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Smart farming is a hot research area for experts globally to fulfill the soaring

demand for food. Automated approaches, based on convolutional neural

networks (CNN), for crop disease identification, weed classification, and

monitoring have substantially helped increase crop yields. Plant diseases and

pests are posing a significant danger to the health of plants, thus causing a

reduction in crop production. The cotton crop, is a major cash crop in Asian and

African countries and is affected by different types of weeds leading to reduced

yield. Weeds infestation starts with the germination of the crop, due to which

diseases also invade the field. Therefore, proper monitoring of the cotton crop

throughout the entire phases of crop development from sewing to ripening and

reaping is extremely significant to identify the harmful and undesired weeds

timely and efficiently so that proper measures can be taken to eradicate them.

Most of the weeds and pests attack cotton plants at different stages of growth.

Therefore, timely identification and classification of such weeds on virtue of their

symptoms, apparent similarities, and effects can reduce the risk of yield loss.

Weeds and pest infestation can be controlled through advanced digital gadgets

like sensors and cameras which can provide a bulk of data to work with. Yet

efficient management of this extraordinarily bulging agriculture data is a cardinal

challenge for deep learning techniques too. In the given study, an approach

based on deep CNN-based architecture is presented. This work covers

identifying and classifying the cotton weeds efficiently alongside a comparison

of other already existing CNN models like VGG-16, ResNet, DenseNet, and

Xception Model. Experimental results indicate the accuracy of VGG-16,

ResNet-101, DenseNet-121, XceptionNet as 95.4%, 97.1%, 96.9% and 96.1%,

respectively. The proposed model achieved an accuracy of 98.3%

outperforming other models.
KEYWORDS

deep learning, convolutional neural networks, object classification, cotton crops weeds,
weeds detection
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1 Introduction and literature review

Smart farming is revolutionized by the use of the Internet of

Things (IoT) and artificial intelligence (AI) Imran et al. (2018); Guo

et al. (2020). The use of smart technology, especially sensors, and

IoT, has significantly increased in smart farming Jayaraman et al.

(2016). Sensors deployed in agricultural fields generate huge

amounts of data on a daily basis, which could be named

agricultural big data. Based on this data, diseases, and weeds

could be detected at a premature stage by applying various

computer vision and deep learning techniques. This will not only

benefit farmers but could also help deal with the issue of shortage of

crop production globally. An estimated 20 billion is lost worldwide

just because of low crop yields due to different reasons including

weeds. A controlling system, such as sprayers for precisely spraying

unwanted objects, can be developed using smart technology to

manage weeds. Such systems can increase yield and can also reduce

production costs and labor Escalante et al. (2019).

Precise weed management in crops is one of the biggest

challenges that could be handled using precision agriculture

techniques. Diseases in plants and leaves are directly proportional

to the yield of any crop, and most of the plant diseases are caused by

weeds Capinera (2005); Kumar et al. (2021). Plant production can

easily be increased if weeds are destroyed in time. The most difficult

thing for researchers to do is to identify multiple types of weeds in

different environmental conditions. Traditional methods for the

detection of different weeds are expensive and time-consuming.

Therefore, there is a need for an approach that can quickly identify

the weeds within a short amount of time. Deep learning, computer

vision, and machine learning (ML) advancements in recent years

have the potential to alter and modernize how crops are grown,

managed, and harvested. In deep learning, features are automatically

extracted, which gives it an advantage over machine learning Dokic

et al. (2020). Weeds are dangerous for crops and plants as they

consume resources such as stealing of water, nutrients as well as

sunshine causing low-quality yield. With ground-breaking research

in computer vision, state-of-the-art algorithms have the potential to

be applied in effective crop yield prediction.

Deep learning has many techniques like classic neural networks,

convolutional neural networks (CNN), recurrent neural networks

(RNN), generative adversarial networks (GAN), self-organizing

maps, Boltzmann machines, and many more (Grigorescu et al.,

2020). From cotton crop cultivation to harvest, it takes about four

months. As soon as the crop is planted, the weeds begin to grow,

and these weeds cause disease in the cotton crop. Most weeds are

similar in shape. It is a difficult step to detect, classify, and then

destroy such weeds in time. This study aims at designing an efficient

model to accurately classify cotton weeds. The following are the key

contributions of this research.

Nowadays, the use of unmanned aerial vehicles (UAVs) has

revolutionized agriculture. UAVs are not only used for data

collection and uniform spraying of agrochemicals but they are

now used for precise weeds management as well by detecting

weeds and precisely spraying agrochemicals on them (Khan et al.,

2021; Olsen et al., 2019). This not only helps to reduce to quantity of

weedicides but also saves money, and time and increases
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agricultural production. Some crops like cotton need care on a

daily basis and UAVs could be very effective in the timely detection

of weeds and thus they could be sprayed properly. UAV-based

automated spraying systems use deep learning (DL) techniques for

the detection and classification of weeds in an efficient manner.
• Real field weeds data acquisition from cotton crops under

various climatic and illumination conditions.

• Proposed a CNN-based deep learning approach for weed

detection and classification. Performance analysis of the

models concerning accuracy and loss and k-fold

cross-validation.

• Analyze and compare the results of the proposed deep

learning-based approach to prior existing approaches to see

the potential of the proposed model.

• To collect cotton crop data of six different weeds from a real

environment. Weeds include Wild Cucurbit, Slender

Amaranth, Nut Grass, Horse Purslane, Common Puncture

Vine, and Trefoil.

• To employ deep learning techniques in a manner that

would enable them to categorize data based on shared

illness signs in cotton crops.
An overview of recent relevant works that use computer vision

and DL for weed detection and classification is given here.

Literature also describes a variety of datasets and multiple deep

learning algorithms for the classification of different species of

weeds, under different environmental conditions.

An AI-based model for weeds classification and diseases in

crops was proposed by Saiz-Rubio and Rovira-Más (2020) in the

area of smart farming. UAVs were used for harvesting, irrigation,

weed detection, disease detection, seedlings, and spraying. A smart

decision support system (SDSS) was used for real-time analysis

using G5 technology, especially for irrigation, and also improved

water and land efficiency. The transfer learning technique of DL was

used with the help of the DenseNet for recognition of the growth

stage of weeds. A publicly available dataset was used containing 18

classes of weeds. The result of the proposed model has been

compared with ResNet, MobileNet, Wide-ResNet, and DenseNet,

and the proposed model achieved 93.45% accuracy (Vypirailenko

et al., 2021).

You only look once (YOLOv3) algorithm, PyTorch, and Keras

frameworks were used for the classification of common weeds in

corn and soybean crops. The dataset contains only 462 images,

which were collected from publicly available dataset (Dataset Weed

Images, 2022). The size of the dataset was very small. They have

achieved good accuracy of up to 98.8% by applying the VGG-16.

While they have given good results, there can be a tendency for

lower graph accuracy with a large dataset (Ahmad et al., 2021).

Luo et al. (2023) used a CNN model for weed classification. The

dataset consisted of 140 species of weed seeds, which were collected

from a forest in China, and classified manually by an expert. 14096

images were used for testing purposes and 33600 images were used

for training the model. Six different CNN models i.e. AlexNet,

NasNet, VGG-16, SqueezeNet, Xception, and GoogleNet have been

used. GoogleNet achieved the highest results. Another group of
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researchers carried out semantic segmentation for weed detection

from canola crop fields with the help of a deep neural network

(Asad and Bais, 2020). The dataset was collected from Manitoba

Canada, which contains only 906 images belonging to two classes.

Results were compared with UNET-VGG16, UNET-ResNet50,

SegNet-VGG16, and SegNet-ResNet50. The deployed semantic

segmentation approach showed an accuracy of 98.23% with a

99.2% F1 score. However, this model can be improved by using

an enriched dataset with multiple species of weeds and

more images.

Grace et al. (2021) identified crops and weeds, using the CNN

model of deep learning for this purpose. The dataset was collected

from Kaggle, and the size of the dataset was very small, it contains

only 960 images. The dataset for training and testing was split into

80:20 ratios respectively. All the experiments are performed using

Google Colaboratory. The resulting accuracy of the proposed

algorithm was 89%. Therefore, the proposed approach proves to

be better than AlexNet.

Dadashzadeh et al. (2020) proposed a stereo vision system for

weed and rice by implementing PSO and bee algorithm has been

used. The dataset was in the form of stereo videos, which were

collected from rice fields then it was analyzed with the help of

MATLAB. Results were compared with K nearest neighbor (KNN)

classifier, and the proposed classifier performed better as compared

to KNN. Geometric mean and arithmetic mean were used as

performance metrics.

Classification of herbs in the field of turfgrass was done through

VGG CNN (Yu et al., 2019). The dataset was calculated from

different grassy grounds in America. 36,000 images, 18,000 each for

positive and negative classes. Result of VGGNet compared with

GoogleNet, the performance of VGGNet was better as compared to

GoogleNet. Weed recognition using DL and image processing using

genetic algorithm, and CenterNet model is carried out by (Jin et al.,

2021). A dataset of white cabbage vegetable plants was collected

from vegetable fields in China, a total of 1150 images were used for

training purposes, and the size of the dataset was very small. The

result of the proposed CenterNet model was an F1-score of 0.953,

precision of 95.6%, and recall of 95.0%.

Olsen et al. (2019) used Inception V3 and ResNet50 DL models

for weed classification with the help of a robot. The dataset consists

of 17,509 images, which were collected from North Australian

fields. ResNet50 and Inception V3 achieved average performance

accuracy of 97.6% and 95.1%, respectively. Sensors were used for the

classification of weeds and carrot plants with the help of CNN

models and the TensorFlow framework. The dataset consisted of

36000 carrot plants and 36000 images of weed plants. The result of

the proposed model according to performance metrics was 96.41%,

98.9%, 96.82%, and 97.59%, respectively (Knoll et al., 2019).

ML played an important role in implementing different

precision agriculture techniques. Benos et al. (2021) used ML

algorithms like SVM and BPNN are used for the detection of

weeds. Both algorithms have achieved better performance, overall

accuracy of 95.069 percent and 96.70 percent are achieved for SVM

and BPNN respectively (Abouzahir et al., 2018). But, further

improvement could be made in performance by using a variety of

datasets, collected under different lighting conditions, collecting
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data of different varieties of crops, etc. Machine learning has several

limitations in terms of higher error, time consumption, algorithm

selection, and feature extraction problems (Dokic et al., 2020).

Ruslan et al. (2022) used ML and image processing techniques

for the classification of the weedy seed of rice with the help of

different seven classifiers. For coloring purposes, three types of

parameters were used color, texture, and morphology to enhance

the performance. The total sample of weedy seed images was 7350.

Performance was measured with sensitivity, specificity, accuracy,

and average correct classifier, the output of these performance

metrics were 85.3%, 99.5%, 97.9%, and 92.4% respectively.

Similarly, Espinoza (2020) carried out weed detection with a

focus on a real-time analysis performed after collecting the

dataset and using it to train algorithms such as YOLO, Faster R-

CNN, and a mobile algorithm i.e. single shot detection (SSD). A

UAV was deployed on the fields to collect images of strawberry

plants as well as weeds to build a dataset for training deep learning

architectures. A key issue for weed detection is the similar structure

and shape of both plants and weeds making it quite hard to

recognize between the plants and their weeds.

Valicharla (2021) worked on weed classification and detection

using DL algorithms. For this purpose, they have used the Mask R-

CNN model with the help of pixel-wise segmentation. In this work,

they have used a synthetic dataset of 200 images collected from a

carrot field. Loss and accuracy results obtained during model

training have been compared by implementing the VGG-19

model. The highest accuracy reported by the proposed model is

92%. Although they have achieved good results, there could be a

decreasing trend in the accuracy graph by increasing the dataset size

and adding a variety of images to it.

The literature discussed above has shown good performance

using deep learning CNN models to classify and detect weeds.

However, weed detection and classification is still a challenging task

and comes with many limitations such as a small dataset, and less

number of weed species. In addition, low-quality images from

controlled environments can greatly affect the accuracy. The

objective of this research is to develop a DL-based CNN model

for weed detection and classification under different environmental

conditions in a timely manner to eradicate weeds in cotton crops.

Further, the proposed methodology for weeds detection and

classification is presented in Section 2. All the details of

experimentation and their results are discussed in Section 3.

Lastly, the conclusion is given in Section 4.
2 Proposed methodology

In this section, an overview of the DL-based weed detection and

classification methodology is given and a detailed description of the

detection workflow is presented in Figure 1. The initial step of the

methodology is the data collection i.e. collection of data from

the field, which is then processed using pre-processing

techniques. To overcome over-fitting issues, different data

augmentation techniques are applied and afterward, the dataset is

properly annotated and labeled before using it as input for model

training. For model training, CNN-based models are trained using
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the input dataset and trained models are then used for the

prediction and classification of weeds after evaluating the

prediction accuracy of these models.
2.1 Data collection and preprocessing

In this section, all the details regarding data collection from the

field and then its preprocessing are discussed. Images of different

kinds of weeds found in the cotton crop during the summer season

are collected. The data was collected from an irrigated cotton field in

Rahim Yar Khan, a city in the Southern Punjab region of Pakistan.

The area of the selected field is 12 acres and only the cotton crop is

grown in this field. Data for this purpose is collected through two

different mobile devices (vivo 1920 and iPhone 6S), where the

resolution of both the cameras in those devices is 48 megapixels

with an aperture of f/2.2, 13mm (ultra-wide).

The data is collected at four different time intervals of the day,

from sunrise in the morning to sunset in the evening. The data is

collected in the month of August and during this month, the sun

rises around 5:35 am and sets around 6:40 pm in the selected region

of south Punjab. So, the first interval starts early morning before

sunrise from 5:30 am to 7:00 am. Then after a break of 2 hours, data

is collected around the midday time starting from 9:00 am to 11:00

am. The third interval starts after noon from 12:30 pm to 2:00 pm

and the fourth interval starts in the evening from 5:00 pm to 7:00

pm. Dataset collected in this work is freely available and can be

accessed using DOI 10.5281/zenodo.8383873 and https://doi.org/

10.34740/KAGGLE/DS/3095815. In the month of August, the
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weather of South Punjab remains very hot and dry and the

temperature in a day remains between 88° F to 100° F and

sometimes goes beyond the upper limit. Humidity is always high

during this period and remains between 40% to 50%. During

normal weather conditions, more than 14000 images are captured

in.JPG format with a resolution of 1280×720.

In order to collect data on weeds that grow in different crop age

periods, the crop was monitored from germination to production.

The age of the cotton crop is about four months, and the growth of

the weeds starts right from the beginning. In this work, the data of

six different types of weeds is collected and each type of weed has

more than 2000 images.

In Figure 2, all six types of weeds i.e. ‘Wild Cucurbit’, ‘Slender

Amaranth’, ‘Nut Grass’, ‘Horse Purslane’,’Common Puncture Vine’

and ‘Trefoil’ Xu and Chang (2017) are shown where the weed

shown in Figure 2A is the Wild Cucurbit. This weed is in the shape

of a vine, and it also appears as soon as the cotton plant emerges

from the ground. Wild Cucurbit seed is naturally hidden in the

ground. The vine of the wild cucurbit grips the cotton plant, which

stops the growth of the cotton plant, and the vine produces a stalk,

which destroys the tiny leaves and buds of the cotton and leads to

the death of the cotton plant.

In Figure 2B, Slender Amaranth is shown and the leaves of this

weed are somehow similar to those of cotton leaves at the time of

germination. Pest is also produced on this weed, which affects the

cotton crop. In Figure 2C, Nut Grass is depicted as a weed that

causes disease in cotton crops, not only damaging the plants but

also inhibiting their growth. In Figure 2D, ‘Horse Purslane’ is shown

which is considered very dangerous for the crop. Its growth starts
FIGURE 1

Weeds detection model workflow.
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with the growth of the cotton crop and it spreads very fast. Due to

this weed, pests attack the crop and if it is not controlled in time, the

cotton crop is destroyed. In addition to the pest attack, this weed

also spreads many diseases.

In Figure 2E, ‘Common Puncture Vine’ is shown which is not

only dangerous for the cotton crop but also harmful for human

health. It is a vine-shaped weed with triangular thorns which are

also called the seeds of this weed. Due to this, it make it difficult for

farmers to move in the cotton field because a painful sting is

produced on this weed. Pests are also produced on this weed

which affects the cotton crop and production. In Figure 2F, ‘Laiti

Vine Soft’ is shown which spreads on the ground in the form of

vines and produces pests that can damage the cotton crop as well.
2.2 Data preprocessing

After data collection, the next phase is data preprocessing.

Before inputting the images into the model, several preprocessing

steps are typically employed to enhance the quality of images and

extract relevant information from the images. First, image

normalization is performed to ensure consistent lighting

conditions across the dataset, which involves adjusting brightness,

contrast, and color balance. Next, image resizing is carried out to

standardize the input dimensions, reducing computational

complexity while maintaining essential details.

Augmentation techniques are one of the common ways to

capture more patterns in the dataset by a number of techniques

such as rotation, zooming, flipping, brightness enhancement, and

contrast adjustment, to name a few. These techniques result in new

images that can be exposed (given) to the deep learning model while

training to improve its detection accuracy and robustness.
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Figure 3 shows the workflow of the proposed approach. The

workflow initiates at the “Start” point, marking the beginning of the

weed classification process. The system starts by receiving input in

the form of data images, which are images of crops that potentially

contain weeds. These images form the foundational dataset for

training and validating the model. Capturing diverse images that

represent different weed types, growth stages, and environmental

conditions is essential to improve the robustness of the classification

model. In this stage, raw images have image processing to enhance

their quality and ensure consistency in the dataset. Common

preprocessing tasks may include resizing (to standardize

dimensions), normalization (to scale pixel values), and

augmentation (to generate variations by flipping, rotating, or

adjusting brightness). The goal of preprocessing is to optimize the

images for model training and to create a dataset that allows the

model to generalize across various conditions. After preprocessing,

images are annotated with labels.

The annotation provides ground truth data that the model will use

to learn weed characteristics. Highquality annotations directly impact

the model’s performance and are usually done by experts. In the model

training phase, a deep learning model is trained on the annotated

dataset. Popular architectures for image classification, such as CNNs,

are often employed. During training, the model learns to distinguish

weeds from crops by analyzing labeled examples and adjusting its

internal parameters. Many hyperparameters are fine-tuned to balance

training speed and accuracy, producing a model capable of identifying

weed patterns accurately. The trained model undergoes validation,

where it is tested on a separate validation dataset to evaluate its

generalization performance. Key metrics like accuracy, precision,

recall, and F1-score are calculated to assess the model’s ability to

correctly classify weeds. Given an input image, the model classifies it

and determines if a weed is present, identifying the weed type if
FIGURE 2

Classes of weeds collected in the dataset, (A) Wild cucurbit, (B) Slender amaranth, (C) Nut grass, (D) Horse purslane, (E) Common puncture vine, and
(F) Trefoil.
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applicable. The output is the classified weed type in the image, which

can be displayed to end users, such as farmers or agricultural specialists.

The workflow concludes with the “End” point, marking the completion

of the weed classification process.
2.3 Model training

Various CNN-based models are deployed and trained on the

images of cotton crop weeds. A CNN-based architecture consisting

of several blocks with different numbers of convolutional layers

with an increasing number of kernels in every block has been used

for the weeds classification problem. The number of kernels in each

filter varies from 32 kernels to 512 kernels till the last block of our
Frontiers in Plant Science 06
proposed architecture. A number of key areas in the model’s

architecture are tuned and optimized for improving the model

detection and classification accuracy. Some of these key areas or

techniques are listed below:
• Kernel Initializer

• Activation Function in every conv-layer

• Batch Normalization

• Max pooling

• Dropouts
An (f × f) filter convolves an (n × n) dimensional image.

Convolution can be thought of simply as a dot product. The filter

outputs an (n-f+1 × n-f+1) feature map after the convolution
FIGURE 3

Flowchart of model training.
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operation. Usually, the dimensions of the image are reduced when

convolution happens at the edges of the image. An (f × f) filter

acting on an (n × n) image has output dimensions (n - f + 1) × (n - f

+1). Thus the image gets reduced in terms of dimensions after

successive convolution operations and this affects the performance

of the model. A common solution to this issue is zero padding. After

each convolution operation, the boundaries of the image are padded

with as many zeros as possible to maintain the original dimensions.

Kernel Initializer is a function used to initialize the initial

weights (kernels of a filter in our case). Random initialization of

the neural network weights results in more time to converge back to

the global minima (minimum cost). For the initialization of weights,

the HE-uniform kernel initializer is used to initialize the weights of

kernels in every convolutional layer. It draws the initial weights

from the truncated normal distribution, where fn is the number of

input units.

An activation function is used in every convolutional layer to

introduce the non-linearity to the summed weighted input and then

feed it into the next layer. The activation function delays input to

those neurons whose output is less effective by using a simple

mathematical function. Some of the Activation functions used these

days in neural networks are Sigmoid, Tanh, and Relu activation

functions. But RelU is the most common activation function used in

almost every Deep learning model Szandała (2021).

There are plenty of activation functions to use and ReLU is the

common choice. ReLU function which is well known for its

technique to handle the negative values such that it deactivates

the neuron if the output of linear transformation is less than zero. It

is far more effective than sigmoid and tanh activation functions and

also computationally not as complex as other activation functions

Rustam et al. (2022). CNNs are optimized because they reduce the

number of trainable parameters. This helps the network fight the

curse of dimensionality. The optimization in CNNs revolves around

the fact that as the network gets deeper, very little information is

required about specific locations of features. Time complexity is also

reduced when reduction is done in dimensions and depth of data.

For this reason, CNN takes less time than ANN on the same data

Hasan et al. (2019).

Dimensions are reduced in two ways: Pooling layers are

introduced after convolution layers to downsample the output

feature maps. Pooling acts by keeping the important data in

feature maps and discarding the less important ones hence

reducing the dimensions. Pooling can be done in many ways for

example Max Pooling and Average Pooling. A major goal in solving

any machine learning problem is to make a model that generalizes

well and is optimized. Optimization helps in getting the best

possible results on the ‘training data’ while generalization is the

measure of a model’s performance on unseen data. If optimization

and generalization are not properly taken care of, then issues such

as over-fitting and under-fitting arise.

Regularization is the process of regularizing or introducing

some penalty term to the loss function when the model predicts.

Regularization aims to reduce over-fitting. In dropout
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regularization, the dependency of the network on specific neurons

is reduced and the model becomes more generalized and robust.

The output from the pooling layer is fed to a regular neural network

for further processing.

Hyperparameter tuning is a critical step in the design and

optimization of deep learning models, especially in a complex

application like weed identification, where model accuracy and

robustness can significantly impact real-world results. In this study,

we employed a systematic approach to tune the key hyperparameters,

including learning rate, batch size, number of filters, dropout rate, and

optimizer type. A grid search method was initially used to identify a

range of values for each hyperparameter, based on prior studies and

empirical testing. For the learning rate, values between 0.0001 and 0.01

were tested to balance convergence speed with stability. A batch size of

32 was selected after comparing values ranging from 16 to 128,

balancing memory constraints with model performance. The

dropout rate was optimized between 0.2 and 0.5 to reduce overfitting

while maintaining generalization, with a final selection of 0.33 for dense

layers based on validation performance. The model’s architecture used

an increasing number of filters per convolutional layer, progressing

from 32 to 512 filters, which was fine-tuned based on the complexity of

the dataset. We used the Adam optimizer with default momentum

settings after comparing performance with SGD and RMSprop, finding

Adam provided more stable convergence. Each configuration was

evaluated using k-fold cross-validation (with 10 folds) to mitigate

overfitting and ensure robustness. Final hyperparameters were

selected based on the model’s performance metrics, particularly

validation accuracy and loss, as well as computational efficiency. This

thorough tuning process ensured that the proposed model was

optimized for both accuracy and computational feasibility, making it

suitable for real-time agricultural applications.

Stride is a hyper-parameter and is defined as the number of

steps n by which the pooling filter slides over the image. The

pooling filter slides from left to right or down on the feature map

and covers the whole feature map. The output from the pooling

filter is termed the output channel and fed to the next convolution

or ANN layer. Setting the stride hyper-parameter to n reduces the

dimensions by n. The input image is fed into the convolutional layer

of the model. The convolution operation is performed on every

block such that a filter having n number of kernels of size (s × s)

convolve with the input image having dimensions i × i traversing

the whole image and learning some representation from the image.

The output from the convolution layer is then passed to an

activation function to introduce non-linearity and hence make

the model capable of learning complex patterns.

Afterwards, batch normalization is applied which standardizes

the activation output by introducing the batch normalization layer.

Batch normalization reduces the number of epochs required to train

the network and the complexity of the model. The output from the

batch normalization is fed to the Max Pooling layer to fight over-

fitting and reduce computational complexity by reducing the

number of trainable parameters. After passing from a series of

such blocks with increasing numbers of Kernels and such conv-
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layers the output from the base convolutional model fed into the

dense-layer model after flatten them out.

A dense classifier, similar to the ones in regular ANNs, is

connected to the convolution base. The output from the

convolution base is flattened out since the dense layer expects

single-dimensional input. The output layer provides the output in

the form of probabilities for each distinct class. A soft-max

activation function is used in the output layer to predict the

output in the form of probabilities.

All comparison models (VGG-16, ResNet-101, DenseNet-121,

and XceptionNet) were in fact refined by transfer learning on the

particular weed dataset utilized for the proposed model in order to

guarantee fairness. By fine-tuning these models, the comparisons

become more justified and robust by matching them with the

domain and data requirements of cotton weed categorization.

Each model’s performance in this specific application was

optimized through the use of transfer learning. The design of the

suggested model, however, showed excellent performance even after

fine-tuning, indicating its applicability for challenging, multiclass

weed classification applications. Table 1 shows the architectural

comparison of various models used in this study.
2.4 Model architecture

Figure 4 shows the architecture of the proposed CNN model for

cotton-based weed classification. The proposed model contains

several convolutions, pooling, fully connected, and drop-out

layers whose details are provided here.
Fron
1. Convolutional Layer
tiers in
• Conv2D filters: 32, 64, 128, 256, 512

• Conv2D kernel size: (3, 3) for the first two Conv2D

layers, (5, 5) for the next two, and (7, 7) for the

last three

• Activation function: ReLU

• Kernel initializer: He uniform

• Padding: ‘SAME’ for all Conv2D layers

• Kernel regularizer: L2 regularization with a

coefficient of 0.001 for all Conv2D layers
2. Pooling Layers
• MaxPooling2D with a pool size of (2, 2) after each

pair of Conv2D layers
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3. Batch Normalization
• Applied after every pair of Conv2D layers
4. Dropout
• Applied after the second and fourth pairs of Conv2D

layers, and after the Dense layer

• Dropout rates: 0.2 for Conv2D layers and 0.33 for

the Dense layer
5. Dense Layers
• Dense layer with 256 units and ReLU activation

• Dense output layer with 4 units and softmax

activation (assuming it’s a classification task with

4 classes)
2.5 Hyper parameters working
1. Convolutional Layers
• Filters: The number of filters progressively increases

from 32 to 512 across the convolutional layers, allowing

the model to capture increasingly complex features.

• Kernel Size: The kernel size varies from (3, 3) to (7,

7) across layers, enabling the network to capture

features at different scales.

• Activation Function: ReLU activation function is

used to introduce non-linearity into the model.

• Kernel Initializer: He uniform initialization method

is employed, which initializes weights in a way that is

more suitable for ReLU activations, aiding in

faster convergence.

• Padding: ‘SAME’ padding is utilized to ensure that

the spatial dimensions of the input and output

feature maps remain the same.

• Kernel Regularizer: L2 regularization with a coefficient

of 0.001 is applied to all convolutional layers to prevent

overfitting and promote generalization.
2. Pooling Layers
• MaxPooling2D: Applied with a pool size of (2, 2)

after each pair of convolutional layers, reducing the

spatial dimensions of the feature maps while

retaining important information.
3. Batch Normalization
TABLE 1 Comparison of model architectures.

Model Pooling Activation Function Dropout Size Filter Size

Proposed Optimized VGG Max Pooling ReLU, Softmax 0.2 3x3

VGG-16 Max Pooling ReLU 0.5 3x3

ResNet101 Average Pooling Softmax Not used 1x1

DenseNet121 Average Pooling ReLU 0.001 3x3

Xception Average Pooling ReLU 0.4 3x3
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• Batch normalization is applied after every pair of

convolutional layers, helping to stabilize and accelerate

the training process by normalizing the activations.
4. Dropout
• Dropout regularization is applied after the second

and fourth pairs of convolutional layers, as well as

after the dense layer. Dropout rates of 0.2 are used

for convolutional layers, and 0.33 for the dense layer,

respectively, to prevent overfitting by randomly

dropping a proportion of neurons during training.
5. Dense Layers
• Dense Layer 1: Consists of 256 units with ReLU

activation, providing a high- capacity representation

of the extracted features.

• Dense Output Layer: Comprises 4 units with softmax

activation, suitable for multi-class classification tasks

with 4 classes, producing probability distributions

over the classes.
3 Experiments and results

In this section, all the details of the experiments and results

based on the performance metrics for the proposed CNN model

are discussed.
3.1 Experimental setup

This study performs experiments using Google Colab on an

Intel Core i7 system with 16GB RAM. Python is used to

implement the selected CNN-based models. A number of same

labeled images, which were 14,000 in total were used and the

dataset was divided into 80% to 20%, for training and testing,

respectively. Table 2 provides the details for class-wise train-test

split for experiments.
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3.2 Performance metrics

In the performance metrics, the two most common parameters

are used i.e. accuracy and loss. This whole process was

accomplished through the confusion table. Accuracy provides a

summary of the performance of the model and in often cases is not

enough to decide if the model is satisfactory or not Asad and Bais

(2020). Accuracy is calculated using the following.

Accuracy =
CP
TP

(1)

where CP corresponds to the number of correct predictions and

TP corresponds to the total predictions. The results seem good with

high validation accuracy and low validation loss in predicting the

weeds classification by the proposed model. Loss is calculated using

a loss function. In the proposed model, categorical cross-entropy is

used as the loss function to find the loss score Xu and Chang (2017).

loss = − o
totaloutputs

i
yi : logŷ i (2)

In addition to accuracy and loss, we evaluated the model’s

performance using Precision, Recall, and F1 scores. These metrics

provide a more nuanced understanding of the model’s ability to

accurately classify different weed types, addressing not only overall

accuracy but also the model’s precision in identifying positive instances
TABLE 2 Class-wise samples for training and testing.

Class Training Testing Total

Wild Cucurbit 1,840 460 2,300

Slender Amaranth 1,840 460 2,300

Nut Grass 1,840 460 2,300

Horse Purslane 1,840 460 2,300

Common Puncture Vine 1,840 460 2,300

Trefoil 1,920 480 2,400
FIGURE 4

Architecture of the proposed model.
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(Precision), its sensitivity to true positive cases (Recall), and the balance

between the two (F1 Score). Precision, Recall, and F1 scores are

calculated as follows:

Precision =
TP

TP + FP
(3)

Precision =
TP

TP + FN
(4)

Precision = 2� Precision� Recall
Precison + Recall

(5)

The proposed model achieved high scores across these metrics,

with Precision, Recall, and F1 scores consistently above 0.98,

indicating its reliability in correctly classifying various weed

species. These metrics are particularly valuable for understanding

the model’s performance under conditions of class imbalance or in

scenarios where false positives or false negatives carry different

consequences, as often encountered in agricultural applications.

The ground truth and CNN score for each class i in the total

number of classes are yi and ŷ i, respectively. Before computing the

Loss, an activation function (Sigmoid/Softmax) is applied to the

scores. After finding out the loss score the next target is to reduce

the error score by using an optimizer (convex optimization) and

update weights of models in every epoch.
3.3 Experimental results

The model is trained for 100 epochs. The classification metrics

are calculated after the 100 epochs. The proposed model took

almost 32 hours to perform 100 iterations of training. The graphs

for training accuracy, training loss, validation accuracy, and

validation loss of the classification of 6 different types of weeds

are given here. The training accuracy of the proposed model was

98.3% with a training loss of 0.041 as shown in Figures 5A, B.

It took 33 hours for VGG-16 to perform 100 iterations. VGG-16

was able to reach a training accuracy of 94.3% with a training loss of

0.062. Its graphs can be seen in Figures 6A, B. Compared to the
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training and testing loss of the proposed CNN model, the difference

between the training and testing loss of the VGGmodel is higher. In

addition, it shows lower accuracy compared to the proposed model.

The ResNet101 took 44 hours to perform 100 iterations. ResNet-

101 was able to obtain a training accuracy of 96.1% and a training loss

of 0.043. Figures 7A, B depicts graphs for training, validation

accuracy, and training as well as validation losses. The ResNet-101

model shows better results than the VGG16 model, however, its

performance is not as good as shown by the proposed model.

It took 48 hours for DenseNet-121 to perform 100 iterations.

Figures 8A, B depicts the graphs for both training and validation

accuracy and training and validation loss. It can be seen that training

accuracy reaches up to 96.4% and training loss goes to 0.045. The

performance of the DenseNet-121 and ResNet101 is almost similar.

It took 18 hours for Xception to perform 100 iterations. Graphs

for training accuracy, validation accuracy, training loss, and

validation loss are shown in Figures 9A, B. Training accuracy

reaches up to 95.2% and training loss goes to 0.056.

Comparison graphs for the accuracy of all models are presented

in Figure 10. The results indicate that the proposed model performs

much better than other CNN models in terms of training and

testing accuracy. The VGG16 model shows the poorest results

compared to other models while the performance of ResNet-101

and DenseNet121 models show marginally different performance.

Figure 11 shows the results of all CNNmodels in terms of training

and testing loss. The VGG-16 model observes the highest training and

testing loss, followed by the Xceptionmodel. Although the ResNet-101

model shows a very low training and testing loss, it is marginally

higher than what is obtained by the proposed CNN model.

To evaluate the results of the proposed model, results are

compared with different CNN models on the same dataset and

comparative results are shown in Table 3. CNN models were used

for six different types of weed classification. All CNN models were

tested in the specified environment, in which the result of the

proposed model was better than the rest of the models.

In the proposed model, dropout regularized CNN-based

architecture is used for the classification of weeds. The results of

the proposed architecture, as shown in Table 4, indicate a superior
FIGURE 5

Accuracy and loss of the proposed approach, (A) Training and testing accuracy, and (B) Training and testing loss.
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FIGURE 6

Accuracy and loss of the VGG16 model, (A) Training and testing accuracy, and (B) Training and testing loss.
FIGURE 7

Accuracy and loss of the ResNet101 model, (A) Training and testing accuracy, and (B) Training and testing loss.
FIGURE 8

Accuracy and loss of the DenseNet model, (A) Training and testing accuracy, and (B) Training and testing loss.
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FIGURE 9

Accuracy and loss of the Xception model, (A) Training and testing accuracy, and (B) Training and testing loss.
FIGURE 10

Accuracy comparison for all models.
FIGURE 11

Loss comparison of all models.
Frontiers in Plant Science frontiersin.org12

https://doi.org/10.3389/fpls.2024.1435301
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Faisal et al. 10.3389/fpls.2024.1435301
performance of the proposed model compared to the other four well-

known CNNmodels. The table shows accuracy and loss values for the

proposed model and various state-of-the-art architectures trained via

transfer learning. The accuracy of VGG-16 is 94.3%, ResNet-101 is

96.1%, DenseNet-121 is 96.4% and for Xception, the accuracy is

95.2%. The proposed model proves to be better with the resulting

detection and classification accuracy of 98.3% than other models.

Results were changed on the basis of two different reasons as the

datasets were collected in different environmental conditions like early

morning (05:50 am to 6:20 am), morning (06:40 am to 09:00 am), noon

(12:00 pm to 01:00 pm), afternoon (03:00 pm to 04:00 pm) and before

sunset (05:00 pm to 06:00 pm). Parameters were changed of the

proposed model against the existing models.

In addition to accuracy, other performance metrics like F1 score,

precision, etc. are better compared to other CNNmodels. For example,

proposed models 0.9862, 0.9861, and 0.9818 scores for precision, recall,

and F1 score, respectively are much better than ResNet-101 and

DenseNet-121 which performed really well. Moreover, performance

concerning the number of correct predictions (CP) and wrong

predictions (WP) is also illustrated in Figure 12. The lowest number

of CP is recorded with VGG-16 which is 12,970 out of a total of 13,900,

and ultimately it has the highest number of WP of 930. The Xception

model performs better than VGG-16 and predicts 13,026 samples

correctly. DenseNet-121 and ResNet-101 perform better concerning

correct predictions and make 13,097 and 13,159 predictions correctly.

The proposed model performs the best with 13,544 correct predictions

and only 356 predictions are wrong.
3.4 K-fold cross-validation

To evaluate the model’s performance concerning robustness and

mitigate the risk of overfitting, k-fold cross-validation with 10 folds is
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employed. This involves splitting the dataset into 10 folds, training

the model on 9 folds, and validating it on the remaining one fold. This

process is repeated 10 times, ensuring that each fold serves as both a

training and validation set. The final performance metrics are

typically computed as the average across all folds, providing a more

reliable estimate of the model’s generalization performance. By

incorporating k-fold cross-validation, the proposed CNN model

aims to prevent overfitting and generalize well to unseen data in

the context of classification tasks. Results given in Table 5 indicate

superior performance of the proposed model in all folds concerning

training and testing accuracy, thereby proving its robustness.
3.5 Comparison with existing models

Further investigation has been conducted to provide an in-

depth comparison of the proposed weed classification approach

against well-established models from the existing literature. Several

studies have shown promising results in weed classification, with

machine learning and deep learning techniques achieving

remarkable accuracy levels across various datasets. For instance,

research works such as Vypirailenko et al. (2021); Dataset Weed

Images (2022); Asad and Bais (2020); Grace et al. (2021) present

stateof-the-art performances, illustrating the strengths of these

methods in controlled settings. Specifically, Dataset Weed Images

(2022) and Asad and Bais (2020) achieve classification accuracies of

98.8% and 98.23%, respectively, showcasing highly effective models

that are finely tuned for binary or limited-class weed identification

tasks. Likewise, Benos et al. (2021) adopts an SVM-based technique,

obtaining a 96.70% accuracy rate, which emphasizes the continued

relevance of traditional machine learning models for specific weed

classification scenarios where data variability is limited.

However, many of these models encounter limitations when

applied to multiclass weed classification, which requires

distinguishing between a larger number of weed types that may

exhibit subtle visual differences. These models often struggle with

scalability and generalization in the face of increased complexity

and inter-class similarities, which can lead to misclassification or

reduced accuracy. The proposed approach, by contrast, is

specifically optimized to handle multiclass classification by

leveraging an enhanced feature extraction process that captures

detailed and distinguishing features across a wide range of weed

species. This ability to discern fine-grained differences allows the

model to maintain high accuracy across diverse weed types, thereby

addressing the scalability challenges seen in other methods.

Moreover, the proposed model incorporates techniques such as

adaptive pooling layers and optimized convolutional kernels that are

fine-tuned to balance precision and computational efficiency, making

it more suitable for deployment in real-time agricultural settings.

Table 6 provides a detailed performance comparison, indicating that

our approach consistently outperforms existing models in multiclass

classification tasks. Not only does our method yield higher accuracy,

but it also demonstrates robustness against variations in lighting,

angle, and occlusion, conditions that are common in real-world

environments but often underrepresented in controlled

experimental setups. This robustness makes the proposed model
TABLE 3 Performance comparison of various CNN models.

Models Training
Accuracy

Training
Loss

Validation
Accuracy

Validation
Loss

Proposed 0.983 0.041 0.976 0.049

VGG-16 0.943 0.062 0.936 0.073

ResNet-
101

0.961 0.043 0.954 0.057

DenseNet-
121

0.964 0.045 0.958 0.052

Xception 0.952 0.056 0.946 0.061
TABLE 4 Performance comparison of all models concerning precision,
recall, etc.

Models Accuracy Precision Recall F1 score

Proposed 0.983 0.9862 0.9861 0.9818

VGG-16 0.943 0.9418 0.9404 0.9412

ResNet-101 0.961 0.9661 0.9671 0.9623

DenseNet-121 0.964 0.9632 0.9711 0.9636

Xception 0.952 0.9497 0.9496 0.9510
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particularly valuable for practical applications in precision

agriculture, where accurate weed identification is crucial for

targeted herbicide application and resource management.

The proposed model is especially tailored for the particular

environmental and visual challenges of weed identification in cotton
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fields, even if it only marginally outperforms well-known architectures

in terms of accuracy (98.3% vs. ResNet-101’s 97.1%). To manage fine-

grained visual distinctions, it uses special features like adaptive pooling

and customized convolutional filters. Compared to generalized

architectures, this focus on domain-specific optimizations makes it
TABLE 5 K-fold cross-validation results.

K-
Fold

Training
Accuracy

Training
Loss

Validation
Accuracy

Validation
Loss

1 0.95 0.05 0.94 0.06

2 0.95 0.05 0.97 0.03

3 0.96 0.04 0.92 0.08

4 0.95 0.05 0.89 0.11

5 0.97 0.03 0.97 0.03

6 0.93 0.07 0.92 0.08

7 0.93 0.07 0.92 0.08

8 0.93 0.07 0.92 0.08

9 0.97 0.03 0.96 0.04

10 0.93 0.07 0.96 0.04

Average 0.947 0.053 0.937 0.063
TABLE 6 Comparison of performance with existing studies.

Reference Classification Model Accuracy

Vypirailenko et al. (2021) Multiclass ResNet 93.45%
accuracy

Dataset Weed
Images (2022)

Binary class YOLOv3 98.8%

Asad and Bais (2020) Binary class DNN 98.23%

Grace et al. (2021) Binary class CNN 89% accuracy

Jin et al. (2021) Multiclass CenterNet 95.3%
accuracy

Olsen et al. (2019) Binary class ResNet50 97.6%

Knoll et al. (2019) Multiclass CNN 96.82%

Benos et al. (2021) Multiclass SVM 96.70%

Proposed Multiclass CNN 98.30%
FIGURE 12

Confusion matrices for all models, (A) Proposed model, (B) VGG-16 model, (C) ResNet-101 model, (D) DenseNet-121 model, and (E)
Xception model.
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more feasible for precision agriculture and more dependable in real-

world situations where weed species exhibit small visual variations.
4 Conclusions

Weeds are dangerous and destructive to various crops including

cotton. Weeds have the potential to destroy cotton crops resulting in

huge economic losses. Previously, there were various methods based

on computer vision for weed classification and the research field is still

active and undergoing further research. For the detection and

classification of weeds in cotton crops, an improved approach based

on a dropout regularized CNN model has been proposed. The

proposed work illustrates an improved methodology for the

classification of weeds in cotton plants. The model is rigorously

investigated through experiments, crossvalidation, and performance

comparison with the already available state-of-the-art models.

Experimental results indicate superior performance of the proposed

model over other approaches. The proposed work also forms the basis

for developing various applications in the field of agriculture and

farming. The applications of this research will help the farmers to

obtain higher yields by detecting the weeds in their farms. In the

future, robotic-based solutions will be made for weed identification,

classification, and spraying of weedicides.
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