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The timely and accurate prediction of maize (Zeamays L.) yields prior to harvest is

critical for food security and agricultural policy development. Currently, many

researchers are using machine learning and deep learning to predict maize yields

in specific regions with high accuracy. However, existing methods typically have

two limitations. One is that they ignore the extensive correlation in maize

planting data, such as the association of maize yields between adjacent

planting locations and the combined effect of meteorological features and

maize traits on maize yields. The other issue is that the performance of existing

models may suffer significantly when some data in maize planting records is

missing, or the samples are unbalanced. Therefore, this paper proposes an end-

to-end bipartite graph neural network-based model for trait data imputation and

yield prediction. The maize planting data is initially converted to a bipartite graph

data structure. Then, a yield prediction model based on a bipartite graph neural

network is developed to impute missing trait data and predict maize yield. This

model can mine correlations between different samples of data, correlations

between different meteorological features and traits, and correlations between

different traits. Finally, to address the issue of unbalanced sample size at each

planting location, we propose a loss function based on the gradient balancing

mechanism that effectively reduces the impact of data imbalance on the

prediction model. When compared to other data imputation and prediction

models, our method achieves the best yield prediction result even when missing

data is not pre-processed.
KEYWORDS

yield prediction, graph neural network, bipartite graph, data imputation,
gradient harmonization
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1 Introduction

Maize (Zea mays L.) is the largest grain crop in China, grown

throughout the country. Accurate estimation of maize yield using

environmental data and maize growth data before harvest is critical

for food security and agricultural policy development. For example,

accurate yield prediction helps growers and decision-makers adjust

the scale of maize planting in a timely manner, as well as the

government adjust agricultural policies in a timely manner to cope

with the constantly changing maize market (Kang et al., 2020). The

factors affecting maize yield are extremely complex. Temperature,

precipitation, soil, humidity, and other meteorological factors, as

well as their interactions, have a significant impact on maize yield

(Ortiz-Bobea et al., 2018). Furthermore, the traits during growth

(plant height, ear length, ear height, kernel numbers per row, etc.)

can primarily reflect the maize yield (Liu and Basso, 2020).

The ability to accurately predict crop yields has been a challenge

in agricultural production. Remote sensing, machine learning (ML)

algorithms, and other technical methods have been widely used to

predict crop yields. You et al. (2017) addressed the issue of

insufficient training data in remote sensing images by using a

dimensionality reduction technique to convert remote sensing

images into pixel histograms, which were then trained using

convolutional neural networks and long short-term memory

models to predict county-level soybean yields in the United

States. Zhu et al. (2021) synthetically used agrometeorological

indicators and remote sensing vegetation parameters to estimate

maize yield in the Jilin and Liaoning provinces of China. Ruan et al.

(2022) combined remote sensing and climate data to develop a

seasonal yield prediction model for wheat in the field. Eleven

statistical and ML regression algorithms were adopted for

regression prediction. The models provide a good idea for using

multiple sources of data to predict yield. The implementation of

crop yield prediction based on remote sensing necessitates a high

spatial resolution of remote sensing images, which is easily

influenced by weather and the professional level of data

collectors. Nevertheless, ML-based models were used to predict

crop yield, significantly improving model prediction and

generalization performance. Kang et al. (2020) used a variety of

ML algorithms (Lasso, Support Vector Regressor, Random Forest,

XGBoost, Long Short-Term Memory, and Convolutional Neural

Network) to predict county-level maize yields in 12 Midwest states.

Their results demonstrate that seasonal crop yield forecasting

benefits from both advanced algorithms and a diverse set of

information about crop canopy, environmental stress, phenology,

and soil properties. Ma et al. (2021a) developed a county-level corn

yield prediction model using a Bayesian Neural Network to estimate

yield and prediction errors. This model could not only accurately

estimate the corn yield in normal years, but also accurately evaluate

the corn yield in abnormal years with extreme weather. Khaki and

Wang (2019) used a multi-layer perceptron based on soil and

weather data to predict maize hybrid yields in the United States.

Their results indicated that environmental factors had a greater

effect on crop yield than genotypes.

Although the above works have produced good predictions,

they all train and test models using environmental and crop data
Frontiers in Plant Science 02
from a specific area (county or state). Due to significant differences

in climate, soil, and other natural environments between regions,

these models are difficult to use to predict crop yields in other

regions. ML models developed within a specific spatial domain

often lose validity when applied to new regions Ma et al. (2021b).

Ma et al. (2021b) developed an unsupervised adaptive domain

adversarial neural network. The model mitigated the impact of

domain shift by projecting data from different domains into the

same subspace, ensuring that the model could learn domain-

invariant features while also performing accurate yield prediction.

Although this model provides a novel approach to improving model

transferability in crop yield prediction. However, neither the spatial

correlation between different planting locations nor the correlation

between different traits was considered.

In fact, there is a strong spatial correlation between maize yields

in different planting areas, and there is also a strong intrinsic

correlation between maize traits. For instance, planting locations

that are close geographically have similar meteorological

characteristics and grow similar maize varieties. Therefore, if one

county has a splendid maize harvest within a specified year, its

neighboring counties may also have a high maize yield (Fan et al.,

2022). Furthermore, lodging rate is closely related to stalk thickness,

cold tolerance is closely related to leaf color, and the interaction of

these traits affects maize yield. Fan et al. (2022) used meteorological

and soil data to construct a novel graph-based recurrent neural

network that predicted maize yields in 2000 counties across 41

states in the United States. For the first time, this method used a

graph neural network (GNN) to establish spatial correlation

between different regions, resulting in accurate large-scale yield

prediction. However, it did not consider the effect of the correlation

between different maize traits on yield.

The quality of the trait data will also affect the yield prediction

results. Unprocessed maize trait data collected at each maize

planting location typically contains two types of problems:

missing data and imbalanced data. The loss of data during field

trials is a prevalent issue, often attributed to non-human factors

such as natural disasters, including heavy rainfall. These events can

lead to the toppling over of maize plants and subsequent data loss

during the late growth period. Additionally, other factors may

contribute to this problem, such as inadequate seed supply at

specific trial sites, compromised seed germination rates, and

errors made by data collectors (Yang et al., 2023). The sample

imbalance is primarily caused by differences in planting scales

across regions, as well as different maize growth data recording

rules. For the problem of missing data, deleting missing values

directly introduces bias in analysis, especially when the missing data

is not randomly distributed, which may exacerbate the sample

imbalance (Emmanuel et al., 2021). The incorrect imputation of

missing values introduces noise and further reduces the accuracy of

yield forecasting. In recent years, many general data imputation

models have been used to solve the data missing problem, such as

the multiple imputation chain equation (Xu and Qiu, 2022), self-

attention graph convolution residual network (Zhang et al., 2022),

low-rank matrix factorization method (Wang et al., 2019),

generative adversarial network (Yoon et al., 2018), bipartite graph

neural network (You et al., 2020), etc.
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According to the investigation, there is a natural spatial

correlation between meteorological characteristics, maize traits,

and maize yield across neighboring planting locations (Fan et al.,

2022). Furthermore, there are correlations between meteorological

features and maize traits within the planting locations (Wang,

2001). These correlations provide important information for

missing maize planting data imputation and yield prediction.

Moreover, the yield can be regarded as a one-dimensional feature

of the maize planting data; thus, the maize yield forecast can be

regarded as the missing yield data imputation. Currently, the data

imputation method based on a bipartite graph neural network

achieves a better imputation effect by establishing associations

between different types of features and data observation values

(You et al., 2020). Inspired by this model, this paper proposes a

maize yield prediction model based on a bipartite graph neural

network. The model takes meteorological features and maize traits

(partial deletion) as inputs and returns imputation results and yields

prediction results for the maize deletion character. The specific

research objectives are as follows: 1) A maize yield prediction model

based on a bipartite graph neural network is proposed. Based on a

bipartite graph neural network, the model establishes correlations

between different maize planting sample data, different

meteorological features and traits, and different traits, which can

be used to achieve missing trait data imputation and predict maize

yield in planting locations with different environments. 2) A new

loss function is developed based on the gradient balance mechanism

(Li et al., 2019), which effectively mitigates the negative impact of

sample imbalance on maize yield prediction results. 3) First, eight

data imputation models are used to fill in the missing data. The

proposed method is then compared to several ML and deep learning

prediction models. The results demonstrate that the proposed

method could accurately fill in missing maize trait data and had

the highest prediction accuracy.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Study area

As shown in Figure 1, the study is focused on the primary area

in which maize is grown in mainland China, which includes 11

ecotopes, such as Northern Super-Early-Maturity Spring Maize

(NSEMS), Northeast and North China Medium-Maturity Spring

Maize (NMMS), Northeast and North China Middle-Late-Maturity

Spring Maize (NMLMS), Northeast and North China Middle-

Early-Maturity Spring Maize (NMEMS), Southeast Spring Maize

(SS), Huang-Huai-Hai Summer Maize (HHHS), Beijing-Tianjin-

Hebei Early Maturity Summer Maize (BTHEMS), Tropical and

Subtropical Maize (TS), Northwest Spring Maize (NS), Southwest

Low Altitude Spring Maize (SLAS), and Southwest High Altitude

Spring Maize (SHAS). Because of China’s vast land area and

complex topography, maize planting regions are unevenly

distributed throughout the country. There are significant

differences in maize yield between different regions. The

phenotype of maize varieties in multi-environment trials

determines whether or not they can be certified and promoted.

The trial data used in this study includes almost all of China’s major

maize trial fields, totaling 248 trial locations.
2.2 Dataset

The maize Maize trial data from 248 trial locations across 11

ecotopes from 2017 to 2021, a total of 13,000 samples, included

multidimensional maize trait feature values during growth and yield

value at harvest. All the maize yields are measured in kg/acre, which

is weighed gravimetrically after threshing. Each trait feature group

has 20 dimensions, including planting location, planting date,
FIGURE 1

Map that shows the spatial distribution of 248 trial locations for 11 ecotopes in China in which maize is grown.
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maturity date, corn variety, grain color, corn cob type, stay-green,

seedling leaf sheath color, axis color, anther color, ear rot resistance,

big spot resistance, gray spot resistance, plant height, spike height,

empty rod rate, spike length, bald tip length, row grain size, spike

shank length, and spike thickness. There is some missing data in the

maize trial data set, and the missing rate is approximately 18%.

Meteorological features from various maize planting locations

are collected. All meteorological data are obtained from the China

Meteorological Data Service Centre, which provides daily

meteorological data for all of China’s counties. The downloaded

useful meteorological data includes ten dimensions: daily maximum

temperature, daily average temperature, daily minimum

temperature, daily temperature difference, daily average ground

pressure, daily average relative humidity, daily precipitation, daily

average wind speed, daily maximum wind speed, daily wind rating,

and daily sunshine hours. The growth cycle of the corn begins at the

planting date and ends at the maturity date. To obtain the

meteorological features associated with each group of corn, we

extract meteorological data for each day in the corresponding

county during the growth cycle and then calculate the mean and

the variance of each group. The mean value describes the average

level of each meteorological feature, while the variance describes the

daily variation in each meteorological feature throughout the corn

growth cycle. After this calculation, the original 10-dimensional

meteorological features are transformed to 20 dimensions.
2.3 Data pre-processing

The meteorological and trait features in each dimension must

be standardized before being fed into the Bipartite Graph Neural

Network for data imputation and yield prediction. Because several

maize traits are recorded in text format, to make subsequent

calculations easier, we convert them into numerical labels. The

text data included maize variety, seedling leaf sheath color, grain
Frontiers in Plant Science 04
color, axis color, and anther color. For example, axis color labels can

be white, red, pink, or purple, which corresponds to 1, 2, 3, or 4 in

this article. Furthermore, there are significant differences between

feature values in different dimensions. For instance, the value range

of precipitation variance is [43.6, 739.7], whereas the value range of

resistance to big spot is [0, 8]. The difference in dimensions tends to

interfere with the rate of gradient descent of the proposed network,

whereas standardization can reduce the impact of significant data

differences on the model. Each dimension feature is processed using

z-score normalization, as shown in Equation 1.

t0 =
t − m
s

(1)

Where t represents raw data, m denotes the mean, and s
represents the standard deviation.
2.4 Bipartite graph construction

The current superior data imputation method, which utilizes a

bipartite graph neural network, has demonstrated superior

performance in imputing missing values by establishing

associations between diverse feature types and observed data

values (You et al., 2020). Motivated by this approach, A maize

yield prediction model based on a bipartite graph neural network is

proposed. The overall structure diagram of the model is shown in

Figure 2. First, the features (meteorological features and maize

traits) with missing values are converted into a bipartite graph data

structure (Figures 2A, B), with the missing values indicated by

orange-red entries in the raw data table. Then, a bipartite graph

neural network (Figure 2C) with three graph update layers and one

prediction layer is constructed to output the results of missing trait

data imputation and yield prediction (Figures 2D, E).

A bipartite graph is a special graph data structure in which nodes

are divided into two types and edges are used to establish the
FIGURE 2

The overall structure diagram of the method. NA represents missing data; D denotes the observation item of maize planting; F indicates the trait
feature item; Y signifies the yield.
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relationship between the two types of nodes. Bipartite graph neural

networks can learn potential correlations between each type of node.

Therefore, the maize planting observation items D and the features F

are considered two types of nodes in this graph, with the observed

values serving as weighted edges between the observation item and

feature nodes. The correlations between different maize planting data

and the relationships among various features can be simultaneously

explored using a bipartite graph neural network, thereby enhancing

the accuracy of missing trait data imputation and maize

yield prediction.

Figure 3 shows the construction process of a bipartite graph.

The first row (meteorological features, maize traits, and yield) and

first column (observation item numbers) of the raw data table are

treated as two types of nodes in the bipartite graph. The data values

in the table are viewed as weighted edges on the graph. As shown in

Figure 3, meteorological features and maize traits features have m

dimensions, and n planting samples data are recorded in the table.

All observation items numbers are used as a type of node in the

bipartite graph, represented by Ni, i ∈ (1, n) All the features

(meteorological features, maize traits, and yield) are used as

another type of node in the bipartite graph, represented by Fj, j ∈
(1,m + 1). The table contains a total of n� (m + 1) data values, so

the bipartite graph contains a total of n� (m + 1) edges. The jth

feature of the ith set of data is represented by edge eij. The data value

is the weight of eij, and if this value is empty, eij = 0.

The operation described above initializes the weight of each

edge in the bipartite graph. However, the nodes in the bipartite

graph only have physical meanings and lack real numerical

representations, and different nodes in the graph represent

completely different semantics. For example, meteorological
Frontiers in Plant Science 05
features (such as precipitation, sunshine duration, etc.) and maize

traits (such as plant height, ear height, etc.) belong to the same type

of node, whereas the number of all planting samples (observation

items) belongs to a different type of node. Therefore, it is crucial to

use appropriate assignment methods to express each node’s

semantic information when predicting yield. The value of each

node was initialized using one-hot encoding, which used the simple

and efficient 0 and 1 encoding to distinguish nodes. Each node is

encoded as an m + 1 dimensional 0 and 1 vector. The jth dimension

feature of node Fjis 1, and the features of the other dimensions are 0.

The encoding of node Ni depends on the feature values missing

condition. If all feature values and real yield of the ith planting

sample are recorded in the raw table, all features of node Ni are 1. If

the jth dimensional feature value of ith planting sample is missing,

the jth dimensional feature of the node Ni is 0. As shown in Figure 3,

only the second-dimensional feature (plant height) of the first

planting sample is missing. Therefore, the second-dimensional

feature of node N1 is 0, and the other features are 1. The

initialized bipartite graph accurately preserved all key data in the

original table by weighting the edges, and establishing an initial

association between maize planting data as well as between maize

features, laying the foundation for missing feature value imputation

using the bipartite graph neural network and maize yield prediction.

2.5 Missing trait data imputation and maize
yield prediction based on bipartite graph
neural network

In this article, a bipartite graph neural network was designed for

missing trait data imputation and maize yield prediction
FIGURE 3

Bipartite graph construction process. NA represents missing data.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1433552
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1433552
simultaneously, allowing for more accurate learning of the potential

correlation within each type of node. This correlation can be

mapped to two objective laws in the maize planting situation.

First, there is a correlation between meteorological features and

maize traits, which can also jointly affect maize yield (e.g., the

correlation of nodes F1 to Fm+1 in Figure 3). Second, there is a

spatial correlation between meteorological features, maize traits,

and yield between different planting samples data (e.g., the

correlation of nodes N1 to Nn in Figure 3). Therefore, it has high

applicability for missing trait data imputation and maize yield

prediction using a bipartite graph neural network.

The bipartite graph neural network proposed in this paper

consists of three graph update layers (blue rectangle in Figure 2) and

one prediction layer (orange-red rectangle in Figure 2). The weights

of the edges in the bipartite graph represent all of the data values in

the table, which are crucial for maize yield prediction. Thus, using

the weights of initial edges to impute missing feature values and

predict maize yield is critical. In this study, the problem is solved

using the graph update layer. Each graph update layer consists of

two steps, the first of which uses edge embedding to update node

features, as shown in Equation 2.

Vl+1
i = LB(Con½oj∈ji

LA(Con½Vl
j  ,   e

l
ij�)  ,Vl

i  �) (2)

As described in Section 2.4, the one-hot encoding is used to

distinguish two types of nodes in bipartite graphs, and in the graph

update layer, the update strategies of the two types of nodes are the

same. Therefore, these two types of nodes are collectively referred to

as V . In Equation 2, Vl
i   represents the ith target node in the lth

feature update layer. Both LA and LB indicate the full connection

layer. Con indicates a concatenation operation. ji represents the set

of all nodes connected by edges to the ith node, j represents the jth

node between them, and elij identifies the weight of the edge

connecting node Vl
i and node Vl

j . Equation 2 shows the process

of updating node features based on edge embedding in the lth graph

update layer.

The second step of the graph update layer is to update the

weights of edges based on node features. The process is as follows:

el+1ij = Con½Vl+1
i ,   Vl+1

j ,  elij� (3)

The process fills a new feature vector for missing data values

based on the node features and the weight of the previous layer’s

edge. The design of the three-layer graph update layer allows the

bipartite graph structure to fully learn high-order correlations

between data. Finally, a prediction layer is constructed with node

features obtained from the third layer of the graph update layer

serving as inputs. The missing trait data imputation and yield

prediction are accomplished using two fully connected layers (the

orange-red rectangle in Figure 2). The dropout prevents the

network from overfitting. For each layer of the graph update

layer, the dropout hyperparameter is set to 0.1, indicating that

each neuron in the graph update layer is discarded at random with a

probability of 0.1.
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2.6 Loss function

Because of the differences in planting scales between maize

planting locations, the problem of sample imbalance often appears

in the data. For example, maize planting in the northeast of China is

relatively intensive, whereas there are fewer maize planting locations

in the northwest, resulting in fewer samples of maize planting data

collected in that region. Sample imbalances can easily cause

overfitting of the prediction model, reducing prediction accuracy.

The Gradient Harmonized Mechanism (GHM) is an effective

approach to dealing with such data issues (Li et al., 2019). The

influence of sample quantity differences on model training can be

represented by a gradient, while the balance gradient reduces the

negative influence of sample problems on the model. Currently, the

GHM has shown promising results in areas such as object detection

(Zhu et al., 2019; Wu et al., 2020) and remote sensing image

segmentation (Zheng et al., 2020). The GHM is embedded to

optimize L1 loss function for solving regression problems, and the

loss function LGHM in this paper is obtained, as shown in Equation 4.

LGHM =
1
No

N
i=1( yi − yti

�� �� + yi − ytiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yi − yti )

2 + a2
p ) (4)

Where N represents the number of training samples, yi
represents the estimated yield, yti represents the true value of the

yield, yi − ytij j indicates the L1 loss, yi−y
t
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(yi−y
t
i )
2+a2

p indicates gradient

harmonized mechanism, a2 is a constant, and the a value is set to

0.3 in this study. In general, the difference between estimated and

actual yield values is greater at planting locations with less sample

data. The mechanism dynamically adjusts the sample weight based

on the difference between the estimated and true values to reduce

the model’s interference from data imbalance.
2.7 Assessment of the model performance

The mean absolute error (MAE), root mean square error

(RMSE), and coefficient of determination (R2) are used to assess

the accuracy of yield prediction. R2 is the ratio of residual squares to

total squares; the higher the value, the better the fit between

predicted and actual yields. RMSE and MAE are used to calculate

the degree of deviation between predicted and actual yields; the

lower the value, the higher the prediction accuracy of the model.

These evaluation metrics are mathematically expressed as

Equations 5-7.

MAE =
1
no

n
i=1 byi − yij j2 (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(byi − yi)

2

r
(6)

R2 = 1 −o
n
i=1(byi − yi)

2

on
i=1(yi − yi)

2 (7)
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Where n represents the number of samples, and in this study n

= 13,000; ŷi represents the predicted yield of the ith sample, and yi
represents the true yield of the ith sample.

All of the experiments in this study are carried out on Ubuntu

18.04 with CUDA 10.0 and an NVIDIA Tesla P100 16 GB graphics

card. The Pytorch library is used to develop and test the proposed

model. The DGL library is used to build a bipartite graph

neural network.
3 Results

3.1 Missing data imputation results
comparison and analysis

In this study, there are 13,000 maize planting sample data, of

which 7651 have no missing data. The effectiveness of the proposed

bipartite graph neural network is evaluated in missing trait data

imputation by randomly deleting values from 7651 planting sample

data. The MAE between the data imputation result and the actual

value serves as an indicator for evaluating the data imputation effect.

Because the true missing rate of all data in the experiment is

approximately 18%, we perform random missing of non-missing

data in proportions of 10%, 20%, and 30% to verify the prediction

accuracy of the data imputation algorithm and compare it to eight

commonly used data imputation methods. The study compares eight

data imputation methods: mean imputation, median imputation,

chain imputation, K-nearest neighbor imputation, Singular Value

Decomposition (SVD) model, GAIN model (Yoon et al., 2018),

GraphRNA model (Huang et al., 2019), and SAT model (Chen

et al., 2020). Mean imputation and median imputation are the

simplest two types of data imputation methods. They deal with all

missing values for each one-dimensional feature using the same data

without considering sample differences, which can easily introduce

data noise and reduce prediction accuracy. Chain imputation is a

more robust imputation method than others because it employs the

Monte Carlo method to deal with missing data and accurately

estimates the posterior distribution of each dimensional feature.

The core idea is that each missing value is modeled based on the

observed non-missing value. K-nearest neighbor imputation and the
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SVDmodel are both effective data imputation methods based onML.

K-nearest neighbor imputation estimates missing values by

leveraging data correlation across multiple dimensions. The SVD

model achieves the matrix using iterative low-rank singular value

decomposition and then estimates the missing data. In recent years,

the GAIN, GraphRNA, and SAT models have all proven to be

excellent deep learning methods. The GAIN model is based on

generative adversarial networks, and the idea is that the generator

computes the generated data using the actual observed real data,

while the discriminator focuses on distinguishing between the real

and generated data. The GraphRNA model incorporates a

collaborative walking mechanism - AttriWalk - into the graph

recursive network to learn node embedding, improve the ability to

learn the representation of node features, and fill in missing node

information using the graph node update process. The SAT model

establishes a shared-latent space assumption for the attributes and

structure of the graph to predict missing node attributes.

The method proposed in this article can also be used separately

for missing maize trait features imputation, i.e., when constructing a

bipartite graph neural network, only maize trait data is used and

yield data is ignored. Figure 4 shows a comparison of data

imputation effects between our method and the other eight

methods using the same data and missing rate. It is obvious that

mean and median imputation have the worst prediction effect, and

their imputation accuracy is basically not affected by the data

missing rate. The GAIN model outperformed the three data

imputation algorithms of chain imputation, K-nearest neighbor

imputation, and the SVD model in terms of imputation accuracy,

demonstrating the effectiveness of generative adversarial networks.

The data imputation effects of the SAT model, the GraphRNA

model, and our method are all at a relatively optimal level. When

the data missing rate is 0.1, our method’s imputation effect is the

best. When data missing rates are between 0.2 and 0.3, the

GraphRNA algorithm produces the best data imputation results.

These results demonstrate the robustness of using graph neural

networks to impute missing maize traits, as the graph structure

accurately expresses the potential association between different

maize planting data. However, the above eight methods are

limited to data imputation and lack the ability to perform both

data imputation and prediction.
FIGURE 4

Mean absolute error of different data imputation methods with different data missing rates.
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3.2 Maize yield prediction results
comparison and analysis

The 13,000 planting sample data are divided into training and

testing sets based on the number of missing features in each sample

data. The training set contains 9,000 data samples with fewer than

two missing features per sample, whereas the testing set contains

4,000 data samples with three or more missing features per sample.

Compared to random partitioning, the data partitioning method

used in this study not only reduces the interference of missing

values on model training, but also visually displays the data

imputation effect based on the test set.

This study compares the yield prediction model based on a

bipartite graph neural network to eight other prediction models.

Various models have been used, including Random Forest, adaptive

enhancement (AdaBoost), gradient enhancement (GradientBoost),

XGBoost model (Chen and Guestrin, 2016), TabNet model (Arik

and Pfister, 2021), graph convolution network (GCN) (Kipf and

Welling, 2016), graph attention network (GAT) (Veličković et al.,

2017), and hierarchical graph representation learning (HGRL)

(Ying et al., 2018). Random Forest, AdaBoost, and GradientBoost

are built with functions from the Sklearn library. XGBoost has

designed an extreme gradient-boosting algorithm that can solve

classification and regression problems accurately and quickly.

TabNet processes tabular data using sequential attention and has

a high level of representation learning and interpretability. Based on

the graph convolutional network, the graph attention network adds

an attention mechanism to calculate the importance of the neighbor

node to the target node by attention. The graph hierarchical

representation network enhances the expression of the graph
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hierarchy using the graph convolutional network. However,

because these prediction models lack data imputation capabilities,

the GraphRNA model is used first to impute missing data, and

the yield prediction is then achieved based on these methods.

The algorithm in this study uses an end-to-end bipartite

graph neural network to perform data imputation and yield

prediction simultaneously.

When using a graph neural network to predict maize yield, the

tabular data is converted into a regular graph structure. Specifically,

the 13,000 sample data of multidimensional maize features are

converted into a graph structure. The graph structure consists of

13,000 nodes. The graph edges are used to connect nodes with high

feature similarity, which is determined by calculating the Euclidean

distance between the features of various data nodes. Figure 5

compares the bipartite graph construction process and the graph

construction process. To ensure fairness in comparison, the

proposed method and the three neural network-based methods

use the same training epochs (20000 epochs).

The evaluation results of the proposed model and eight other

comparison models for predicting maize yield are presented in

Table 1. The most effective method is highlighted in bold. It is clear

that graph neural networks (GCN, GAT, and HGRL) outperform

other methods in terms of prediction accuracy. This is mainly

because of the graph neural network’s continuous aggregation and

updating of nodes, which fully exploits the correlation between

different maize planting sample data and significantly improves

yield prediction accuracy. The method proposed in this paper does

not require the data imputation algorithm to impute missing data

first and is significantly superior to all other methods that perform

data imputation and yield prediction separately in RMSE and MAE
FIGURE 5

The comparison of bipartite graph construction process and graph construction process.
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indicators. The main reason is that yield prediction using a bipartite

graph neural network considers the correlation between different

meteorological features and maize traits. Moreover, the model

proposed in this study is end-to-end, providing significantly

better convenience and training time than other methods for

missing data imputation and yield prediction.

Figure 6 depicts a scatter plot of the yield prediction results

from the other eight prediction methods and the method proposed

in this study. The horizontal axis represents actual production,

while the vertical axis represents predicted production. The yellow

line indicates that the predicted yield is equal to the actual yield.
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The greater the number of blue dots fitted to the yellow line, the

better the prediction effect of the model. The number of blue dots

equals the number of test sets. In this study, there are 4000 planting

samples of test data, so there are 4000 blue dots in each subgraph of

Figure 6. These graphs demonstrate that the scatter plots for

Random Forest, AdaBoost, Gradient Boost, XGBoost, TabNet,

and GCN methods are more scattered, resulting in a poor

prediction effect. GAT cannot accurately predict samples with

extremely high and low yields. This is mainly because the GAT

network assigns low weight to data with an abnormal yield. The

prediction result of HGRL is similar to the method proposed in this

study, but HGRL only has prediction capabilities, and maize

planting data must be pre-imputed before using this model.

Furthermore, in the same experimental environment and number

of training epochs, GAT takes 6.9 hours to train the model, while

HGRL takes 7.5 hours, and our method takes about 4 hours.
3.3 Ablation experiment

The best yield prediction results are obtained when the graph

update layer is three layers, random inactivation is used, and the

hyperparameter of LGHM loss is set to 0.3. Three groups of ablation

experiments are carried out to verify the effects of random

inactivation, the number of update layers in the graph, and the

loss function setting on the maize yield prediction. Table 2 shows

the specific results of the ablation experiment. The first part of

Table 2 verifies the effect of random inactivation on yield

prediction. Random inactivation only affects the graph update
FIGURE 6

The scatter plots between predicted yield and true yield.
TABLE 1 The performance of different models in predicting maize yield
under different data imputation methods.

Prediction method RMSE MAE R2

Random Forest 77.26 62.11 0.607

AdaBoost 78.35 61.96 0.694

GradientBoost 87.52 69.30 0.864

XGBoost 76.45 60.23 0.727

TabNet 65.70 51.17 0.688

GCN 52.53 36.15 0.864

GAT 51.34 35.43 0.884

HGRL 49.69 34.79 0.875

Our method 46.28 33.18 0.893
The most effective method is highlighted in bold; Underlined text indicates the superiority of
graph neural networks (GCN, GAT, and HGRL) in terms of prediction accuracy.
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layer, and neurons in each layer are discarded at a probability of

0.1. The comparison reveals that random inactivation significantly

enhanced the effect of yield prediction. (RMSE and MAE

decreased by 4.04 and 2.25, respectively, and R2 increased

by 0.044).

The second part of Table 2 examines the impact of the number

of graph update layers on maize yield prediction results. The

number of graph update layers increases, as does the number of

network parameters and training time. When the number of

network layers increases from two to three, the prediction

accuracy improves significantly. However, when the number of

graph update layers is increased to four, prediction accuracy

decreases significantly. This could be because each graph update

layer contains a large number of nonlinear changes, and each

change is equivalent to losing a part of the original information

about features, resulting in network degradation.

The third part of Table 2 examines the effect of different loss

function settings on maize yield predictions. L1loss and L2 loss are

commonly used loss functions to solve regression problems.

However, compared to L1 loss, L2 loss is more sensitive to

outliers, and it is more prone to occur that the model ignores

other normal data to minimize outliers. Therefore, in the yield

prediction model proposed in this study, L1 loss is superior to L2
loss. The LGHM loss proposed in this study is based on the L1 loss

and adds a GHM, which includes parameter a , to adjust the

influence of sample imbalance on the model. It is proved that the

yield prediction effect is best when a is 0.3.
4 Discussion

There is a strong spatial correlation between maize yields in

different planting regions, as shown in Figure 1. Northern China has

a higher average maize yield than southern China. Planting regions

with similar geographical locations share similar meteorological

features, maize varieties, and yields. Thus, it is necessary to

incorporate geospatial and temporal knowledge into crop yield
Frontiers in Plant Science 10
prediction while taking advantage of the spatial structure of the

data. Related studies demonstrate that incorporating knowledge

about a county’s geospatial neighborhood and recent historical data

can significantly improve the prediction accuracy of deep learning

methods for crop yield prediction, as opposed to previous

approaches that assumed neighboring counties were independent

samples (Fan et al., 2022; Yang et al., 2023). Climate variations

affected maize traits and, as a result, grain yield, and there were

correlations between maize traits (Li and Tao, 2023). However,

previous studies have not yet considered the correlation between

data features, such as the correlation between meteorological

features and maize traits, or the correlation between different

maize traits.

Furthermore, missing and unbalanced data negatively affect

model prediction results. Real-world maize planting data suffers

from a data unbalance problem, as planting scales vary unevenly in

both spatial and data domains. This imbalance can easily lead to

prediction methods that favor the side with more data. This study

redesigned the loss function to effectively address the problem of

data imbalance. Prediction model studies that use ML methods

rarely discuss the presence and treatment of missing data. Although

many types of ML methods include built-in capabilities for dealing

with missing values, these strategies are rarely used. Instead, most

ML-based prediction model studies use complete case analysis or

mean imputation (Nijman et al., 2022). In the research on crop yield

prediction model construction, strategies for missing data

imputation and data set expansion have been proposed, such as

yield data compensation methods and graph neural networks

(Zhang et al., 2023; Yang et al., 2023). Nonetheless, the methods

proposed in the preceding study are limited to data imputation and

do not have the ability to perform both trait missing data

imputation and yield prediction.

To solve the problems mentioned above, the maize yield

prediction model proposed in this study uses a bipartite graph

neural network. The model establishes the correlation between

different maize planting sample data, between meteorological

features and traits, and between different traits through a bipartite

graph neural network. It can simultaneously impute missing trait

data and predict maize yield at planting locations with different

environments and achieve good yield prediction accuracy (Table 1).

The experimental results demonstrate that, when compared to

general ML and deep learning methods, graph neural network

methods perform significantly better in maize yield prediction.

The reason for this is that graph neural network-based methods

can continuously aggregate and update nodes, allowing them to

fully exploit the high-order spatio-temporal correlation between

each set of maize data. The proposed bipartite graph-based neural

network model outperforms the other three models (GCN, GAT,

and HGRL), with an increase in R2 of 0.9% and decreases in RMSE

and MAE of 3.41 and 1.61, respectively. This is due to the extra

mining of correlations between meteorological features and maize

traits. Compared to other methods that require imputed missing

data and yield prediction, the end-to-end model presented in this

study has better operation convenience and training time under the

same experimental environment and number of training epochs.
TABLE 2 The main ablation results in three parts.

Items RMSE MAE R2

Random inactivation is not used 50.32 35.43 0.849

Random inactivation is used 46.28 33.18 0.893

the number of graph update layers is 2 47.13 34.11 0.852

the number of graph update layers is 4 47.79 34.07 0.861

the number of graph update layers is 3 46.28 33.18 0.893

L1 loss is used 48.92 35.17 0.860

L2  loss is used 50.06 36.14 0.853

LGHM loss ((a=0.5) is used 47.13 34.06 0.874

LGHM loss (a=0.7) is used 47.06 34.11 0.882

LGHM loss (a=0.3) is used 46.28 33.18 0.893
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5 Conclusions

To address the issue of missing maize trait data, this study

proposes a maize yield prediction method based on a bipartite

graph neural network. The maize planting sample data are first

transformed into a bipartite graph data structure, and then a maize

trait missing data imputation and yield prediction model based on a

bipartite graph neural network is created. The model investigates

high-order correlations among various maize planting sample data

and the correlations among different features, increasing the

accuracy of yield predictions. Furthermore, a loss function based

on the GHM is used to effectively reduce the impact of sample

imbalances between planting locations on model performance. The

comparison results with various data imputation methods and

prediction models demonstrate that the end-to-end model

proposed in this paper achieves optimal yield prediction results

without the need for additional data imputation. In the future, this

study will improve the bipartite graph neural network using the

attention mechanism to assess the strength of the correlation

between maize planting data. The model will be applied to other

fields, such as biology, to solve the prediction problem in the

presence of missing data.
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