillation algorithms are used for
FIGURE 2

Data augmentation operations.
FIGURE 1

Partial images of self-built cotton disease dataset (A) Healthy, (B) Areolate mildew, (C) Curl virus, (D) Verticillium wilt, (E) Brown spot, (F) Target spot,
(G) Fusarium wilt, (H) Bacterial blight.
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comparative experiments in order to obtain the best performance

for cotton disease recognition on the compressed model. The

considered algorithms include FitNets (Romero et al., 2015),

Attention Transfer (AT) (Zagoruyko and Komodakis, 2017),

Neuron Selective Transfer (NST) (Huang and Wang, 2017),

Probabilistic Knowledge Transfer (PKT) (Passalis and Tefas,

2018), Factor Transfer (FT) (Kim et al., 2018), Relational

Knowledge Distillation (RKD) (Park et al., 2019), Similarity-

Preserving (SP) (Tung and Mori, 2019), Correlation Congruence

(CC) (Peng et al., 2019), and Variational Information Distillation

(VID) (Ahn et al., 2019).

2.2.2 Spot-adaptive knowledge distillation
Distillation strategies can be broadly categorized into one-spot

distillation and multi-spot distillation based on the number of

distillation spots, as shown in Figure 3. One-spot distillation uses

only one layer in the teacher model, and multi-spot distillation is
Frontiers in Plant Science 05
acquiring knowledge from multiple layers of the teacher network to

provide more supervisory signals to the students. The multi-spot

distillation method obtains more information from the teacher than

one-spot distillation, so it is generally assumed that they will

perform better when training student networks. Both one-spot

distillation and multi-spot distillation algorithms involve human

determination of distillation spots, which may lead to the problem

of insufficient teacher supervision if the location of the determined

spots is too sparse and over-regularization if the determined spots

are too dense. To address this problem, we use a new strategy for

compressing the disease identification model called spot-adaptive

distillation (Song et al., 2022).

The fundamental concept of this strategy involves the automatic

determination of the distillation location and the merging of the

student and teacher models into a multipath routing network. The

routing network, illustrated in Figure 4, offers multiple paths to the

output layer when data is input. Moreover, a lightweight decision
FIGURE 3

A Schematic of knowledge distillation.
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network is employed to determine the optimal propagation path for

each sample as it reaches a branch spot in the network. If the

decision network passes the data to the layer of the teacher model, it

indicates that the layer in the teacher model cannot yet be directly

replaced by the corresponding layer in the student model and that

the knowledge from the teacher layer needs to be distilled to the

corresponding student layer. While the decision network passes

data to the layers of the student model, it indicates that the layers of

the student model can be directly replaced with the layers of the

teacher model, yielding excellent or similar performance, and that

distillation can be performed without these layers. This algorithm

focuses on the location of distillation, rather than the distillation

content that existing research focuses on, so it can be combined

with current major distillation algorithms.

The image classification convolutional neural network typically

consists of the convolutional block, fully connected layer, and

softmax layer. Following the convolutional layer, there will be an

activation layer and a batch normalization layer to compress the

feature map. The functions of the teacher model T and student

model S can usually be expressed as Formulas 1 and 2:

T = S ∘ Ft ∘Bt
N ∘⋯ ∘Bt

1 (1)

S = S ∘ Fs ∘Bs
N ∘⋯ ∘Bs

1 (2)

Where S denotes the softmax function, F denotes the linear

function, Bi represents the basis function of the i-th block.

Superscripts s, t denote the student model and the teacher model,

respectively. ∘   represents the combination operation of a function.

The multipath routing network M consists of a student

network S and a teacher network T . Its basic function is

represented as:

M = S ∘ F̂ ∘ B̂N ∘⋯ ∘ B̂ 1 (3)

F̂ = wFt + (1 − w)Fs (4)

B̂ i = wiB
t
i + (1 − wi)B

s
i , 1 ≤ i ≤ N (5)
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Where w and wi are the feature fusion weights generated by the

decision network, bounded by [0, 1]. When the feature fusion

weights take discrete values of {0, 1}, the network turns into a

combinatorial network whose layers consist of interwoven

connected teacher and student layers.

The decision network consists of a lightweight, fully connected

layer whose output is an N+1 two-dimensional routing vector,

where N+1 denotes the number of branch spots, i.e., the number of

candidate distillation spots. Each routing vector is a probability

distribution from which a categorical value is randomly drawn to

determine the data flow path of a branch spot in the

routing network.

Spot adaptive distillation is performed by simultaneously

training the routing and decision networks. The overall objective

function is:

L = Lstudent + b1LKL + b2LKD + b3Lrouting (6)

Where Lstudent is the cross-entropy loss between the student

model goals and predictions, LKL is the KL scatter between the

teacher model predictions and the student model predictions, LKD is

the distillation loss of existing knowledge imposed on the

intermediate layer, Lrouting is the cross-entropy loss between the

goals and the routing network predictions, b2, b1 and b3 are

hyperparameters that weigh these loss functions.
2.3 Teacher networks

In general, the larger the model for deep learning, the higher the

accuracy of disease recognition. We use three classical large-

parameter convolutional neural networks as the teacher networks,

including VGG16, ResNet164, and DenseNet40, to train a high-

precision disease recognition teacher model. Compared to other

deep learning networks, these models have been demonstrated to be

very competitive in plant disease recognition. The last layers of

three networks are modified to adapt to the classification task of

eight cotton diseases.
FIGURE 4

Overview of the spot adaptive knowledge distillation method.
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VGG16 comprises a total of thirteen convolutional layers, three

fully connected layers, and five pooling layers. The activation

function used throughout is the ReLU function, exhibiting a

simple structure. The convolutional and fully connected layers are

often referred to as weight layers. In this network, the main

responsibility of the thirteen convolutional layers and five pooling

layers is feature extraction, while the three fully connected layers are

dedicated to the classification task. VGG16 adopts small 3×3

convolutional kernels and 2×2 pooling kernels for all its

convolutional layers. The stacking of multiple convolutional and

pooling layers creates a deeper network structure. This

configuration not only helps to reduce the number of parameters

but also enhances the network’s fitting and representation

capabilities through increased nonlinear mapping. Figure 5

illustrates the VGG network structure. The VGG16 model utilized

in this study is a modified version of the original VGG, which is

smaller in size compared to the classical VGG16 model.

ResNet is a residual network formed by adding jump

connections based on ordinary networks. ResNet is easier to

optimize than normal networks and the performance will not

decrease with increase of the network depth. ResNet introduces a

residual module to solve the problem of training difficulty and slow

convergence due to deeper layers. The ResNet network structure is
Frontiers in Plant Science 07
shown in Figure 6. In this study, a 164-layer pre-activated pre-

ResNet framework with a bottleneck structure is used.

DenseNet is to connect the output of each layer directly to the

input of each layer behind. These inputs are not directly

arithmetically summed, but spliced in feature dimensions,

reducing the possibility of gradient vanishing. Furthermore, the

incorporation of the bottleneck layer, translation layer, and a small

growth rate serves to streamline the network architecture and

minimize the number of parameters, thereby enhancing its

efficiency. DenseNet has extremely high parameter utilization and

shows no overfitting or accuracy degradation when increasing the

number of layers. The structure of the DenseNet network is

depicted in Figure 7. In this study, a DenseNet40 with only 40

layers is constructed.
2.4 Student networks

A few parameters, low complexity and fast training speed

characterize student models. The operation of small network

models on edge devices depends on the devices’ computing power

and memory size. Some high-end edge chips’ computing power and

memory size can already support certain small-scale neural
FIGURE 5

Schematic diagram of the structure of VGG.
FIGURE 6

Schematic diagram of the structure of ResNet.
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networks. Zhang et al. (2021) introduced a streamlined fruit

recognition algorithm tailored exclusively for edge computing

devices, which has a parameter count of 5.96M, the smallest

among the comparative network models, and is used in NVIDIA

Jetson Xavier NX, NVIDIA Jetson TX2, and NVIDIA Jetson NANO

edge devices to accomplish target recognition. Mao et al. (2023)

developed an Android application RTFD-CPU, assessed the real-

time growth conditions of tomatoes and strawberries. on the

smartphone Redmi K30pro (Snapdragon 865 and 8 GB RAM).

The size of the quantitative RTFD model is 1.33 MB. Overall, the

size of the model running on edge devices is basically in the order of

MB or smaller.

In the experimental phase, we designed comparative experiments

for homogeneous and heterogeneous structures. A homogeneous

structure refers to network models in which the layers have very

similar or identical structures and configurations. However, due to the

uniformity of layer structures, such models may lack flexibility and

might not fully capture the diversity and complex features of the data.

A heterogeneous structure refers to networkmodels in which the layers

have different structures and configurations. The advantage of this

approach is that by optimizing the structure and configuration of

different layers, it is possible to better capture the complex features of

the data, thereby improving model performance.

MobileNetV2 and ShuffleNetV2 are classic lightweight neural

networks optimized for the needs of mobile and embedded devices,

offering efficient and accurate inference capabilities in resource-

constrained environments. MobileNetV2, introduces depth wise

separable convolution and inverted residual structures, significantly

reducing computational load and parameter count. ShuffleNetV2

addresses bottlenecks in channel communication by incorporating

channel shuffle and grouped convolution techniques, which

significantly enhance the model’s computational efficiency and

throughput. Both models exhibit substantial differences from the

aforementioned teacher models in terms of design philosophy,

architectural complexity, computational efficiency, and application

scenarios, making them typical examples of heterogeneous structures.

Thus, we select MobileNetV2 and ShuffleNetV2 as student models in

the heterogeneous experiments. For the homogeneous structure

experiments, we choose smaller networks with the same structure as
Frontiers in Plant Science 08
the teacher networks, specifically VGG8, ResNet8, and DenseNet10, as

the student models.

Figure 8 illustrate depth wise separable convolution of

MobileNetV2, while Figure 9 shows the ShuffleNetV2

network structure.
2.5 Evaluation metrics

We evaluate the performance of the compressed models by the

accuracy, the number of floating-spot operations and the

model size.

The accuracy of model reflects the accuracy of model

prediction. It refers to the percentage of the number of correct

model predictions in the total number of data under certain

experimental conditions. The formula is as follows:

Accuracy   =   TP
TP+FP � 100% (7)

Where TP refers to the number of correct predictions

successfully made by the recognition model, and FP refers to the

number of incorrect predictions made by the recognition model.

The higher the Accuracy, the better the performance of the model.

Floating point operations (FLOPs) are the number of

computations during the actual operation. The index used to

measure the complexity of the model, and can also be interpreted

as the computational workload. This value is calculated based on

the depth of the model. The formula for each convolutional layer is

as follows:

FLOPs   =   2HW(Cink
2 + 1)Cout (8)

Where Cin indicates the quantity of input channels, k refers to

the size of the convolution kernel, HW refers to the height and

width of the feature map. Cout presents the number of

output channels.

The calculation formula of the fully connected layer is as

follows:

FLOPs   = (2� I−1)� O (9)
FIGURE 7

Schematic diagram of the structure of DenseNet.
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Where I represents the quantity of input units, and O represents

the quantity of output units.

Model size is the model’s size, independent of the size of the input

image, describing the memory required. The computational resources

of the edge device’s memory are extremely limited, and if the model is

too complex, it cannot be loaded into the device’s memory.

To meet the application requirements of edge devices, it is

essential for the compressed model to have a high classification

accuracy, as well as small FLOPs and model size.
3 Experimental results and discussion

3.1 Experimental setup

All the settings are kept the same in distillation experiments;

the batch sizes of the experiments are 64, the total epoch is 100,
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and the learning rate is 0.01. The learning rate is decayed by a

factor of 0.1 at the 50th, 70th, and 90th epoch, and the

temperature value is set to 4. The hyperparameter sum in Fml.

(6) is set to 1, based on the distillation method setup. The

development environment consists of the following components:

the operating system is Ubuntu 18.04.6 LTS 64-bit, the

programming language is Python 3.7, the deep learning

framework is PyTorch 2.0.0, and the integrated development

environment is PyCharm 2020.1.5. The hardware of the

computer used for training is configured as follows: an Intel® I7

12700KF CPU @ 2.10GHz x64 processor, 64GB RAM, and an

NVIDIA RTX 3090. In the experiments, the spot-adaptive strategy

and nine typical distillation algorithms is used to compress the

VGG16, ResNet164, and DenseNet40 cotton disease recognition

models, and the optimal compression model is selected through

comparative experiments.
FIGURE 9

ShuffleNetV2 network architecture.
FIGURE 8

Depth wise separable convolution.
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3.2 Results and discussions

First, we train all the networks and evaluate their accuracy over

SCDD, as a baseline to compare the performance with the

compression model after compression. The results are shown in

the Table 1. The knowledge of VGG16, ResNet164, and DenseNet40

models is transferred in the student model using nine knowledge

distillation algorithms, including FitNets, AT, SP, CC, VID, RKD,

PKT, FT and NST with spot-adaptive strategy. These algorithms are

combined with the original KD algorithm; the KL divergence of soft

labels between teachers and students is added to improve

performance. In the case of the heterogeneous student model, we

investigate the accuracy of the teacher-student combinations,

including VGG16-MobileNetV2, ResNet164-ShuffleNetV2, and

DenseNet40-ShuffleNetV2. The experiment results are presented

in Table 2. When the homogeneous small network is used as the

student network, the teacher-student combinations are VGG16-

VGG8, ResNet164-ResNet8, and DenseNet40-DenseNet10. The

experimental results are shown in Table 3. In order to see the

compression effect for the homogeneous and heteromorphic

student models, based on the experimental results above, Table 4

compares the six pairs of teacher and student networks under the

NST algorithm in terms of accuracy, model size, and FLOPs.

Figure 10 illustrates the training process of various

heterogeneous network models during knowledge distillation

under the NST algorithm. The figure clearly shows the accuracy

and loss curves for VGG16-MobileNetV2, ResNet164-

ShuffleNetV2, and DenseNet40-ShuffleNetV2 as they change with

epochs. It is evident that DenseNet40-ShuffleNetV2 exhibits better

accuracy and lower loss. Additionally, DenseNet40-ShuffleNetV2

demonstrates more stable training and stronger robustness

throughout the process.

Comparison with the Table 1, the results of the Table 2 reveals

that when the spot-adaptive distillation algorithm is used, the

heterogeneous lightweight networks exceed their respective

baseline accuracies after distillation for most distillation methods,

except for SP and PKT. This suggests that our scheme can broadly

transfer helpful knowledge from the teacher model to the student

model and improve the accuracy of the student model. For

DenseNet40-ShuffleNetV2 combination, after distillation by the

NST algorithm, ShuffleNetV2 had the highest recognition

accuracy for cotton diseases, which increase from 82.47% to

90.59%. This accuracy is also the same as that of DenseNet40 as a

teacher network, without losing any accuracy of the teacher

network. As far as the distillation algorithms are concerned, the

combined spot-adaptive RKD and NST maintain high accuracy for

various teacher/student model combinations, with average

accuracies of 87.58% and 87.39%, respectively. It shows that their

distillation results have good robustness. As shown in Figure 11, the
Frontiers in Plant Science 10
Gradient-weighted Class Activation Map (CAM) demonstrates the

recognition effect of DenseNet40 and ShuffleNetV2 on the same

cotton disease leaf image. It can be observed that there is almost no

difference in the recognition effect between the teacher model and

the student model. This demonstrates that knowledge from the

teacher network is well transferred to the student network.

To further analyze the performance of the DenseNet40-

ShuffleNetV2 model distilled using the NST algorithm, Figure 12

presents the confusion matrix of this model on the cotton validation

set. The values on the diagonal represent the number of correctly

predicted samples. The validation set of the cotton dataset contains a

total of 521 samples. The categories from Type 1 to Type 8 correspond

to areolate mildew (34 samples), bacterial blight (99 samples), brown

spot (32 samples), curl virus (83 samples), fusarium wilt (83 samples),

target spot (71 samples), verticillium wilt (34 samples), and healthy

leaves (85 samples), respectively. The confusion matrix illustrates the

model’s recognition capability on the validation set. From the

confusion matrix, we can observe that the model’s ability to

recognize areolate mildew needs improvement. Target spot is the

most frequently confused disease. Meanwhile, the model

demonstrates strong recognition capabilities for most of the diseases.

As shown in the Table 3, in terms of the robustness of the

distillation algorithm, NST and RKD still perform better. Under

the three teacher-student combinations, the average accuracies of the

student models are 86.78% and 86.27%, respectively, ranking the top

two. Comparing Tables 1, 3, the NST algorithm achieves the best

distillation results for both the ResNet164-ResNet8 and DenseNet40-

DenseNet10 combinations, which show a significant improvement in
TABLE 1 Baseline performance over SCDD.

Teacher Student(baseline)

VGG16 ResNet164 DenseNet40 MobileNetV2 ShuffleNetV2 VGG8 ResNet8 DenseNet10

accuracy 90.77% 88.00% 90.59% 78.41% 82.47% 89.48% 82.66% 77.12%
TABLE 2 Results of heterogeneous student models.

VGG16-
MobileNetV2

ResNet164-
ShuffleNetV2

DenseNet40-
ShuffleNetV2

Teacher 90.77% 88.00% 90.59%

Student 78.41% 82.47% 82.47%

Fitnets 79.15% 85.61% 85.98%

AT 83.21% 85.98% 88.38%

SP 38.56% 78.78% 82.66%

CC 81.36% 86.61% 87.08%

VID 81.92% 87.27% 86.90%

RKD 83.03% 89.30% 90.41%

PKT 56.27% 81.18% 72.88%

FT 80.81% 84.50% 88.74%

NST 84.32% 87.27% 90.59%
The bold values indicate the highest accuracy achieved under the same structure in
the experiment.
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the recognition accuracy compared to the baseline. Only at VGG16-

VGG8 is the distillation effect of NST ranked second, but the accuracy

after distillation differs from the first method by 0.12%. Figure 13

shows the CAM images of ResNet164-ResNet8 and DenseNet40-

DenseNet10 based on the NST algorithm, clearly highlighting the

regions of interest for the models.
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As can be seen from Tables 2, 3, except in a few cases, there is a

slight decrease in the average accuracy when using the homogeneous

small network as the student model than when distilling with the

heterogeneous lightweight network as the student model. Overall,

among the nine knowledge distillation algorithms that employ spot-

adaptation, the NST distillation algorithm do better than others. The

results in the Table 4 show that under the NST algorithm, when the

heterogeneous lightweight network is used as the student network,

the distilled ShuffleNetV2 has a smaller model size and higher

accuracy than the MobileNetV2, but the FLOPs are slightly larger.

When DenseNet40 is used as a teacher model to transfer the

knowledge to ShuffleNetV2, the highest accuracy is achieved, and

compressing 84.48% of the FLOPs. For the homogeneous student

network, the compression effect is very remarkable. Especially the

ResNet8 and DenseNet10 networks, the size of the former is

compressed by 95.32% and FLOP by 95%, and the size of the latter

by 96.26% and FLOPs by 94.83%. For VGG8, the accuracy is best

among three homogeneous networks. However, it only compresses

73.44% of size and 69.03% of FLOPs. Therefore, VGG8 has no

advantage over the other homogeneous student models.

In a comprehensive comparison, when DenseNet40 is used as a

teacher model to transfer the knowledge to ShuffleNetV2, the NST

algorithm with added adaptivity shows strong performance over the

test dataset. Meeting the requirements of high accuracy, high

inference speed, and low storage space. We consider this model

to be the most appropriate when being deployed on the edge device

of a plant protection robot.
TABLE 4 Comprehensive performance of NST.

Teacher Student

Accuracy/% FLOPs/G Model size/MB

Before
distillation

After
distillation

Before
distillation

After
distillation

Before
distillation

After
distillation

VGG16
MobileNetV2

90.77%
84.32%

0.31
0.023

117.8
18.1

VGG8 90.42% 0.096 31.4

ResNet164
ShuffleNetV2

88.00%
87.27%

0.26
0.045

14.0
10.2

ResNet8 85.05% 0.013 0.63

DenseNet40
ShuffleNetV2

90.59%
90.59%

0.29
0.045

8.7
10.2

DenseNet10 84.87% 0.015 0.37
FIGURE 10

Loss and accuracy curves of heterogeneous networks (NST).
TABLE 3 Results of homogeneous student models.

VGG16-VGG8
ResNet164-
ResNet8

DenseNet40-
DenseNet10

Teacher 90.77% 88.00% 90.59%

Student 89.48% 82.66% 77.12%

Fitnets 90.41% 84.50% 79.15%

AT 90.27% 84.31% 84.50%

SP 66.60% 73.62% 72.14%

CC 81.33% 76.01% 80.81%

VID 90.41% 80.81% 81.92%

RKD 90.54% 83.95% 84.32%

PKT 67.16% 64.02% 61.99%

FT 89.67% 82.84% 81.18%

NST 90.42% 85.05% 84.87%
The bold values indicate the highest accuracy achieved under the same structure in
the experiment.
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4 Conclusion

Deep convolutional neural network is a mainstream method

used for plant disease recognition. However, difficulties arise when

deployed in the edge devices due to their significant model

parameters and amount of calculation. In order to solve the

problem of plant protection robots identifying cotton diseases in

the field, we utilize the method of knowledge distillation to

compress the network. We first select VGG16, ResNet164, and

DenseNet40 to train the cotton disease recognition model and use
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them as teacher models. The teacher model is then distilled to the

student model using nine typical distillation algorithms guided by a

spot-adaptive strategy. We investigate two kinds of the student

model, namely heterogeneous and homogeneous lightweight

network. The former include ShuffleNetV2 and MobileNetV2,

while the latter include VGG8, ResNet8 and DenseNet10.

Experimental results show that, in most cases, the distillation

algorithms with spot-adaptive strategy improve the accuracy of

the student model compared with the baseline. Among them, NST

and RKD have the best robustness for various teacher-student
FIGURE 11

DenseNet40-ShuffleNetV2 CAM visualization (NST).
FIGURE 12

Confusion matrix of DenseNet40-ShuffleNetV2 (NST).
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combinations. When distilling knowledge via NST, DenseNet40-

ShuffleNetV2 achieves the best comprehensive performance. The

accuracy of ShuffleNetV2 after distillation is increased from 82.47%

to 90.59% and the FLOPs decreased by 84.48%. We use DenseNet40

as the teacher network, ShuffleNetV2, which is distilled by NST

algorithm, as the disease recognition model, and deploy the model

on the edge device of the developed plant protection robot.

In this paper we focus on knowledge distillation for CNN

networks. In recent years transformer networks have been shown

to have higher image classification accuracy while the complexity of

the structure is much higher than that of CNNs. In the future we

will investigate the compression of transformer networks to

improve the accuracy of disease recognition.
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