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learning in UAV-based remote
sensing imagery for crop
diseases and pests detection
Hongyan Zhu1,2*†, Chengzhi Lin1,2†, Gengqi Liu1,2, Dani Wang1,2,
Shuai Qin1,2, Anjie Li1,2, Jun-Li Xu3* and Yong He4*

1Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and
Information Engineering, Guangxi Normal University, Guilin, China, 2Key Laboratory of Integrated
Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang
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Controlling crop diseases and pests is essential for intelligent agriculture (IA) due

to the significant reduction in crop yield and quality caused by these problems. In

recent years, the remote sensing (RS) areas has been prevailed over by

unmanned aerial vehicle (UAV)-based applications. Herein, by using methods

such as keyword co-contribution analysis and author co-occurrence analysis in

bibliometrics, we found out the hot-spots of this field. UAV platforms equipped

with various types of cameras and other advanced sensors, combined with

artificial intelligence (AI) algorithms, especially for deep learning (DL) were

reviewed. Acknowledging the critical role of comprehending crop diseases and

pests, along with their defining traits, we provided a concise overview as

indispensable foundational knowledge. Additionally, some widely used

traditional machine learning (ML) algorithms were presented and the

performance results were tabulated to form a comparison. Furthermore, we

summarized crop diseases and pests monitoring techniques using DL and

introduced the application for prediction and classification. Take it a step

further, the newest and the most concerned applications of large language

model (LLM) and large vision model (LVM) in agriculture were also mentioned

herein. At the end of this review, we comprehensively discussed some

deficiencies in the existing research and some challenges to be solved, as well

as some practical solutions and suggestions in the near future.
KEYWORDS

intelligent agriculture (IA), deep learning (DL), crop diseases and pests, remote sensing
(RS), unmanned aerial vehicle (UAV)
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1 Introduction

Crop diseases and pests are the major natural disasters affecting

agricultural production. They are the main factors restricting high

yield, high quality, high efficiency, ecology, and agriculture safety.

The food and agriculture organization (FAO) of the United Nations

reports that pests account for an annual loss of approximately 10-

15% in global crop yields, totaling over 300 million tons (Qi et al.,

2019). Crop diseases and pests have the characteristics of many

kinds, significant influence, and break out easily, which will cause

the decline of crop quality and yield. Therefore, in actual

agricultural production, the rapid acquisition of crop pest

information and early detection of pests and diseases is critical

for achieving crop yield increase and reducing disease losses

(Thangaraj et al., 2021). It is also an essential basis for the

implementation of intelligent agriculture (IA).

Traditional detection methods of crop diseases and pests mainly

rely on artificial visual evaluation, serology, and molecular biology-

based technical means. Examples of these technical means include

flow cytometry, enzyme-linked immunosorbent assay (ELISA),

immunofluorescence (IF), polymerase chain reaction (PCR), and

fluorescence in situ hybridization (FISH) (Carvajal-Yepes et al.,

2019). Although these crop disease detection technologies can

accurately diagnose crop diseases, they have some drawbacks.

These drawbacks include being time-consuming, inefficient, and

destructive, requiring detailed sampling and processing procedures,

requiring technicians with strong professional knowledge and skills,

and being greatly affected by human factors. It is challenging to

detect large-scale full-coverage field crop diseases and pests

effectively, which limits the development of IA and crop breeding.

Therefore, how to quickly, accurately, and efficiently monitor the

occurrence of crop diseases and pests in a wide range and timely

prevent and control early conditions has become a significant

problem in crop production. In addition, how to minimize the

losses caused by pests and diseases to crops is also an essential issue

that needs to be addressed.

At present, the detection of crop diseases is divided into several

types. These types include indoor fine detection based on leaf

detection, agricultural machinery as the main platform for a

single plant or small-scale crop canopy field fine detection,

aircraft monitoring platforms for crop canopy farmland plot scale

detection, and satellite images as the data source of regional scale

detection (Zhang et al., 2019). Ground-level RS platforms including

indoor and field fine detection scales have the characteristics of a

controllable environment and high accuracy. However, they cannot

obtain crop disease information in an extensive range (Liu et al.,

2020). Satellite-level RS has some shortcomings, such as low spatial

and temporal resolution, poor timeliness, and low accuracy. The

low-altitude RS platform represented by UAVs has become a new

means for obtaining crop disease information at the scale of

farmland plots under its advantages of flexibility, low cost, and

suitability for complex farmland environments (Mukherjee et al.,

2019). The UAV platforms can carry a variety of sensors, including

RGB cameras, multi-spectral cameras, infrared thermal cameras,

hyperspectral cameras, laser radar, etc (Yang et al., 2017). Among

these sensors, RGB cameras, multi-spectral cameras, and other
Frontiers in Plant Science 02
spectral imaging sensors are widely used to acquire farmland crop

disease information due to their lightweight, low-cost, and easy

operation. After diseases attack crops, their color, texture, and

spectral characteristics will change to a certain extent, and the

effects of different diseases on crops are also disparate. Accordingly,

the limitations of traditional detection methods, such as their

reliance on manual labor and susceptibility to human error, are

significantly addressed by UAV remote sensing technology, which

enables rapid, accurate, and scalable monitoring of crop health,

thereby fostering new opportunities for intelligent agriculture.

The unmanned aerial systems consist of different integrating

sensors (high-resolution RGB, multispectral, hyperspectral, Li-

DAR, and thermal), Internet connectivity, flight missions, data

collection, image processing, and AI algorithms (Garcıá et al.,

2020). One of the most common applications is the assessment of

crop health through RS and image processing (Radoglou-

Grammatikis et al., 2020), which is the focus of this paper. UAV

is remotely controlled by an operator and can carry a variety of

cameras such as multi-spectral and hyper-spectral, thus acquiring

aerial images, providing a wealth of information on crop growth,

health status, and environmental conditions. However, the full

potential of UAV-collected data can only be realized through

sophisticated image processing and analysis techniques (Peñuelas

et al., 1995). Deep learning, a powerful branch of machine learning,

has demonstrated remarkable capabilities in analyzing and

interpreting complex image data. By leveraging deep neural

networks, deep learning algorithms can extract meaningful

features from raw imagery, enabling precise classification and

detection of crop diseases and pests.

This paper focuses on UAV-based hardware devices and

imagery process methods that are used in crop diseases and pests.

The apparatus comprises standard sensor types, featuring AI-driven

processing of UAV RS images employing traditional ML algorithms

as well as emerging DL algorithms, to achieve larger scale, faster,

and higher accurate surveillance and management of crop diseases

and pests. To sum up, we made some contributions:
1. Finding the hottest topics in IA related to ‘UAV’, ‘remote

sensing’ and ‘deep learning’. A presentation of keyword co-

occurrence analysis, an authors’ co-occurrence analysis,

and geographical relations.

2. An explanation of crop diseases and pests detection. A

synopsis of typical types of UAVs and sensors. As well as

the technology road-map of the RS system.

3. A summary of the common vegetation indices and texture

characteristics, application of the wavelength selection

algorithms which were widely used in features extraction.

4. A review of some examples in crop detection using

traditional ML methods and prominent DL methods in

recent years. A brief description of these algorithms and an

elaborate discussion of several detailed areas in applying

UAV-based RS for crop protection.

5. Proposing some deficiencies in the existing research and

challenges to be solved. A prospect of the future of deep

learning and artificial general intelligence (AGI) in

intelligent agriculture.
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2 Finding the hot-spots by
bibliographic analysis

Using the literature data from the core database of the Web of

Science (WOS), we searched the literature on keywords including

‘remote sensing’ and ‘deep learning’ from January 1, 2018, to January

1, 2024, to determine the current international mainstream methods

for monitoring crop diseases and pests. To avoid duplication and

messy data, we manually cleaned up the papers that did not meet the

research theme and finally selected 13738 papers for analysis. Herein,

we extracted the abstracts, keywords, authors, countries, journal

names, and other information, used VOSviewer (version 1.16.18,

Leiden University, Leiden, The Netherlands) to build a database of

the extracted data, analyzed the article through clustering, principal

component analysis (PCA), and different algorithms to present the

results in visual charts (Yang et al., 2020).
2.1 Keyword co-occurrence analysis

Firstly, we used the clustering algorithm of VOSviewer to cluster

and determine the relationship between the subjects in the selected

literature set by the co-occurrence of words or noun phrases in the

literature set to obtain the keyword co-occurrence analysis between

the core words, including ‘UAV (UAVs/UAS/UAV-based platforms/

drones) ‘, ‘remote sensing’ and ‘intelligent agriculture’. As shown in

Figure 1, the research hot-spots is ‘UAV’, ‘remote sensing’ and ‘deep

learning’ from 2018 to 2024. It can be seen that UAV low-altitude RS

has a very close cross-connection with IA, especially in crop diseases

and pests. The UAV RS system can effectively use vegetation indices

to estimate biophysical parameters and generate water stress
Frontiers in Plant Science 03
detection images of leaf area index, chlorophyll content,

photochemical reflectance index, and canopy temperature, which is

vital for monitoring and prevention of crop diseases and pests (Ren

et al., 2020). We clustered the analysis results and used three colors to

represent the three clusters. The blue clusters are UAV-centered for

correlation analysis, and similarly, the red ones are for remote sensing

and the green ones are for deep learning.
2.2 Author co-occurrence analysis

Subsequently, we focused on the paper’s authors and the

countries for data statistics and analysis. Statistic methods for

instance factor analysis, cluster analysis, and PCA were used to

judge the research similarity of the literature of two different

authors. It is assumed that more than three authors cite the

literature of the same two authors, and the citation frequency is

high. In that case, it proves that the academic research relationship

between the two authors is relatively close. The authors of the

selected kinds of literature were classified through VOSviewer. The

visualization method showed the academic relationship between the

authors who form a scientific community in ‘UAV low-altitude RS ‘

and ‘crop diseases detection’. As illustrated in Figure 2, Guijun Yang

(the National Engineering Research Center for Information

Technology in Agriculture), Yubin Lan (the College of

Engineering, South China Agricultural University/National Center

for International Collaboration Research on Precision Agricultural

Aviation Pesticides Spraying Technology), Yong He (the College of

Biosystems Engineering and Food Science, Zhejiang University,

Hangzhou), and other authors published many papers on the

application of UAV RS in IA from 2018 to 2024 and had close

academic relations with many authors.
FIGURE 1

The keyword co-occurrence analysis results.
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2.3 Analysis of the
geographical relationship

After that, we analyzed the geographical relationship of the

authors and used VOSviewer to analyze the degree of academic

cooperation among countries. Then we got the national cooperation

network map, as shown in Figure 3. Moreover, we also statistically

analyzed the number of relevant papers published in the past six

years. The top ten publishing countries are China, the United States,

Australia, Spain, Brazil, Germany, Canada, Italy, the United

Kingdom, and Mexico. Two major scientific communities have

been formed: a ‘cooperative relationship zone’ dominated by Sino-

US cooperation and radiating to Australia, Canada, Brazil, and

other countries. The European academic cooperation circle is led by

Spain, Germany, Italy, and the United Kingdom and radiates to

Turkey, Iran, Israel, and other countries.
2.4 Publication and citation of articles on
crop diseases and pests monitoring by
UAV RS

According to the authors’ co-occurrence analysis, from the co-

occurrence map and national cooperation network formed by

VOSviewer, low-altitude RS realized by UAVs has gradually

become the most powerful tool in recent years (Abd El-Ghany

et al., 2020). The application of UAV RS in IA, especially diseases

and pest control, has achieved plentiful good results and has
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gradually become one of the most promising technologies to

support integrated pest management (Xu et al., 2022).

The reasons for the wide use of UAVs are obvious. The bacterium,

fungi, actinomyces, and other pathogens usually use soil, water, and wind

as a medium to spread their spores to make crops sick. The dormancy of

adults often causes infestations during overwintering in the previous year

and mass breeding in the suitable season of the following year. After

diseases and pests attack the crops, their morphological, color, and

spectral characteristics (light absorption, reflection, transmission) will

change greatly. Different types and degrees of diseases and pests caused

by different crop growth conditions, also have more significant

differences. Thus, to a certain extent, crop images and spectral

information can reflect the occurrence and severity of crop diseases

and pests. It also provides a theoretical basis for acquiring and analyzing

information about crop diseases and pests by various imaging sensors on

the UAV. Many scholars at home and abroad have used this theoretical

basis to conduct experimental analysis and published many high-quality

articles on crop diseases and pests with the help of UAV RS.

RS based on the UAV platforms has apparent advantages in

obtaining pest information of field crops, for instance, high operation

efficiency, high spatial-temporal resolution, synchronous image

acquisition, and timely field sampling, and excellent structure and

texture information. It can carry out rapid qualitative and

quantitative research on much information about crop pests, which

has been fully reflected in pests monitoring and classification of rice,

wheat, corn, and other crops. The advantages of UAV RS provides a

real-time and accurate ‘ground-space’ integrated platform for crop

diseases and pests monitoring (Ahmad et al., 2022).
FIGURE 2

The authors’ co-occurrence analysis results.
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3 UAV RS in crop diseases and pests

Crop diseases and pests are one of the major agricultural

disasters in China, which are characterized by many types, great

influence, and frequent outbreaks, and their occurrence and severity

often cause significant losses to our national economy, especially

agricultural production. The following types of leaf pests and

diseases (Zhou et al., 2023) are common: apple scab, black rot,

cedar apple rust, rust, grape black rot, and strawberry leaf scorch.

From sowing, and growing to harvesting, crops are often victimized

by various pests (plant pathogens, pests, weeds and rodents, etc.),

thus affecting the yield and quality of cultivated plants, due to the

great variety of pests, their different forms, and their different

patterns of occurrence. Therefore, it is very difficult to rely only

on human experts to recognize pests and master their habits and

characteristics. It is extremely important to rely on the methods of

ML models and deep learning models to prevent and control pests.

The principles of disease control are: To depress the pathogen

or inhibit its occurrence and spread; To improve the disease

resistance of the host plant; To control or modify the

environmental conditions so that they are favorable to the host

plant and unfavorable to the pathogen, and to inhibit the

occurrence and development of the disease. Generally, emphasis

is placed on the prevention of plant populations, and integrated
Frontiers in Plant Science 05
control measures are taken by the occurrence and development

patterns of crop diseases according to location and time.
3.1 Definition of pest damage and
crop diseases

Pest damage is a phenomenon that harmful insects cause damage

to plant growth during the growth of a crop. Crop diseases are the

stunting, wilting, or death of a plant body, usually caused by bacteria,

fungi, viruses, algae, or unsuitable climate and soil, and is a

natural disaster.

Diseases are categorized into two main groups: invasive and

non-invasive. The classification of invasive diseases caused by

pathogenic organisms is: (1) According to the pathogen is divided

into fungal, bacterial, viral, and nematode diseases. (2) According to

the host plant is divided into crops, vegetables, fruit tree diseases

and forest diseases, etc., but also according to the type of crop is

divided into wheat, rice, cotton, and other different crop diseases.

(3) According to the symptoms, it can be divided into leaf spot

disease, rot disease, wilt disease, and so on. (4) According to the site

of disease, it can be divided into root disease, stem disease, leaf

disease, fruit disease, and so on. (5) According to the mode of

transmission, it can be divided into airborne, waterborne, soil-
frontiersin.or
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The geographical relations analysis results.
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borne, seedling-borne, insect-mediated transmission, and so on

(Chaube and Pundhir, 2005).
3.2 Using UAV RS for efficient crop
diseases and pests detection

Currently, the detection methods for plant disease mainly

include sensory judgment, physical and chemical inspection,

conventional machine vision, and other methods, which have

high error rates and are easy to cause waste of pesticide spraying

and environmental pollution (Zhao et al., 2013). These methods

have a high error rate, and for instance, in large areas of tea

plantations, disease identification is time-consuming and costly.

Therefore, finding a fast and efficient identification method is of

great significance to agricultural plant protection.

Crop diseased leaf image segmentation (Huang et al., 2021) is a

difficult problem in the research of crop disease recognition

methods based on image analysis and computer vision. It is a

method that extracts the significant lesion areas of interest from the

original lesion leaf images, eliminates the non-significant and

unimportant areas, and highlights the important parts of the

lesion images, which is conducive to the detection, diagnosis, and

identification of crop diseases in the later stage of the disease.

Annotation methods play a crucial role in image analysis tasks

such as classification, detection, and segmentation. Depending on

the specific task, annotation methods can be divided into three

categories: bounding box annotations for detection tasks, polygon

annotations for segmentation tasks, and categorical labels for

classification tasks. Bounding box annotations involve drawing

rectangles around objects of interest, while polygon annotations

outline the precise shape of objects. Categorical labels, on the other

hand, assign a class label to each image or region of an image.
Frontiers in Plant Science 06
By understanding the different types of annotations and how they

relate to specific image analysis tasks, researchers can choose the

most appropriate annotation method for their particular needs. As

shown in Figure 4, there is a big difference between the crop images

acquired using UAV and the lab images. Most UAV images are

canopy images of the plant, containing a variety of data such as

leaves, and stalks, and are non-destructive to the crop. Laboratory

images require that diseased leaves be removed from the crop and

photographed in a laboratory environment. The advantage of

laboratory images is their high resolution, which is very useful for

pest and disease classification. On the other hand, the resolution of

UAV imagery is a big challenge. Imagery with insufficient

resolution is difficult to categorize using AI algorithms. Therefore,

the choice of the type of cameras and image processing algorithms

carried by the UAV is crucial.
3.3 Advantages and application prospects

UAV RS technology in IA can quickly cover large areas of

farmland, offering a more efficient and flexible approach compared

to traditional ground surveys or manned aircraft remote sensing,

which has the advantages of monitoring a wide area, in real-time,

objective, high efficiency. It not only can effectively reduce the cost

of manpower and material resources, but also facilitates a

comprehensive grasp of the overall disaster situation, and puts

forward more rapid and effective countermeasures, which in turn

reduces the damage caused by pests and diseases to crop resources.

Addressing the UAV imagery resolution challenge, the

integration of sensors, including high-resolution cameras and

multispectral imaging devices, enhances the capabilities of UAVs.

This integration empowers UAVs to capture detailed images with

superior resolution, enabling precise identification and localization
FIGURE 4

Crop diseases and pests imagery.
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of crop diseases and pests issues, even in their early stages of

infestation. Moreover, using multispectral and hyperspectral

sensors, UAVs can gather data across different wavelengths. This

helps in more accurately analyzing crop health and identifying

specific types of pests or diseases. In addition, UAVs can provide

timely information on pests and diseases, enabling farmers to take

preventive measures and making agricultural management more

intelligent. Preventing widespread infestations while reducing the

use of insecticides. In summary, UAV remote sensing technology

provides an efficient, cost-effective, timely, and accurate method for

pest and disease monitoring, which is important for modern

agricultural management and crop protection.
4 UAV RS systems

The above analysis showed that UAV RS has been widely used

in various fields of IA, especially in crop diseases and pests

monitoring, and the UAV RS system represented by plant

protection UAV has been rapidly developed and applied (He,

2018; Yang K. et al., 2020). A complete set of low-altitude UAV

RS systems mainly includes a UAV platform, sensors, a ground

station system, and a communication data link. Here, we focus on

reviewing the typical types of UAVs, as well as the four typical types

of sensors.
4.1 Typical types of UAVs

With the rapid development of UAV low-altitude RS, represented

by plant protection, UAVs have excellent performance in crop

information collection, pest monitoring, spraying, fertilization, and

other fields. According to the structure of UAVs, plant protection

UAVs are divided into coaxial, single-rotor, and multi-rotor

helicopters (Lan et al., 2019). The coaxial plant protection

helicopters are generally a hydraulic motor type with solid

endurance, sizeable operating area, and other characteristics. But

limited by the engine maintenance complexity, as well as the engine

life being short and other issues, they are rarely used in practical

agricultural operations. Single-rotor plant protection UAVs are

mainly the oil-driven type. Compared with coaxial plant protection

helicopters, oil-powered single-rotor plant protection drones can

effectively reduce maintenance frequency and extend engine life;

they have a wide range of crop applications and long working

hours. However, because of their high cost and hard to control, they

still have certain limitations in large-scale agricultural applications.

Given the limitations of coaxial and single-rotor plant

protection drones, electric multi-rotor plant protection drones are

widely used in crop disease monitoring. Multi-rotor plant

protection UAVs can be divided into four rotors, six rotors, eight

rotors, and other unmanned aerial vehicles. The fuselage body is

usually made of carbon fiber to reduce its load. With the

characteristics of large load, convenient maintenance, sufficient

power, etc., they have become the mainstream model of plant

protection UAVs (Chen H. et al., 2021; Chen et al., 2017). At

present, RS monitoring based on multi-rotor UAVs equipped with
Frontiers in Plant Science 07
visual sensors has been widely used in crop diseases and pests

identification (Yinka-Banjo and Ajayi, 2019), growth monitoring,

yield estimation (Yang et al., 2015), crop lodging judgment, and

other aspects, and RS monitoring provides a new means for crop

growth monitoring.
4.2 Typical types of sensors

Given that a variety of sensors are available for UAV systems, it

is valuable to provide an overview of the cameras and sensors

applicable to UAV systems and their characteristics. Colomina and

Molina (2014) within their paper reviewed the specific parameters

and applications of several RGB cameras, multi-spectral cameras,

hyperspectral cameras, thermal cameras, and laser scanners adapted

to UAVs, as can be seen in the literature. In pest and disease

detection, especially the first four cameras are more applied in UAV

RS, and these images are shown in Figure 5. Therefore, suitable

solutions and deployment of UAV platforms can be found

according to the research purpose and available budget.
4.2.1 RGB cameras
RGB cameras measure specific intensities of the three-color

channels of red (R), green (G), and blue (B) in the visible spectrum

(400-780 nm), and the color of each pixel is expressed by the

superposition of specific values of the three-color channels. RGB

cameras have the advantages of being low-cost, easy to carry, and easy

to operate, and has been widely used in plant phenotype research (Su,

2020). RGB images are usually processed and analyzed by ML or DL

and have excellent application space in crop recognition, plant defect,

and greenness monitoring due to their excellent performance

(Dalsass et al., 2016; Darwin et al., 2021; van Iersel et al., 2018).

Nevertheless, due to the limitation that the RGB cameras only contain

three color channels in the visible light range and the poor spectral

resolution, it is usually necessary to cooperate with other cameras to

complete the identification and detection task.

4.2.2 Multi-spectral cameras
Multi-spectral cameras are mainly used for the visible/near-

infrared (VIS/NIR) region, which can obtain the advantages of both

spatial information and spectral information of the detected targets.

Rapid acquisition and analysis of crop growth information are

achieved by analyzing changes in absorption, transmission, or

reflection spectra in the visible (400-780 nm) and near-infrared

(780-2500 nm) regions. The visible spectrum primarily conveys

color-related information, whereas the near-infrared spectrum is

derived from the molecular group’s vibrational absorption. When

crops are afflicted by pests and diseases, a range of physiological and

biochemical reactions take place, altering the composition and

distribution of pigments, water, and other tissues in affected crops

compared to their healthy counterparts. This leads to changes in the

density and vibrational intensity of molecular bonds such as C-H,

O-H, N-H, etc., which in turn cause variations in optical properties.

It provides a theoretical basis for the wide application of multi-

spectral cameras in crop yield, pest monitoring, and other fields (Ali
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435016
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1435016
et al., 2022). With the continuous development of cameras, the

development of multi-spectral camera systems has derived many

different types: Fourier transform base spectroscopy, wide and

narrow band filters, and the like.

4.2.3 Hyperspectral cameras
By capturing the spectral information of a target object at

different wavelengths, the hyperspectral camera generates a data

cube that contains both spatial and spectral information, allowing

the user to analyze the target object from different angles and

depths. Compared with the multi-spectral cameras, the imaging

systems of the hyperspectral camera can collect more spectral

bands, typically up to more than 100 spectral bands, and the

hyperspectral cameras usually use one or more continuous

wavelength ranges. This provides an incredibly detailed spectral

signature for each pixel, enabling the identification of specific

materials and chemicals. The use of hyperspectral RS can monitor

the growth of crops in the field. By effectively integrating the

obtained data, it can provide relevant information promptly, and

applying this technology in predicting farmland disasters has a
Frontiers in Plant Science 08
significant effect. Digital processing of images enables segmentation

and classification of leaves in the corn fields of the Mexican fields

making use of HIS color models (Carranza-Flores et al., 2020;

Bravo-Reyna et al., 2020). Applying this mechanism to agricultural

management can improve agricultural management and reduce the

cost of agricultural management (Lu et al., 2020).

4.2.4 Thermal infrared cameras
Infrared thermal imaging cameras detect infrared radiation

emitted by objects, allowing for the measurement of their surface

temperatures. They are sensitive to temperature differences and can

detect subtle changes that are invisible to the naked eye. Infrared

thermal imaging cameras are valuable tools for monitoring water

stress in crops. Thermal infrared cameras operate by using the

sensors they carry to capture infrared radiation in the range of 0.75

to 1000 µm emitted by the target object and feedback on the

temperature of the target object as a digital thermal radiation

image (Costa et al., 2013). When pests or pathogens infect crops,

physiological states, for instance, transpiration, photosynthesis will

change. Thermal infrared cameras can effectively monitor various
FIGURE 5

The UAV RS system mounted types of cameras.
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characteristics, such as crop growth status and water stress, greatly

contributing to IA (Calderón et al., 2013; Gago et al., 2015).
4.3 The technology road-map of RS

From the acquisition of UAV RS images to the identification

and location of crop diseases and pests, the whole process involves a

series of complex processing processes. The main technology road-

map of crop diseases and pests monitoring can be seen in Figure 6.

The whole process includes image acquisition, image preprocessing,

spectral feature extraction (including vegetation index, effective

wavelengths), image feature extraction (texture characteristics,
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temperature gradient characteristics), modelling, prediction and

evaluation using machine learning methods or deep learning

methods, and finally using the predicted values to achieve

monitoring and treatment of crop pests and diseases. Image

preprocessing is necessary to improve image quality, remove

noise interference in bad weather, simplify data and increase the

accuracy and efficiency of subsequent image analysis and processing

tasks. Because of the wide range of applications of spectral image

sensors, this paper focuses mainly on spectral images. Traditional

machine learning methods need to extract features before building a

model and finally get the predicted values, while deep learning

methods can build models directly from image inputs. Through

qualitative analysis, it is possible to determine whether the crop is
FIGURE 6

The main technology roadmap of crop diseases and pests monitoring.
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infected with a disease and what type of disease it is. Through

quantitative analysis, it is possible to analyze whether the crop is in

the early, middle or late stages of the diseases/pests infestation, the

severity of the diseases/pests infestation, and most importantly,

construction a map of the regional distribution of the diseases/pests

infestation (Kerkech et al., 2020). In this way, we can realize crop

diseases and pests monitoring and treatment based on the UAV RS.

During the flight of the UAV, it will be affected by many factors,

such as light, wind speed, and the state of the crop canopy. The

collected RS data often have noise and interference information,

which brings adverse effects to constructing the pest detection

model (Alvarez-Vanhard et al., 2021).

Although many UAV RS systems are equipped with

corresponding image processing software for noise processing,

many noises are still in the processed RS data (Bunting, 2017). To

eliminate the noises and interference information in RS data,

improve the stability and signal-to-noise ratio of data, and obtain

more helpful information for the detection tasks, savitizky-golay

convolution smoothing (SG), variable normalization (SNV),

multivariate scatter correction (MSC), wavelet transform (WT),

and other predictive processing methods are often used to process

the collected RS data (Yang et al., 2022). Nighttime images captured

in hazy conditions often suffer from glow effects, poor lighting,

reduced visibility, and considerable noise, leading to a significant

decline in image quality. These compromised images can negatively

impact subsequent computer vision processes. As a result, effective

dehazing of nighttime images is crucial to enhance the clarity of

such images and facilitate outdoor computer vision applications. To

address this, a novel dehazing algorithm called the ‘multi-purpose

oriented single nighttime image haze removal based on unified

variational retinex model’ was introduced (Liu et al., 2023). This

advanced unified variational retinex model processes a pre-treated

nighttime hazy image by separating it into three components:

reflectance, illumination, and noise. The method then individually

enhances the reflectance and illumination components through

dehazing and gradient domain enhancement techniques. Some

crop diseases and pests detection categorize and methods are

listed in Supplementary Materials Table A1.
5 Traditional machine learning in
intelligent agriculture

Currently, the primary data analysis methods of UAV RS

monitoring crop diseases and pests stress focus on the modeling

analysis of traditional ML algorithms. The color and texture

features of the diseased plants are obtained by using various

sensors on the drone (gray level histogram, gray level co-

occurrence matrix, wavelet transform, etc.). Temperature and

humidity parameters, effective wavelengths, vegetation indices

formed by fusing multiple spectral characteristics, and other

parameters are used as model input variables. A qualitative or

quantitative pest detection model is established by combining ML

algorithms such as a support vector machine, a clustering

algorithm, a random forest algorithm, a Bayesian algorithm, a
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least square method, etc. Ultimately, it can realize early discovery,

species identification and classification of agricultural pests, and the

grading of pest stress degree. It can provide efficient decision

information for early prevention and control of crop diseases

and pests.

Before using machine learning algorithms for simulation

modeling, a feature extraction step is required. For different

images, there are different processing methods. Spectral images

are processed by feature calculation to get information such as

vegetation indices and effective wavelengths. The processing

method for RGB images as well as thermal imaging images is

image feature extraction to obtain texture characteristics

information along with temperature gradient characteristics

information. Unlike deep learning methods, feature extraction is

an indispensable step for traditional machine learning. Deep

learning can directly input the image, but traditional machines

need to input the information extracted from the features.
5.1 Features extraction methods

Feature extraction is one of the key steps in UAV remote

sensing monitoring of pests and diseases, which involves

extracting useful information related to pests and diseases from

remotely sensed images. In general, feature extraction can include

effective wavelength selection, vegetation index, and texture

features. Effective wavelength selection algorithms refine

fundamental indices from spectral data and exclude irrelevant

spectral data collected by UAV RS systems, thereby improving

model performance and simplifying calculations. The vegetation

index is a parameter that can reflect the growth condition of

vegetation, calculated by RS technology, especially multispectral

and hyperspectral data. It can effectively synthesize the relevant

spectral signals, enhance the vegetation information and reduce the

interference of non-vegetation information. Changes in the

vegetation index can reflect the health and vigor of crops, and is

an important indicator for assessing the extent of the impact of

pests and diseases. Texture features reflect the surface texture

information of objects in UAV remote sensing images, and there

are differences in leaf morphology, color and other aspects between

damaged and healthy plants, which are manifested as different

texture features on remote sensing images.

5.1.1 Effective wavelengths selection
UAV RS systems with multi-spectral or hyperspectral cameras

often gather extraneous spectral data, which can undermine the

precision and consistency of pest detection models (Chen et al.,

2002). Researchers have developed wavelength selection algorithms

to distill essential indices from spectral data, enhancing model

performance and simplifying computations (Thenkabail et al.,

2000). These algorithms, chosen based on crop and pest spectral

profiles, are tailored to specific detection contexts. Employing a

blend of these algorithms or integrating additional ones could

bolster model robustness, decrease errors, and boost prediction

accuracy. This strategic application of wavelength algorithms
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advances detection capabilities, supporting targeted agricultural

practices and crop safeguarding. Popular algorithms such as

successive projections algorithm (SPA), genetic algorithm partial

least squares (GAPLS), uninformative variable elimination

algorithm (UVE), and competitive adaptive reweighted sampling

(CARS) are in use (Li et al., 2016), with their effectiveness in

detecting crop ailments and pests catalogued in research,

exemplified in Table 1. for staples like wheat and soybeans. The t-

test is a statistical method used to compare whether two sets of

means are significantly different, while random forest (RF) is an

integrated learning algorithm that makes predictions by

constructing multiple decision trees. RF can be applied to select

important wavelengths in spectroscopy by training the model on

spectral data, extracting feature importance scores for each

wavelength, and then choosing wavelengths with higher

importance scores as they contribute more significantly to the

model’s predictive performance.

5.1.2 Vegetation indices extraction
In the research and practice of UAV RS detection, crop spectrum

can reflect the growth status of crops. As a result, crop phenotype

information can be obtained based on spectral reflectance, but

sometimes the direct use of spectral reflectance cannot reflect the

growth of plant canopy well. To solve this problem, many researchers

try to optimize the crop-sensitive spectral reflectance to reconstruct

the monitoring indices, enhance some characteristics and details of

the vegetation, and highlight the difference between the detection

targets. Twenty-five common in used extraction methods of

vegetation indices from the RGB and multispectral camera,

including 14 commonly used color vegetation indices and 11

multispectral narrow band vegetation indices are shown in

Appendix Supplementary Table A2. The calculated vegetation

indices were averaged over the sampled area. The color vegetation

indices are visible band vegetation indices that highlight a particular

color, such as the green color of plants, which is more intuitive to

humans. Vegetation indices extracted from RGB cameras are

sensitive to the greenness of plants, and they have been used to
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extract green vegetation and to calculate vegetation cover. Some

improved vegetation indices such as ExG, Woebbecke’s index and

some combined vegetation indices have also been used to explore the

feasibility of predicting yields. First-order derivative spectroscopy is a

technique used to remove background signal or noise and for

resolving overlapping spectral feature establishment. It is also

effective for enhancing the relationship between spectral data and

target parameters. In practical scenarios, high-resolution images

captured via UAVs can undergo processing by a color feature

extraction algorithm to derive diverse color feature values.

Subsequently, machine learning techniques are leveraged to develop

models for detecting crop diseases and pests.

In addition, 68 commonly used vegetation indices were selected

in Supplementary Materials Table A3 regarding available literature.

These vegetation indices can be broadly classified into several

categories: characteristic, soil line, and atmospheric adaptive

indices. Characteristic indices are mostly two or more band

operations in the visible and near-infrared bands, such as simple

two-band chlorophyll indices, normalized indices and so on. Soil line

and atmospheric adaptation vegetation indices are designed to reduce

the effects of environmental factors such as soil and atmosphere.

5.1.3 Texture features extraction
As one of the important characteristic variables to characterize

the growth of crops, texture features represent the spatial

organization of pixel intensity changes in images and contain much

essential information related to the occurrence of crop diseases and

pests (Mardanisamani et al., 2019). Supplementary Table A4 in

Supplementary materials show 9 common texture characteristic

parameter calculation methods. In practical applications, high-

resolution images can be obtained by the UAVs and processed by a

texture feature extraction algorithm to obtain values of different

texture features. Then ML is applied to establish crop diseases and

pests detection models. At present, the most commonly used texture

features extraction method is to extract four texture features from RS

images, namely, contrast CON (Contrast), correlation COR

(Correlation), entropy EN (Entropy), and homogeneity HO
TABLE 1 Application of the wavelength selection algorithms.

Sensors Crop diseases/pests
Wavelength
selection
algorithms

Selected EWs (nm) References

Hyperspectral
cameras

Wheat powdery mildew CARS 450, 560, 650, 730, 860 (Song et al., 2022)

Hyperspectral
cameras

Aphid density of winter wheat T-test 491, 617, 750, 1690 (Luo et al., 2013)

Hyperspectral
cameras

Rice canopy infested with brown
spot disease

GAPLS 822, 738, 793, 402, 570, 753 (Zhao et al., 2012)

Hyperspectral
cameras

Strawberry anthracnose and gray mold Random forest (RF)
822.93, 775.55, 783.26, 807.49,

890.28, 829.55,
(Jiang et al., 2021)

Hyperspectral
cameras

The blight diseases of tomato leaves SPA 442, 508, 573, 696, 715 (Xie et al., 2015)

Hyperspectral
cameras

The gray mold disease of tomato leaves T-test 655, 746, 756 (Xie C. et al., 2017)
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435016
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1435016
(Homogeneity), according to gray level co-occurrence matrix

(GLCM) (Wang et al., 2017). Combining texture features with their

type feature variables can effectively improve the detection

performance of quantitative detection models (Pang et al., 2021). In

addition, the DL model also shows excellent performance in texture

feature extraction. These depth models can automatically learn

complex texture features, so they are widely used in the field of

crop pest detection. When applying the depth model, a large amount

of mark sample data is needed to train the model, which also becomes

a big challenge in texture feature extraction by using the depth model.
5.2 Typical traditional machine
learning frameworks

An overview of a typical ML approach system is illustrated in

Figure 7. ML tasks start with input training data. Depending on the

learning signal of the learning system, training data are typically

sorted into two types: labeled and unlabeled. Hence, ML approaches

are mainly classified into three categories: supervised learning,

semi-supervised learning and unsupervised learning. Supervised

learning involves the algorithm being trained on a data set

complete with input variables and their corresponding output

results, aiming to deduce a rule that consistently links the two.

Sometimes, the inputs might be incomplete, or the desired outputs

may only be provided as feedback within a changing environment, a

scenario known as reinforcement learning. In such supervised

scenarios, the model that has been honed is then applied to

estimate the unknown outputs or ‘labels’ for new data.

Conversely, unsupervised learning deals with data that lacks

predefined labels, merging all data without a clear division into

training or test subsets. Here, the algorithm’s goal is to sift through

inputs and unearth underlying structures or patterns.

5.2.1 Extreme learning machine
The ELM is highly effective in generalizing feed-forward neural

networks. It utilizes a single hidden layer neural network that can
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randomly assign input weights and biases in the hidden layer,

thereby addressing common issues such as over-fitting and local

minima (Ding et al., 2014). The ELM stands out for its rapid

learning pace, robust generalization capability, and ability to find

unique, optimal solutions. As a result, it’s extensively employed in a

variety of classification and regression tasks. In the research of

Kouadio et al. (2018), ELM model has the ability to analyze soil

fertility properties and to generate an accurate estimation of robusta

coffee yield. The performance of 18 different ELM-based models

with single and multiple combinations of the predictor variables

based on the soil organic matter, available potassium, boron, sulfur,

zinc, phosphorus, nitrogen, exchangeable calcium, magnesium, and

pH, was evaluated. Khan et al. (2022) applied a multi-level deep

entropy-ELM feature selection technique to recognize cucumber

leaf diseases, and the best accuracy obtained by training on five

different datasets was 98.4%.

5.2.2 Support vector machine
The SVM identifies a hyperplane that maximizes the margin

between the closest points of the training dataset. This process is

executed through quadratic programming optimization using a

radial basis kernel function, making it ideal for tackling small-

sample, nonlinear, and high-dimensional datasets in both

classification and regression contexts. SVM operates on the

principle of structural risk minimization, constructing an optimal

hyperplane for ideal classification by balancing training set error

and complexity (Mahesh, 2020). SVM employs four primary kernel

functions: the linear kernel, polynomial kernel, sigmoid function,

and radial basis function kernel. These functions facilitate the

transformation of low-dimensional space vectors into a high-

dimensional space, aiding in the analysis of sample separability in

this expanded space. Both regression and classification tasks in

SVM share a common foundation. The choice of kernel function

plays a crucial role in influencing the effectiveness of SVM in

classification or regression. For classification tasks, SVM outputs a

class value, whereas in regression scenarios, the output can be any

real number. Kale and Shitole (2021) analyzed a SVM based method
FIGURE 7

A typical machine learning approach system.
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for crop disease detection. SVM algorithm is used to classify the

extracted features. The data points are classified by finding a

maximum spaced hyperplane in N dimensional space and the

position of the hyperplane is optimized by means of support

vectors in order to minimize the classification error.

5.2.3 Back propagation neural network
The BPNN primarily utilizes an error back-propagation

algorithm. This method involves adjusting the network’s

connection weights after each training cycle based on the error

back-propagation, continuing until the discrepancy between the

actual and predicted output values is minimized (Hecht-Nielsen,

1992). For a given input sample set in BPNN, it’s necessary to define

the number of hidden layers and nodes, select a learning algorithm

and rate, choose a transfer function, and establish conditions for

training termination. The neuron transfer functions in BPNN

typically encompass a threshold function, a linear function, and a

sigmoid function. The presence of irrelevant information in the data

can impact the accuracy of the BPNN algorithm, and the inclusion

of large sample data sets can slow down the BPNN’s modeling

process. Consequently, it’s more efficient to build BPNN models

using characteristic variables derived from raw data as inputs, which

also enhances the computation speed.
6 Deep learning algorithms

In the modeling process of traditional ML algorithms, feature

extraction mainly depends on a manually designed feature extractor,

which requires solid professional knowledge and the ability to model

parameter adjustment. Meanwhile, each algorithm has strong

pertinence but poor generalization ability and robustness

(Nazarenko et al., 2019). In contrast, deep learning relies on deep

neural network (DNN) advantages, for example highly optimized

algorithms and multiple unit layer architecture. DNN can extract

features based on data-driven, automatically extract deep and dataset-

specific feature representation according to the learning of a large

number of samples, which is more efficient and accurate for the

expression of the dataset. The extracted abstract features are more

robust and have better generalization ability, which can realize end-

to-end expression (Shrestha and Mahmood, 2019). With the

explosive growth of UAV remote sensing image data, the

importance of deep learning becomes more important than ML.

Some state-of-the-art (SOTA) methods are the followings:

convolutional neural network (CNN), VGG-Net (Simonyan and

Zisserman, 2014), ResNet (He et al., 2016), ResNeXt (Xie S. et al.,

2017), HRNet (Wang et al., 2020), RegNet (Radosavovic et al., 2020),

LeNet, U-Net, etc. Therefore, DL algorithms have shown promising

results and great potential in the early detection of crop diseases and

pests, identification of pest species, and classification of disease

severity (Kamilaris and Prenafeta-Boldú, 2018). Many researchers

have conducted applied research on DL algorithms and achieved

good results, as shown in the appendix Supplementary Table A5. The

following describes a variety of DL frameworks commonly used in

crop diseases and pests detection.
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6.1 Typical deep learning frameworks

With the development of computer technology, advanced

learning is represented by CNN (Abdel-Hamid et al., 2014). It

extracts features layer by layer through convolution and pooling

and has the characteristics of weight sharing and local connection at

the same time, which reduces the number of training parameters

and makes the model easier to optimize. After the proposal of

CNNs, various new deep network structures have been proposed. In

this article, the main focus is on three commonly used deep learning

network structures found during previous hot-spot analyses.

6.1.1 LeNet network
LeNet is a DL framework proposed by LeCun et al. (1998).

LeNet has seven layers of the network, including two convolutional

layers, two pooling layers, and three fully connected layers. It uses

softmax to process the output data. In addition to the input layer,

each layer contains trainable parameters and has multiple feature

maps. LeNet is the first successful application of CNN to solve the

image classification problem, which is widely used in image

recognition and text character recognition tasks. Though the

network structure of LeNet is relatively simple, it has great

adjustability in changing the size of the full connection layer and

the size of the convolutional layer and can adapt to different image

classification tasks. The feature map can extract each input feature

through a convolutional filter, and its topology is illustrated in

Figure 8A. In addition, modern convolutional neural networks are

often improved and developed based on the LeNet framework. For

example, classical convolutional neural networks such as AlexNet,

VGG-Net, GoogLeNet, and ResNet have all proposed more effective

network structures and training strategies on the basis of LeNet’s

work and achieved amazing results in image classification and

object recognition. Gayathri et al. (2020) used LeNet to classify

and detect various diseases of tea, among which the accuracy rate of

tea red spot disease was as high as 94%. Wallelign et al. (2018)

obtained 12673 soybean images taken in the natural environment

and used the LeNet framework to classify and detect many diseases,

such as soybean septicemia and leaf blight, among which the highest

accuracy rate reached 99.32%.

6.1.2 U-net network
U-net was proposed by Ronneberger et al. (2015), and its

original intention was to solve the problem of medical image

segmentation. Later, due to its excellent performance, the U-net

architecture became more popular in various fields. The U-net is

composed of two main parts: the feature extraction layer and the

up-sampling layer. Its name comes from its U-shaped architecture,

and its topology is illustrated in Figure 8B. The feature extraction

part consists of two 3x3 convolutional layers (ReLU activation

function) plus a 2x2 max-pooling layer (maximum pooling layer)

to form a down-sampled module right half, which is repeatedly

composed of an up-sampled convolutional layer (deconvolution

layer) plus feature concatenation concat plus two 3x3 convolutional

layers (ReLU). To further improve the performance of U-net, many

researchers have improved and extended the U-net network
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structure to adapt to more complex scenes. For example, the

introduction of deeper network layers, attention mechanisms,

multi-scale structure, cross-scale connection, and other

technologies can improve the performance and generalization

ability of the U-net network to some extent. Because of the

excellent performance and flexibility of the U-net algorithm itself,

as well as its abundant improvement and extension methods, its

application prospect and research value in the field of computer

vision are paid more and more attention. Bhujel et al. (2022) used

the U-net model to perform image segmentation and quantitative

analysis on strawberry gray mold, and the U-net model showed

robust performance on a wide range of test images. Chen S. et al.

(2021) employed the U-net architecture to subdivide rice bacterial

leaf spot disease and evaluate the severity of leaf spot disease. Rao

(2021) utilized the improved separable convolution of the U-net
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model to classify cassava mosaic disease and cassava bacterial wilt,

and the accuracy reached 83.9%.

6.1.3 VGG-Net network
VGG-Net is a model proposed by the visual geometry group of

Oxford University. It is characterized by small convolution and

deep network layers, which proves that increasing network depth

can effectively improve performance. According to the size of the

convolution kernel and the number of convolution layers, there are

six configurations of VGG, namely A, A-LRN, B, C, D, and E, of

which D and E are the most commonly used, namely VGG16 and

VGG19. VGG16 has sixteen layers, including thirteen convolutional

layers and three fully connected layers. The first time, after two

convolutions with 64 convolution kernels, one pooling is used. The

second time, after two convolutions with 128 convolution kernels,
FIGURE 8

The deep learning models. (A) LeNet, (B) U-net, (C) VGG-Net.
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another pooling is used. Three 512 convolution kernels are repeated

twice, and then pooling is repeated. Finally, three fully connected

layers are used. The topology is shown in Figure 8C. Li et al. (2020)

used the VGG16 and InceptionV3 to identify different degrees of

ginkgo leaf disease. The accuracy of VGG16 in laboratory datasets

was 98.5%, and the accuracy rate in the field dataset was 92.19%.

Rangarajan et al. (2018) used the pre-trained DL architecture

VGG16 net to classify tomato crop diseases. The classification

accuracy of the VGG16 network using 13,262 images was 97.29%.

Yan et al. (2020) employed an enhanced version of the VGG16

model to classify and identify apple leaf diseases. In this modified

model, they replaced the fully connected layer with a global average

polarization layer to decrease the number of parameters.

Additionally, a batch normalization layer was incorporated to

accelerate the convergence speed. The experiments conducted

with this model demonstrated an overall accuracy of 99.01% in

apple leaf disease classification.
6.2 Latest technology in processing crop
diseases and pests imagery

Large language models (LLM) have been widely used in various

fields with promising results. However, the IA has yet to fully

integrate LLM into its practice due to the dominance of visual

images. For this reason, it is worth exploring how LLM can be

applied to IA on a large scale. It’s worth mentioning that the target

detection network——the YOLO (You only look once) network was

proposed as a fast-type method since it adopts a single neural

network to run all components of the given task. YOLO is widely

used for its small size and fast processing speed, and has been

upgraded iteratively, the latest version is YOLOv10 (Wang et al.,

2024). Qing et al. (2023) made a nice try to simultaneous

application of YOLO and large models for pests and disease

detection. A novel approach that combines YOLOPC and Gpt-4

was proposed. YOLOPC is a YOLO lightweight variant. Using the

ability of YOLOPC, turning the affected leaves images into a natural

language description of the disease, which is called image-to-text.

After that, these descriptions of the crop diseases are then entered

into a chatbot, which uses the reasoning capabilities of GPT-4 as

well as the language generation capabilities to generate a disease

diagnosis report. The experiments were tested and evaluated using

datasets from different sources. Test results show that on the

premise of entering text assistant, this network model’s induction

and reasoning module demonstrates 90% reasoning accuracy in

generating agricultural diagnostic reports. A very interesting and

novel attempt to use existing models in combination with LLM. In

the future, there will be more powerful LLMs such as GPT-5 or

GPT-6, and this combination of ideas will still be very useful in

the future.

The development of large vision models (LVM) is a direction

that AI researchers want to follow to make further progress as they

continue to refine LLM. Compared to LLM, visual information is

typically 2-dimensional images, 3-dimensional stereo images, or 4-

dimensional stereo video information. Therefore, the increase of 1-3

dimensions compared to the processing of linguistic information
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results in a higher difficulty level. However, the emergence of GPTs

that are simultaneously LLM and LVM has changed our perception.

It is capable of both processing image data and expressing the

results obtained by processing the data in natural language to form

an agricultural inspection report. As shown in Figure 9, we tried out

the results of GPT-4’s reasoning with images of a diseased leaf. The

image used was the apple leaves scab fungus disease image. We

tested GPT-4 on images of one leaf that was severely diseased, and

another leaf that was slightly diseased. The two paragraphs in the

picture are ChatGPT’s responses to the two pictures I uploaded of

diseased leaves. ChatGPT gives its judgement and advice. Notably,

the image of the slightly diseased leaf posed challenges for

recognition. The outcomes revealed the capability of GPT-4 to

successfully detect visibly diseased leaves. However, it fell short in

effectively identifying subtle signs of disease in the slightly diseased

leaves, providing less satisfactory results in such cases.
6.3 Deep learning in UAV RS - some
discussions in detail areas

It is undeniable that DL-based methods are powerful and

efficient tools for processing the large amounts of data generated

by RS systems. In this section, there are some brief discussions of

some detail areas.

6.3.1 Image resolution problem
The input of DL architecture is low-resolution images, and the

processing method for high-resolution images is to scale them to the

size required for processing. Hence, it is a challenge that maintain

the high resolution of images in the process. In this regard, the latest

HRNet (Kannojia and Jaiswal, 2018) attempts to maintain high-

resolution CNN architecture in deeper layers.

6.3.2 Real-time processing
In the era of IA, crop protection applications can benefit from

DL. However, these DL algorithms are highly computer-intensive.

Usually, a data center or graphics processing unit (GPU) with

strong computing power is required for post-processing. Therefore,

the bottleneck of the development of DL in the field of IA is still

real-time processing. There are two ways to solve this problem:

developing better and faster algorithms and enhancing better GPUs.

In terms of algorithms, MobileNets (Howard et al., 2017) with

layers with fewer parameters can still maintain prediction

performance. In terms of hardware, some platforms such as

NVIDIA ’s Jetson has been developed to better run DL

(Mittal, 2019).
6.3.3 Dimensional reduction
Unlike RGB images, the latest hyperspectral images captured by

drones are composed of dozens to hundreds of spectral bands,

which can help classify and regress the characteristics of leaves.

However, high dimensionality brings two problems: First, the high

correlated bands. Second, the increasing learning cost. Therefore,

hyperspectral data may hinder the accuracy of DL-based methods,
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which is an important issue to consider in RS practice. At present,

the classic method to solve high dimensions is to apply PCA, but

today when the amount of data has increased significantly, this

method may need to be updated. There, Licciardi et al. (2011)

suggested a singular, integrated method within a network

engineering framework. This method focuses on identifying the

most pertinent frequency band combinations from hyperspectral

sensors, directly correlating to the labeled data presented in the

input layer at the network’s initial phase.

6.3.4 Transfer learning
Transfer learning is the ability to learn to draw inferences from

one example and learn new knowledge by using existing knowledge.

Its core is to find the similarity between existing knowledge and new

knowledge. How to reasonably find the similarities between them

and then use this bridge to help learn new knowledge is the core

issue of transfer learning. In practical applications of this model,

there are frequently spectral shifts observed between the training

and testing images. These shifts typically arise from variations in

image acquisition, geographical locations, and atmospheric

conditions (Tuia et al., 2016). Therefore, how to reduce the

impact of the difference between actual indicators on the DL

algorithm is also a direction worth studying.
7 Practical application of UAV RS

7.1 Application of the UAVs assembled the
RGB cameras

The RGB cameras equipped with the UAVs are often used to

obtain morphological indicators of crops, for instance, lodging area,

leaf color, plant height, canopy coverage, and panicle number.

Morphological indices, as important phenotype parameters to

characterize crop growth, are essential in monitoring crop diseases.

The RGB images are processed by RS image classification, image
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feature extraction, and hybrid model recognition, which can realize the

rapid acquisition and accurate diagnosis of crop disease information.

Liu et al. (2018) constructed a wheat disease detection model

based on a random coefficient regression model based on RGB RS

images of UAV and realized an accurate evaluation of wheat

powdery mildew disease severity. Oh et al. (2021) extracted crop

canopy coverage, canopy volume, and vegetation indexes based on

UAV RGB RS images and combined them with various ML

algorithms to construct various detection models of corn tar spot

disease, realizing accurate detection of corn tar spot disease. Calou

et al. (2020) monitored banana yellow leaf disease with an RGB

camera mounted on UAV and constructed the banana yellow leaf

disease detection model by using ML algorithms including

maximum likelihood, minimum distance, SVM, and artificial

neural network. Among the above models, the overall accuracy of

the SVM model achieved 99.28%. RGB cameras have the

advantages of low prices and easy operation. Nevertheless, it is

limited by the limited spectral band in RGB images, which cannot

reflect more physiological information about crops. Compared with

RGB cameras, UAV multi-spectral imaging systems can obtain

more diverse spectral characteristics and perform better in

biochemical trait estimation due to the contribution of near-

infrared spectral information.
7.2 Application of the UAVs mounted the
multi-spectral cameras

The multispectral imaging sensors carried by the UAVs obtain

the map information of the crop, which can more comprehensively

present the spectral characteristics of the crop and realize the in-situ,

rapid, and efficient monitoring and accurate acquisition of the crop

disease information. High spectral-resolution sensors have significant

advantages and wide application potential in quantitative RS of IA.

Marin et al. (2021) extracted various vegetation indices

including the green ratio vegetation index (GRVI), green
FIGURE 9

The GPT-4 results after entering an image of diseased leaves. (A) Severe diseases (B) Slight diseases.
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normalized difference vegetation index (GNDVI), and normalized

difference vegetation index (NDVI) based on UAV multispectral

images. They constructed various coffee leaf rust detection models

using four decision tree models (logistic model tree (LMT),

reduced-error pruning tree (REPTree), regression tree (RT), and

RF), among which the LMT detection model achieved 91.5%

accuracy. Lan et al. (2020) used the UAV RS platform to collect

multispectral RS images of large citrus orchards, explored the best

vegetation index combination for citrus Huanglongbing detection,

and constructed various citrus Huanglongbing detection models in

combination with various ML algorithms (SVM, k-nearest

neighbors (KNN), naive Bayes, logistic regression, ensemble

learning). Xiao et al. (2022) constructed various apple fire blight

detection models based on UAV multispectral RS images and

various ML algorithms (decision tree, RF, and SVM), among

which the overall accuracy of the random forest model reached

94.0%. Zheng et al. (2018) designed and proposed a real-time wheat

disease detection algorithm called efficient double-flow UNet (DF-

UNet) based on UAV multispectral images and a DL algorithm for

the diagnosis of wheat yellow rust severity. Compared with the

jagged spectral map provided by the multispectral cameras, the

hyperspectral cameras can provide a smooth spectrum and higher

spectral resolution, which makes up for the defect that the

multispectral cameras cannot depict narrow spectral features. In

addition, the hyperspectral cameras’ imaging speed is faster, making

the data acquisition cycle shorter and more efficient.
7.3 Application of the UAVs mounted the
hyperspectral cameras

Hyperspectral imaging mainly uses narrow electromagnetic

bands to obtain the spectral information of ground objects. Since it

came out, it has been widely used in crop diseases and pests. Zhang

et al. (2003) identified and detected tomato leaf miners based on

hyperspectral fusion, and the recognition rate and overall recognition

rate of the GA-BPNNmodel for samples at all levels reached 93.33%.

Based on the hyperspectral RS of UAV, Feng S. et al. (2021)

constructed the classification and detection model of leaf blasts and

explored the classification method of rice leaf blasts, among which the

classification prediction accuracy reached 98.58%. Ma et al. (2021)

conducted hyperspectral RS on a chestnut planting area using a

UHD185 hyperspectral camera mounted on a UAV (DJI Dajiang

M600). They analyzed the spectral characteristics of leaves that were

locally infected, unevenly infected, and recovering from infection.

Then they determined the relationship between the damage degree of

red spider diseases and pests and the changes in 6 spectral

characteristics, namely the green peak, red valley, low position, red

edge, high position, and high shoulder. Abdulridha et al. (2020) used

unmanned aerial vehicles (Matrice 600 Pro, Hexacopter, DJI Inc.)

with a hyperspectral camera to detect powdery mildew at different

stages in pumpkins. In field conditions, the RBF neural network was

used to classify the early and late stages of disease development as

89% and 96%, respectively.
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7.4 Application of the UAVs mounted the
thermal infrared cameras

The upper limit of the spectral range that the above three

sensors can collect is 5000 nm, while the thermal infrared camera

can collect spectral information between 3000 nm and 14000 nm.

The thermal infrared cameras can collect crop temperature

information, photosynthesis, transpiration, and other crop

physiological conditions that cannot be obtained by the above

cameras, providing another crop pests monitoring method.

The real-time monitoring of crop temperature using thermal

infrared cameras mounted on UAVs is crucial for the detection of

early pests and diseases with non-visual symptoms, and thermal

images from UAVs have greater temporal and geographic

resolution than images received from satellites, making them a

valuable source of information for agronomic applications (Ribeiro-

Gomes et al., 2017). Feng et al. (2022) used a six-rotor UAV

(Matrice600PRO DJI) as an RS platform equipped with thermal

capture real-time monitoring of wheat canopy temperature

information by thermal cameras to classify and detect wheat

powdery mildew. Chen A. et al. (2021) used UAV to obtain

thermal and visible-light aerial images. Thermal imaging can

effectively detect late blight and white mold in field crops.
7.5 Application of multi-source data fusion

Limited by the different band ranges, interference conditions,

imaging mode, and mechanism obtained by each sensor, any single

data source has limitations and cannot fully reflect the spatial-temporal

characteristics of crops. The multi-source RS carried by UAVs acquires

RGB images, full-band spectrum or multi-band spectrum information,

three-dimensional structure information, and temperature of crops by

carrying various crop information monitoring equipment. It realizes

the joint application of multi-source monitoring information through

data fusion and forms a complete working system of UAV RS

monitoring crop diseases and pests.

Because of the complexity and diversity of the actual farmland

layout and the seriousness of spectral mixing, it is imperative to

improve the spatial resolution of UAV RS. Multi-source data fusion

can effectively improve the ability to describe the details of crop

spatial distribution, improve the spatial resolution and clarity of the

image, and reduce the impact of mixed pixels to a certain extent.

Image fusion is the most common multi-source RS data fusion

method. It aims at improving the spatial resolution. The synthetic

image with new spatial and spectral characteristics is generated by

processing and calculating the multi-source RS data according to

specific rules. The hue-luminance-saturation (HLS) transform

method based on color correlation and the PCA, wavelet

transform methods based on statistical methods can effectively

improve the spatial resolution of UAV RS. In addition, grain

characteristics, spectral characteristics, and biochemical

characteristics produced by crops at different stages of suffering

from different diseases and pests are significantly different.
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Therefore, long-term RS data collection and multi-temporal data

fusion can make up for the deficiency in the timing of crop

monitoring and greatly improve the accuracy of classification

monitoring of crop diseases and pests.

For wheat powdery mildew, Feng Z. et al. (2021) fused the

hyperspectral features collected by the spectral radiometer, thermal

infrared image data obtained by a thermal infrared camera, and

texture features obtained by an RGB camera, which greatly

improved the intensive reading of RS monitoring of wheat

powdery mildew. DadrasJavan et al. (2019) constructed a citrus

Huanglongbing detection model based on the low-altitude RS

platform of RGB and multispectral cameras carried by UAV,

combined with the SVM algorithm, and achieved 81.75% overall

classification effect. In their study, Lei et al. (2021) utilized RGB and

multispectral RS images obtained by UAV to extract normalized

difference vegetation indices, optimized soil adjusted vegetation

index (OSAVI), leaf chlorophyll index (LCI), GNDVI, and

normalized difference red edge (NDRE) index. They constructed

different detection models for the injury levels of areca yellow leaf

disease depended on five ML algorithms (BPNN, decision tree,

naive Bayes, SVM, KNN). The results demonstrated that the

classification accuracies of the test sets of the BPNN algorithm

and SVM algorithm were satisfactory, at 86.57% and 86.30%,

respectively. Francesconi et al. (2021) used an unmanned DJI

Matrice 600 multi-rotor aircraft equipped with a Zenmuse X5

RGB camera and a Zenmuse XT thermal infrared camera to

collect RGB images and thermal infrared images for data fusion,

which improved the accuracy and efficiency of classification and

detection of wheat fusarium cephalosporins. Based on the fusion of

the hyperspectral image and the multispectral image source, Cock

et al. (2016) established a monitoring model for corn borer damage,

effectively classified areas with different disease severity levels, and

facilitated exemplary management of corn planting areas.
8 Conclusion and prospects

8.1 Deficiencies in the existing research
and challenges to be solved

In recent years, with the continuous innovation of UAV RS,

outstanding platforms have been built for research in crop

monitoring. The UAVs have made significant progress in

detecting and classifying crop diseases and pests and greatly

promoted the development of IA (Hunt and Daughtry, 2018).

However, there are still some deficiencies in the existing research,

and there are still many problems and challenges to be solved.

8.1.1 Multi-source data fusion
There are a bunch of sources of monitoring data on crops, such

as images or digital data obtained by hand-held spectral camera

detectors, image data captured by cameras mounted on unmanned

vehicles, and images captured by various types of cameras on

UAVs. It’s worth exploring how to fusion these types of data

because it will help us form a better overall system.
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On the other aspect, due to the diversity of crop diseases and

pests damages, different diseases and pests may appear

simultaneously in similar spectral characteristics in the same crop.

The same disease and pests may also appear in different spectral

characteristics in the same crop at different times: the so-called

‘same spectrum foreign matter’ and ‘same substance different

spectrum’ phenomenon. At the same time, a single sensor is

limited by its spectral band, resolution, and other factors (Gao

et al., 2020). The information on crop diseases and pests obtained

by it is relatively limited, so it is difficult to solve the above

problems. In contrast, multi-source data fusion can fully use

different sensors’ characteristics and advantages. It can coordinate

multiple sensors to jointly monitor crops’ growth, analyze crops’

growth from multiple levels, and provide a new solution for solving

the errors and interference caused by the phenomenon of the same

spectrum of foreign matter and the same thing different spectrum.

8.1.2 Combination of multi-scale RS methods
The RS of UAVs is limited by the load capacity and endurance

of the UAV itself, so it is challenging to monitor farmland in real

time in large areas and long time. Therefore, how to improve the

UAV RS to achieve multi-temporal and multi-space crop diseases

and pests monitoring has become a momentous research topic. To

solve this problem, multi-scale RS monitoring of crop diseases and

pests, which combines space RS, aerial RS, ground RS, and UAV RS,

is a more prominent solution.

RS monitoring by using sensors carried on satellites can obtain

three characteristics spatial resolution, time resolution, and spectral

resolution at the same time. It combines the temporal dynamic

change of crop diseases and pests process, the spatial range change

of pests and diseases occurrence area with spectral characteristics. It

has the technical advantages of all-weather, multi-mode, and multi-

polarization (Neupane and Baysal-Gurel, 2021). Additionally, aerial

RS and ground RS data have the advantages of high spectral

resolution and convenient and diverse acquisition methods, which

entirely make up for the shortcomings and defects of UAV RS. By

utilizing the plurality of RS technical means, the trinity of ground-

space satellite and the point-surface combination is realized to

monitor and classify crop diseases and pests together. Such a

combination allows for multilevel monitoring of crop leaves and

canopies. Thus, the method has extremely high practical value.

8.1.3 Improvement of algorithms
In processing and analyzing the acquired UAV RS data using the

traditional ML algorithm, tedious feature extraction operations need

to be carried out so that real-time processing of the UAV RS data is

difficult to realize. Meanwhile, the period of building a model is

prolonged. However, using DL for modeling analysis requires much

data to train the model. When the training data is insufficient, or the

data sample type is unbalanced, problems such as under-fitting or

over-fitting are prone to occur. In addition, the generalization ability

of the DL model is weak. It is difficult to directly apply the model for

specific crop pests to the pest recognition of other crops. Because of

the above problems, the traditional ML algorithm is combined with

the DL algorithm, and by utilizing the characteristics of the DL
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algorithm to automatically learn and extract the deep feature

information of the data, the key feature information about the crop

diseases and pests in the RS data is efficiently obtained, and the key

feature information is taken as the input variable of the traditional

ML algorithm so that a disease and pest detection model with

stronger universality and stability is constructed.
8.2 Future of deep learning in IA

DL is still considered a ‘black box’ solution to most problems

(LeCun et al., 2015), although new research is minimizing this

concept to a considerable extent. Due to the complexity of layer

number issues and parameter issues in deep learning, it is difficult

for us to clearly understand why solutions that are considered good

from the results are good. Regardless, in the field of RS, it has

provided important discoveries in most of its implementations. In

this paper, our aim is that this review of the literature will act as a

comprehensive overview, encapsulating the various applications of

UAVs in the realm of DL networks.

Therefore, from the above analysis, we can draw some conclusions:
Fron
1. It is necessary for drones to obtain additional labeled publicly

available datasets for training and benchmarking networks.

2. Methods such as R-CNN and XGBoost are slightly

insufficient in detection accuracy. However, emerging

algorithms such as U-Net and PSNet have achieved better

accuracy, which means there is still a lot of room for

continuous improvement in algorithms.

3. DL can provide fast inference solutions with the assistance

of GPU processing. However, further investigation is still
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needed regarding the real-time processing of UAVs using

embedded systems.

4. In the context of UAV RS, whether some promising topics.

For example, combining multi-head attention-based

mechanisms and multi-task learning to form a new

networks. Whether general large model technology can

be applied to pest and disease detection in IA under

UAV RS is also worth studying.
8.3 Something even better than DL in the
near future

Since the AI application AlphaGo (Silver et al., 2017) defeated

the world champ Jie Ke in May 2017, AI has become the talk of the

town. Furthermore, the release of ChatGPT (Brown et al., 2020) and

GPT-4 (Achiam et al., 2023) exacerbated this process. Maybe AGI

could be useful in IA. General AI refers to the capability of machines

to mimic human cognition and execute a wide range of tasks

through transfer learning and other methods. GPT-4 exemplifies

this as a multimodal system, combining language and visual

recognition, allowing it to understand and process images. It is

feasible to use LLM e.g. GPT4 for image recognition, text

organization, and inference to generate crop diseases and pests

diagnostic reports with suggested solutions (Lu et al., 2023).

The image processing process of traditional AI models is to

analyze, simply reason, and draw conclusions. However, AGI

models can recognize and analyze the image directly through

‘prompts’ and begin to reason, search the knowledge base, draw

organized conclusions, and give readable scientific advice. This is
FIGURE 10

LLMs/LVMs/MLLMs that could be used on IA in the future.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435016
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1435016
the question-answering and dialogue system. Not everyone knows

how to use AI models. However, the natural language conversation

capability that AGI has allows these individuals to utilize AGI

models using a spoken question-and-answer format. Assuming that

AGI can be integrated into mobile, it would be a real convenience

for a large number of farmers. In addition to this, there are many

applications of knowledge graphs to agricultural AGI. For example,

a search engine designed for farmers. Agricultural search engines

enhance the connection between farmers and experts, providing

easier access to necessary information. Additionally, agricultural

recommender systems play a pivotal role. These systems aid in

distributing reliable information, assisting farmers in making well-

informed choices to boost production. This includes

recommendations on the best agricultural inputs like seeds,

fertilizers, and pesticides to use. By utilizing auxiliary information

from the knowledge graph, user preferences can be captured more

accurately, enabling more precise recommendations.

AI service integration holds great potential for assistance,

documentation, education, interpretation forecasts or data-driven

predictions. LLM depict a fundamental step to reduce the gap

between AI-driven data analysis and common users. For

agriculture, this implies that LLM will improve farmer

consultation by providing all necessary information e.g. crop

cultivation, breeding, machines, or phytopathology to an advisor

or the farmer directly (Kuska et al., 2024).

As shown in Figure 10, we summarized the development process

of the big models and selected somemodels released in 2022 and 2023.

The overall trend in largemodels is from LLM to LVM tomulti-modal

large language model (MLLM). On one hand, the use of LLM can be

combined with other computer vision techniques. On the other hand,

the use of LVM could process UAV RS imagery directly. Further on,

the MLLM is capable of inputting text, sound, image, and video, and

also outputs the multimodal items. The aforementioned LLM, LVM,

and MLLM, are all belong to AGI. Considering the generalization of

AGI, all these models mentioned in the Figure can be applied to IA in

the future. However, for the time being, LLM still has a number of

limitations. The outputs generated by LLM sometimes do not provide

valid answers due to insufficient information. Often the source of data

used to generate the output is not clearly known, affecting the

reliability of the output. The performance of multilingual extensions

is low, especially in agricultural applications, which are more complex

when different languages, dialects and technical terms are involved.

Recommendations and conclusions that are valid in one region may

not be applicable when translated to another region with different

geographical, legal and agricultural conditions.
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IA intelligent agriculture
Frontiers in Plant Scie
UAV unmanned aerial vehicle
RS remote sensing
AI artificial intelligence
DL deep learning
ML machine learning
LLM large language model
LVM large vision model
FAO food and agriculture organization
ELISA enzyme-linked immunosorbent assay
IF immunofluorescence
PCR polymerase chain reaction
FISH fluorescence in situ hybridization
AGI artificial general intelligence
WOS web of science
PCA principal component analysis
VIS visible light
NIR near-infrared
SG savitizky-golay convolution smoothing
SNV standard normal variate
MSC multivariate scatter correction
WT wavelet transform
CON contrast
COR correlation
EN entropy
HO homogeneity
GLCM gray level co-occurrence matrix
SPA successive projections algorithm
nce 24
GAPLS genetic algorithm partial least squares
UVE uninformative variable elimination algorithm
CARS competitive adaptive reweighted sampling
RF random forest
ELM extreme learning machine
SVM support vector machine
BPNN back propagation neural network
DNN deep neural network
CNN convolutional neural network
SOM self-organizing map
LLM large language model
YOLO you-only-look-once
LVM large vision model
GPU graphics processing unit
GRVI green ratio vegetation index
GNDVI green normalized difference vegetation index
NDVI normalized difference vegetation index
LMT logistic model tree
REPTree reduced-error pruning tree
RT regression tree
KNN k-nearest neighbors
DF-UNet double-flow UNet
HLS hue-luminance-saturation
OSAVI optimized soil adjusted vegetation index
LCI leaf chlorophyll index
NDRE normalized difference red edge
MLLM multi-modal large language model.
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