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Chlorophyll monitoring is an important topic in phenotypic research. For fruit

trees, chlorophyll content can reflect the real-time photosynthetic capacity,

which is a great reference for nutrient status assessment. Traditional in situ

estimation methods are labor- and time-consuming. Remote sensing spectral

imagery has been widely applied in agricultural research. This study aims to

explore a transferable model to estimate canopy SPAD across growth stages and

tree species. Unmanned aerial vehicle (UAV) system was applied for multispectral

images acquisition. The results showed that the univariate model yielded with

Green Normalized Difference Vegetation Index (GNDVI) gave valuable prediction

results, providing a simple and effective method for chlorophyll monitoring for

single species. Reflection features (RF) and texture features (TF) were extracted

for multivariate modeling. Gaussian Process Regression (GPR) models yielded

better performance for mixed species research than other algorithmmodels, and

the R2 of the RF+TF+GPR model was approximately 0.7 in both single and mixed

species. In addition, this method can also be used to predict canopy SPAD over

various growth stages, especially in the third and fourth stages with R2 higher

than 0.6. This paper highlights the importance of using RF+TF for canopy feature

expression and deep connection exploration between canopy features with GPR

algorithm. This research provides a universal model for canopy SPAD inversion

which can promote the growth status monitoring and management of fruit trees.
KEYWORDS

multispectral imaging, canopy SPAD value, vegetation index, reflection feature,
texture feature
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1 Introduction

Chlorophyll, as an important component of plant cells with the

ability to absorb light and convert it into chemical energy, is critical

to observe the photosynthetic capacity (Zarco-Tejada et al., 2016)

and the nitrogen status of the fruit trees. Under the background of

climate change and population growth, limited land resources and

water resources make agricultural production face great pressure

(Intergovermental Panel on Climate Change, 2022). Chlorophyll

content monitoring in fruit trees can help predict yield and optimize

plant varieties in biological research (Brewer et al., 2022), thereby

increasing agricultural productivity and ensuring food security and

sustainable development.

Traditionally, chlorophyll content was measured by chemical

method (chromatographic separation), which is time- and labor-

consuming. Spectral technology has gained widespread application

in the non-destructive detection of chlorophyll content. The

development of a portable spectrometer provides much

convenience for field spectral collection for its mobility

(Crocombe, 2018; Xiao et al., 2024). However, this approach is

still labor-intensive and not suitable for large-scale area

applications. With the evolvement of science and technology,

remote sensing techniques have become popular gradually,

promoting the development of high-throughput phenotypic

research (Jafarbiglu and Pourreza, 2022). Satellite remote sensing

technology helps us with large-scale data analysis. Nevertheless, for

precision agriculture in small farms, satellite remote sensing is

limited in spatial and temporal resolution. Unmanned aerial

vehicle (UAV) remote sensing enables fast data acquisition with

highly ground and temporal resolution; its advantages of simple

operation and flexible application make it become an important

means in agricultural monitoring research (Sankaran et al., 2019;

Jafarbiglu and Pourreza, 2022).

Multispectral and hyperspectral sensors are imaging devices,

which can simultaneously obtain two-dimensional spatial

information and one-dimensional spectral information. The

combination of spectral imaging and UAV can effectively

facilitate data acquisition for a large area (Zhao et al., 2019). Lao

et al. (2024) proposed a parameter/non-parameter combined model

for canopy chlorophyll content retrieval of seven typical vegetation

communities; high-spatial-resolution images were captured with

UAVmultispectral device. Wang et al. (2022) used UAV to estimate

the percent green cover for high-throughput turfgrass; they found

that multispectral images might offer a solution for non-green

vegetation which is not captured by RGB images. Fu et al. used

multi-platforms including analytical spectral device, UAV, and

PlanetScope for water chlorophyll a concentration retrieval; the

transfer learning methods were proposed for the ASD hyperspectral

data to UAV and Planet platforms (Fu et al., 2023). Hyperspectral

imagers have high spectral resolution and can detect more spectral

information than multispectral cameras, but the processing method

is more complicated for hyperspectral images (Hernanda et al.,

2023). In addition, a multispectral camera is much cheaper than a

hyperspectral camera (Zhang and Zhu, 2023), which is a significant
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factor considered in our research because economy is an important

aspect that determines the possibility of application for

a smallholder.

Vegetation index (VI) is calculated with reflectance of different

spectral bands intending to select informative and sensitive spectral

data and minimize non-informative information. It provides an

important contribution to the assessment of plant status and

successfully applied for chlorophyll estimation (Haboudane et al.,

2008; Li et al., 2018), LAI monitoring (Hunt et al., 2010), and yield

prediction (Zhou et al., 2017; Guan et al., 2019). However, previous

research was mainly focused on plant evaluation for specific growth

stage due to the great influence of phenological changes in

biochemical content (Féret et al., 2017; Wang et al., 2018).

Obviously, the growth model corresponding to different stages is

inconvenient in the evaluation of the whole growing season.

Therefore, it is necessary to build an applicable model throughout

the growth cycle for chlorophyll retrieval. Moreover, Main et al.

(2011) pointed out that for plant species (maize, cabbage, tomato,

and several savanna tree species) with different degrees of

chlorophyll content, indices using off-chlorophyll absorption

center wavebands (690–730 nm) performed the most robust

results. Similarly, in fruit tree studies, more research needs to be

done to find common indices. More studies should continue to find

a universal index for chlorophyll monitoring.

Texture feature, which refers to visual patterns or spatial

arrangement of pixels, is another significant characteristic of

images. It can provide spatial information on crop growth (Duan

et al., 2019; Yogeshwari and Thailambal, 2021). In the rice

aboveground biomass monitoring research, Xu et al. found that

texture features can help to recognize the emergence of rice

panicles, thus avoiding the overestimation at panicle initiation

(Xu et al., 2022a). During the tillering stage to the booting stage,

the texture features tended to be stable, which helps to the

improvement of prediction accuracy (Xu et al., 2022b). Moreover,

Li et al. got improved accuracy of nitrogen content models in winter

wheat with the fusion of spectral and texture features (Li et al.,

2023). Maimaitijiang et al. recognized that canopy texture features

could offer canopy subtle structure characteristics which would be

beneficial to soybean yield prediction (Maimaitijiang et al., 2020).

However, there is a lack of literature on fruit trees about the

potential of texture features (TF). Therefore, our research further

explored the sensitivity of TF on the chlorophyll content evaluation

of fruit trees (Abdelbaki and Udelhoven, 2022).

This study aims to assess the potential of vegetation indices (VIs),

reflection features (RF), and TF in estimating the canopy SPAD values

of fruit trees, combined with multiple machine learning algorithms.

The emphasis focuses on inversion models that can be applied

simultaneously to mixed tree species (apple tree and pear tree). The

main contributions of this work are given as follows: (1) evaluate the

VIs for canopy SPADmonitoring of single and mixed tree species with

univariate algorithms, (2) compare the performance of the combined

use of the RF and TF in estimating canopy SPAD based on deep

learning algorithms, and (3) determine the optimal method for canopy

SPAD inversion over various growth stages of mixed tree species.
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2 Materials and methods

2.1 Study region

This study was conducted in the city of Baoding, of Hebei

province, China, with a temperate and monsoonal climate. The

experimental field was an apple orchard (115.37° E, 38.90° N) with

an elevation of approximately 25 m and a pear orchard (115.41° E,

38.84° N) with an elevation of approximately 30 m (Figure 1). The

two orchards were watered by flowing irrigation, except when rain-

fed. The total area size of the apple orchard is approximately 0.2 ha.

A total of 91 “Morrissey apple” trees arranged in seven rows were

planted in 2009. The apple trees were irrigated four times during the

annual period, respectively—earlier during flowering and fruit

growth beginning stage, the fruit growth and the volume increase

stage, the time after the fruit picking stage, and later during the leaf

senescence stage. The average apple tree height is 3.5 m. The pear

orchard covers an area of approximately 0.27 ha, and a part of the

whole orchard was set as research area, including 96 “Bergamot

pear” trees arranged in eight rows and planted in 2015. The pear

trees were irrigated four times during the annual period, especially

in the time before the flowering stage, later of the flowering stage,

the fruit growth and the volume increase stage, and the time after

the fruit picking stage. The average pear tree height is 4.2 m. The

experimental field was divided into microplots to obtain

experimental data separately.
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2.2 Field data collection

A chlorophyll meter is a portable device which allows the in situ

quantification of total leaf chlorophyll by measuring optical

densities at two separate wavebands, and the chlorophyll content

can be estimated by SPAD values (Shu et al., 2021). In this study, the

SPAD value was measured with a chlorophyll meter (TYS-4N

Jinkelida Electronics, Beijing, China). The SPAD value was

measured at six points and twice for each one; the average was

taken as the final value. A comparative experiment between leaf

chlorophyll content and SPAD value was carried out, and the results

verified that the SPAD value was related to the chlorophyll content

at the 0.01 level with a Pearson coefficient of more than 0.9 for both

apple and pear tree leaves. For each microplot, the reference canopy

SPAD is determined by averaging the SPAD values of 20 sample

leaves which are healthy with an intact structure and located at the

upper and different directions of the canopy.

We implemented experiments from August 2019 to September

2021 in the apple orchard and fromMay 2020 to August 2021 in the

pear orchard. The experimental date and corresponding growth

stages are specified in Table 1. Each experimental day was a sunny

day, and the temperature situation is shown in Figure 2. Figure 3

describes the statistical analysis of the canopy SPAD value for fruit

trees in different growth stages. It can be concluded that the canopy

SPAD value increased from flowering until fruit maturation period

and then began to decrease during the annual growth cycle. With
FIGURE 1

Location and satellite pictures of the experimental area.
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the growth and development of tree leaves, the chlorophyll content

in the leaves gradually increased, and when the fruits gradually

matured, the chlorophyll content in the leaves began to decrease. In

our study, the maturity time of pear trees was approximately 20

days earlier than that of apple trees.
2.3 Multispectral image collection

Parrot Sequoia is a small and lightweight multispectral imager

designed for agricultural remote sensing, with four spectral sensors
Frontiers in Plant Science 04
and one RGB sensor (Figure 4B). The four spectral bands are situated

in green (550 nm), red (660 nm), and near-infrared (790 nm) with

bandwidth of 40 nm, respectively, and in red-edge (735 nm) with

bandwidth of 10 nm. Furthermore, the imager was equipped with a

sunshine sensor to compensate for the variability in sunlight

conditions during different campaigns (Figure 4A) and to calibrate

the images obtained with a calibration reflectance panel (Figure 4D)

under different lighting conditions.

The UAV used in this study was DJI Phantom 3 Advanced (DJI

Technology Co., Shenzhen, China), a low-cost quadrotor. Flight

paths were generated in DJI GS Pro (https://www.dji.com/cn/
TABLE 1 Schedule of experiments in the orchard.

Experimental date Growth stage

For apple tree

2019 year
27 August Fruit ripe for picking BBCH 87

22 September Leaf senescence ───

2020 year

11 May
Flowering and fruit
growth beginning

BBCH 71

14 June Fruit growth and the
volume increase

BBCH 72-73
26 June

25 July Fruit growth and
ripening gradually

BBCH 73-87
8 August

22 August Fruit ripe for picking BBCH 87

28 September Leaf senescence ───

2021 year

5 May Flowering and fruit
growth beginning

BBCH 71
14 May

5 June
Fruit growth and the
volume increase

BBCH 72-73

2 July

Fruit growth and
ripening gradually

BBCH 73-8723 July

3 August

14 August Fruit ripe for picking BBCH 87

21 September Leaf senescence ───

For pear tree

2020 year

17 May
Flowering and fruit
growth beginning

BBCH 71

20 June
Fruit fall after flowering and

size up
BBCH 71-73

7 July Fruit growth gradually BBCH 73-87

21 July Fruit ripe for picking BBCH 87

20 August Leaf senescence ───

2021 year

7 May
Flowering and fruit
growth beginning

BBCH 71

24 May

Fruit fall after flowering and
size up

BBCH 71-736 June

23 June

14 July Fruit ripe for picking BBCH 87

25 August Leaf senescence ───
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ground-station-pro; DJI Technology Co., Shenzhen, China),

ensuring images with 75% forward overlap and 85% side overlap.

The drone flew autonomously along the flight path at a speed of

3.5 m/s, a height of 50 m above the ground level of the field. A total

of 62 images were collected in the apple orchard, and 98 images

were collected in the pear orchard under clear-sky conditions from

10:00 a.m. to 2:00 p.m. on each experiment day. The images have a

spatial resolution of approximately 5 cm/pixel. In addition, two to

three sets of calibration images were taken for reflectance correction

to be applied (Figure 4C).
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2.4 Data processing

Machine learning methods were applied for canopy SPAD

prediction modeling. The pre-processing of UAV imagery and the

extraction of spectral information were computed with

Pix4Dmapper software (https://www.pix4d.com.cn/pix4dmapper,

Pix4D SA, Switzerland). The commonly used gray level co-

occurrence matrix (GLCM) was selected to extract TF from

multispectral UAV images. The TF were calculated using ENVI

5.3 software (https://envi.geoscene.cn, ITT Visual Information
B

A

FIGURE 2

Temperature conditions of the experimental days in the apple orchard (A) and pear orchard (B). “Max” represents the maximum temperature of the
day. “Min” indicates the minimum temperature of the day. “Average” represents the average temperature of the day.
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Solutions, USA), including mean, variance, homogeneity, contrast,

dissimilarity, entropy, second moment, and correlation. Figure 5

shows the workflow diagram of UAV imagery processing, field data

collection, and modeling.
2.5 Univariate regression analysis method

Vegetation index (VI) is the combination of related reflectance

and the integration of spectral data from two or more bands after a

certain mathematical transformation (Gitelson et al., 2002).

Narmilan et al. (2022) constructed different machine learning

models with VIs for sugarcane chlorophyll content prediction.

Madonsela et al. (2023) proved that the red-edge chlorophyll

index and green chlorophyll index, using the red-edge variant

centered at 705 nm, were the most useful for estimating maize

LAI. In this study, we attempted to explore the utility of univariate

methods (linear, exponential, power, and logarithmic regression)

for tree canopy chlorophyll estimation with VI. The VIs used in our

study for chlorophyll estimation are listed in Table 2. The original
Frontiers in Plant Science 06
bands in the formulation of each VI was replaced by the closest

available bands. The univariate regression analysis was

implemented in Python environment through the “numpy” and

“LinearRegression” packages.
2.6 Multivariate regression analysis method

Previous studies demonstrated that texture information can

highlight the structure characteristics of plant and inhibit the

saturation of models applied for plants with high heterogeneous

features (Lu et al., 2018; Maimaitijiang et al., 2020). In our study, RF

and TF were extracted from multispectral images and used for

multivariate model inputs. The machine learning methods were

linear and non-linear algorithms, as partial least square (PLS), ridge

regression (Ridge), support vector regression (SVR), and gaussian

process regression (GPR). All the models were trained in Python

environment with JetBrains PyCharm (https://www.jetbrains.com/

pycharm, JetBrains s.r.o., Prague, CZ).
B

A

FIGURE 3

Statistical analysis map of canopy SPAD value in different growth stages of the apple tree (A) and the pear tree (B).
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PLS and Ridge methods were used for linear regression

modeling. PLS method integrates the characteristics of principal

component analysis, canonical correlation analysis, and multiple

linear regression analysis, which has been used in bioinformatics,

computer vision, and neuroinformatics (Mehmood and Ahmed,

2016). We implement the PLS model through the “PLSRegression”

package; the parameter of “n_components” was optimized with

“GridSearchCV”. Compared with general linear regression, regular
Frontiers in Plant Science 07
terms (L2 norm penalty terms) (Dorugade and Kashid, 2010) are

added in the objective function of Ridge models to solve the

multicollinearity of independent variables and the overfitting in

the training process (Ngo et al., 2003). The Ridge model was

achieved with “sklearn.linear_model” package, the “alphas” was

set as 0.5, and the “fit_intercept” was set as True.

SVR and GPR methods were used for non-linear regression

modeling. Support vector machine (SVM) was used to distinguish
FIGURE 4

Multispectral images and radiometric calibration image collection. (A) Diagram of canopy image collection. (B) Parrot Sequoia camera and UAV
equipment. (C) Diagram of radiometric calibration image collection. (D) Calibration reflectance panel.
FIGURE 5

Workflow diagram of UAV imagery processing, field data collection, and modeling.
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the feature points with a hyperplane found by maximizing the

interval (Dibike et al., 2001). SVR is the development and extension

of SVM method (Ansari and Gholami, 2015). Radial basis function

was set for the parameter of “kernel”. The parameters of “C” and

“gamma” were optimized for loops. GPR is a non-parametric

regression algorithm based on Bayesian theory (Wang et al.,

2017). In the process of parameter adjustment, the posterior

distribution on the objective function is defined, and the posterior

distribution is constantly updated according to the predicted data

until the posterior distribution basically fits the real distribution.

GPR models were trained in Python, Matern was selected as

“kernel” function, and the “nu” was set as 1.5.
2.7 Statistical analysis

The statistical analysis of original data is listed in Table 3. In

single tree species research, the total data sets were divided into

calibration set and validation set with the ratio of 3:1. In mixed tree

species research, the calibration set included samples for apple, and

pear trees were randomly selected from the previous calibration

data sets in the same size (n = 150). The validation set was the same

as the set in the single tree species studies. To explore the

universality of the prediction models, all the canopy SPAD

regression models were evaluated on the single tree species

validation set of both apple and pear tree species.

In addition, prediction models were evaluated in terms of the

coefficient of determination (R2), the root mean square error

(RMSE), and the relative root mean square error (RRMSE)

(Sheng et al., 2020; Narmilan et al., 2022). A higher R2 indicated

that the model was more stable, and a lower RMSE or a lower

RRMSE indicated great model accuracy. The Equations 1–3 display
Frontiers in Plant Science 08
the formulas of R2, RMSE and RRMSE, respectively.

R2=1−o
n
i=1(Predi−Obsi)

2

on
i=1(Obsi−Obsi)

2
1

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Predi−Obsi)
2

n

s
2

RRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(Predi−Obsi)

2

n

q
Max(Obsi)−Min(Obsi)

3

where Predi are canopy SPAD values predicted with the

regression models, Obsi are canopy SPAD value measurements in

the field, Obsiis the mean value of the Obsi, and nis the sample size.

Rc
2, RMSEC, and RRMSEC are performances of regression models

trained on the calibration set, while Rv
2, RMSEV, and RRMSEV are

performances of regression models trained on validation set.
3 Results

3. 1 Canopy SPAD estimation with
vegetation index

We evaluated the correlations between VI and canopy SPAD

value with Pearson correlation coefficient (R) (Table 4). The results

showed that GNDVI had the highest correlation with canopy SPAD

value with a Pearson coefficient of 0.753 for apple tree and 0.718 for

pear tree; GRVI had the second highest Pearson coefficient of 0.646

for apple tree and 0.714 for pear tree. It is worth noting that there

are some indicators that are not correlated at the p level.
TABLE 2 VIs selected from the literature.

VI name VI formulation used in this study References

NDVI (Normalized Difference Vegetation Index) (RNIR − RRED)=(RNIR + RRED)

(Gitelson et al., 1996)
GNDVI (Green Normalized Difference

Vegetation Index)
(RNIR − RGRE)=(RNIR + RGRE)

REGNDVI (Red-edge Normalized Difference
Vegetation Index)

(RREG − RGRE)=(RREG + RGRE)

RVI (Ratio Vegetation Index) RNIR=RRED

(Buschmann and Nagel, 1993; Gitelson and
Merzlyak, 1994)

GRVI (Green Ratio Vegetation Index) RNIR=RGRE

REGRVI (Reg-edge Ratio Vegetation Index) RREG=RGRE

DVI (Difference Vegetation Index) RNIR − RRED

(Tucker, 1979; Cao et al., 2013)GDVI (Green Difference Vegetation Index) RNIR − RGRE

REGDVI (Red-Edge Difference Vegetation Index) RREG − RGRE

TVI (Triangular Vegetation Index) 0:5� ½120� (RNIR − RGRE) − 200� (RRED − RGRE)�

(Broge and Leblanc, 2001; Haboudane et al.,
2004, 2008)

MTVI (Modified Triangular Vegetation Index) 1:5� ½1:2� (RNIR − RGRE) − 2:5� (RRED − RGRE)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� RNIR + 1)2 − (6� RNIR − 5� ffiffiffiffiffiffiffiffiffi

RNIR
p

) − 0:5
p

TCI (Triangular Chlorophyll Index)
1:2� RREG

RGRE
u

� �
− 1:5� RRED

RGRE

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RREG

RRED

� �s
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In single tree species research, we conducted prediction models

with VIs correlated with canopy SPAD values. The model results

with higher prediction accuracy on the validation set are shown in

Table 5. Considering the model results in both apple tree and pear

tree, GNDVI was taken as the most potential VI for canopy SPAD

evaluation by a simple monistic model, and R2 was 0.512 and 0.490

on the validation set for apple trees (Figure 6A) and pear trees

(Figure 6B), respectively.

In the mixed tree species research, canopy SPAD estimation

models were yielded by using GNDVI and GRVI (which were the

common VIs in the first three optimal models in single tree species

research); the evaluation parameters of the models are listed in

Table 6. However, it should be noted that the prediction accuracy of

this method was not satisfactory. The model R2 was 0.2–0.35, which

was not reliable enough for canopy SPAD retrieval.
3.2 Canopy SPAD estimation with
image features

Multivariate models were established with image features by

using PLS, Ridge, SVR, and GPR algorithms; the relevant results are

shown in Table 5 and Table 6. For an intuitive comparison of model

performance, the R2 value on the validation data of the models is

displayed in Figure 7 (the univariate model results with GNDVI and
Frontiers in Plant Science 09
GRVI were also listed to make a comprehensive comparison

between modeling methods).

In single tree species research, prediction models were

implemented with RF firstly. For apple trees, PLS and Ridge were

performed equally; the Rv
2 was approximately 0.52, and the GPR

model yielded better results with Rv
2 of 0.700 than the SVR model

with Rv
2 of 0.585. For pear trees, PLS and Ridge were also performed

equally with Rv
2 of 0.55. The Rv

2 of the SVR model was 0.733, and

RRMSEV was 12.042%, which were a little superior to the results of

the GPR model (Rv
2 = 0.721, RRMSEV = 12.326%). In the latter

research, the fusion of RF and TF was set as model inputs; the

prediction accuracy of the models obtained by the same algorithm

was improved, except by the SVRmethod. For apple trees, Rv
2 of the

PLS and Ridge models were up to 0.70, and Rv
2 of the GPR model

was up to 0.788 (Figure 6C). For pear trees, Rv
2 of the PLS and Ridge

models were up to 0.73, and Rv
2 of the GPR model was slightly

improved to 0.723 (Figure 6D).

In mixed tree species research, when RF were selected as model

inputs, the validation performance of the PLS and Ridge models was

not reliable, especially for apple trees; Rv
2 was less than 0.1. The

GPR model got the best accuracy with Rv
2 of 0.681 for apple trees

and 0.707 for pear trees. When RF and TF were mixed for model

variables, the validation performance of the PLS and Ridge models

were obviously improved, and the Ridge model yielded Rv
2 = 0.476

for apple trees and Rv
2 = 0.614 for pear trees. The GPR model is also

the best prediction model with Rv
2 of 0.763 for apple trees and 0.706

for pear trees (Figure 6E).
3.3 Canopy SPAD estimation over the
various growth stages

To evaluate the growth periods’ prediction performance of the

GPR method, the canopy SPAD prediction was carried out at

different stages in 2021. Figure 8 shows the accuracy of the

models trained with various types of inputs by R2 metrics over

the various growth stages.

In the single tree species inversion, for apple trees, the

prediction model yielded well accuracy with only RF during the

first stages (flowering and fruit growth beginning) with R2 of 0.797.

In the latter four growth stages, the GPR models got a higher R2

value with RF+TF than with only RF. It was 0.592 during leaf

senescence stage and approximately 0.7 to 0.8 in the remaining
TABLE 3 Statistical analysis of the canopy SPAD value.

Data set
Number
of data

Max Min Mean SD

Apple tree

All data 204 40.03 21.44 31.34 3.57

Calibration set 153 40.03 21.44 31.32 3.65

Validation set 51 39.53 24.42 31.40 3.35

Pear tree

All data 264 33.28 18.85 25.87 3.06

Calibration set 198 33.28 18.85 25.83 3.12

Validation set 66 31.62 19.28 26.01 2.90
TABLE 4 Significance test between VI and the canopy SPAD value.

I NDVI GNDVI REGNDVI

R (apple/
pear tree)

0.483∗∗/0.601∗∗ 0.753∗∗/0.718∗∗ 0.549∗∗/0.536∗∗

VI RVI GRVI REGRVI

R (apple/
pear tree)

0.235∗∗/0.613∗∗ 0.646∗∗/0.714∗∗ 0.623∗∗/0.403∗∗

VI DVI GDVI REGDVI

R (apple/
pear tree)

ns /0.324∗∗ 0.057/0.488∗∗ −0.027/0.381∗∗

VI TVI MTVI TCI

R (apple/
pear tree)

−0.040/0.248∗∗ 0.433∗∗/0.382∗∗ 0.545∗∗/0.396∗∗
∗∗, significance at p < 0.01; ns, no significance. Bold values: The vegetation index
corresponding to the bold values has higher model performances.
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three stages. For pear trees, the GPR models yielded better results

with RF+TR than with only RF during the first four stages; the R2

value was approximately 0.475–0.765, and the highest accuracy was

obtained in the fruit-growth-gradually stage with R2 = 0.765.

In the mixed tree species inversion, for apple trees, the

prediction was that the R2 values obtained with RF+TF were all

greater than those obtained with only RF, which especially

increased from 0.492 to 0.695 in the second growth stage and

increased from 0.293 to 0.741 in the fourth growth stage. For pear

trees, the model results trained with RF+TF got the highest R2 value

of 0.723 in the third growth stages and got an R2 value between

0.382 and 0.612 in the remaining four stages.
4 Discussion

4.1 Vegetation index for canopy
SPAD inversion

Vegetation index has been widely used in agricultural

production research, including disease monitoring, biomass
Frontiers in Plant Science 10
detection, etc. The GNDVI was originally developed for

chlorophyll concentration measurement in maize leaves

(Daughtry et al., 2000). Hunt et al. found that GNDVI was

highly relevant with leaf area index and nitrogen status for

winter wheat (Hunt et al., 2010). Shanahan et al. found that

GNDVI was of great value in predicting corn grain yield

(Shanahan et al., 2001). In this paper, prediction models trained

with GNDVI yielded an Rv
2 value of 0.512 for apple trees and

0.490 for pear trees in single tree species research. However, the

results in mixed tree species research showed that GDVI was not a

reliable index for canopy SPAD inversion. In the past studies of

chlorophyll retrieval using VIs, researchers found that the

sensitivity of vegetation index was greatly affected by the density

of the crop canopy (Yang et al., 2022). In our study, apple trees are

much older than pear trees, and they have many differences in

canopy structure, specifically in canopy volume and canopy

density. Therefore, when GNDVI was used for chlorophyll

assessment in single tree species, the model yielded relatively

reliable results. However, the sensitivity of GNDVI to

chlorophyll retrieval decreased under the interference of canopy

structure heterogeneity in the research of mixed tree species.
TABLE 5 Performance of the models yielded in single tree species research.

Tree species Model type
Calibration Validation

Rc
2 RMSEC RRMSEC Rv

2 RMSEV RRMSEV

For apple tree

GNDVI 0.583 2.350 12.641% 0.512 2.315 15.321%

REGRVI 0.396 2.827 15.207% 0.359 2.653 17.558%

GRVI 0.431 2.743 14.755% 0.338 2.697 17.849%

RF

PLS 0.598 2.305 12.399% 0.519 2.300 15.222%

Ridge 0.598 2.306 12.405% 0.518 2.302 15.235%

SVR 0.634 2.201 11.840% 0.585 2.135 14.130%

GPR 0.883 1.242 6.681% 0.700 1.815 12.012%

RF
+
TF

PLS 0.806 1.601 8.612% 0.707 1.795 11.880%

Ridge 0.832 1.490 8.015% 0.703 1.807 11.960%

SVR 0.616 2.254 12.125% 0.489 2.368 15.672%

GPR 0.928 0.975 5.245% 0.788 1.527 10.106%

For
pear tree

GNDVI 0.515 2.169 15.031% 0.490 2.056 16.661%

GRVI 0.524 2.147 14.879% 0.483 2.070 16.775%

REGNDVI 0.494 2.216 15.357% 0.495 2.045 16.572%

RF

PLS 0.614 1.934 13.403% 0.550 1.932 15.656%

Ridge 0.612 1.938 13.430% 0.554 1.921 15.567%

SVR 0.837 1.257 8.711% 0.733 1.486 12.042%

GPR 0.834 1.268 8.787% 0.721 1.521 12.326%

RF
+
TF

PLS 0.828 1.292 8.954% 0.737 1.475 11.953%

Ridge 0.828 1.290 8.940% 0.739 1.469 11.904%

SVR 0.738 1.595 11.053% 0.489 2.057 16.669%

GPR 0.878 1.089 7.547% 0.723 1.516 12.285%
frontiersin.org

https://doi.org/10.3389/fpls.2024.1435613
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2024.1435613
4.2 Comparison of modeling methods

Comparing the models’ results, the prediction accuracies of the

PLS and Ridge models were close, except that the Ridge model

performed better than the PLS model with RF+TF in mixed tree

species research. However, since that is not a universal

phenomenon, the Ridge method cannot be considered superior to
Frontiers in Plant Science 11
the PLS method. SVR models did not do well with the huge distance

between the calibration and validation performances, especially in

mixed tree species studies. The main factor that caused poor

performance may be the several structural parameters, which

should be continuously adjusted in model training. Inappropriate

parameters would greatly impact prediction performance. From the

results of the model based on spectral features or the combination of
B

C D

E

A

FIGURE 6

Relationship between the predicted and measured SPAD value of canopy SPAD. (A) Calculated with GNDVI in single tree species research for apple
tree. (B) Yielded with GNDVI in single tree species research for apple tree. (C) Obtained with RF+TF+GPR in single tree species research for apple
tree. (D) Trained with RF+TF+GPR in single tree species research for apple tree. (E) Done with RF+TF+GPR in mixed tree species research.
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spectral and texture features, we can see that the SVR model yielded

robust results when having relatively few variables. It is worth

noting that the GPR model has excellent performance in modeling

as shown in Figure 7, yielding reliable prediction accuracies on the

validation set with the different combinations of variables. In
Frontiers in Plant Science 12
contrast to the non-linear model, the linear model has a weaker

ability to explore the deep connections between input features. The

results indicated that the more information covered by the inputs

contributes to the higher accuracy for linear model, which is in line

with the study of Maimaitijiang et al. (2020).
TABLE 6 Performance of the models as yielded in mixed tree species research.

Model type
Calibration Validation (apple tree) Validation (pear tree)

Rc
2 RMSEC RRMSEC Rv

2 RMSEV RRMSEV Rv
2 RMSEV RRMSEV

GNDVI 0.566 2.870 13.551% 0.221 2.926 19.365% 0.341 2.337 18.938%

GRVI 0.578 2.830 13.362% 0.262 2.847 18.842% 0.264 2.470 20.016%

RF

PLS 0.454 3.219 15.198% 0.039 3.249 21.502% 0.300 2.412 19.546%

Ridge 0.516 3.045 14.377% 0.060 3.214 21.271% 0.421 2.190 17.747%

SVR 0.815 1.874 8.848% 0.556 2.208 14.613% 0.687 1.609 13.039%

GPR 0.870 1.573 7.427% 0.681 1.873 12.400% 0.707 1.559 12.634%

RF
+TF

PLS 0.546 2.936 13.862% 0.253 2.864 18.954% 0.123 2.695 21.840%

Ridge 0.749 2.181 10.297% 0.476 2.398 15.870% 0.614 1.789 14.498%

SVR 0.927 1.178 5.562% 0.566 2.183 14.447% 0.322 2.369 19.198%

GPR 0.943 1.040 4.910% 0.763 1.614 10.682% 0.706 1.560 12.642%
FIGURE 7

Model performance for canopy SPAD estimation.
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4.3 Contribution of texture features in
canopy SPAD estimation

In our study, we focus on the contribution of TF to the canopy

SPAD evaluation over tree species. In single tree species research,

compared with the model performances yielded by RF+TF of which

were obtained by only RF, the evaluation parameters were generally

improved. For apple tree, the linear PLS model had R2 increased by

36.2%, and the non-linear GPR model had R2 increased by 12.6%.

For pear tree, the R2 of the linear Ridge model increased from 0.554

to 0.739, an increase of 33.4%. For the non-linear GPR model of
Frontiers in Plant Science 13
pear tree, R2 had increased by 0.3%. In the mixed tree species

research, TF have significant optimization ability for linear Ridge

models; the validation R2 increased from 0.06 to 0.476 for apple tree

and from 0.421 to 0.614 for pear tree. In the GPR model results, the

validation R2 increased from 0.681 to 0.763 for apple tree. Although

the improvement of the model results for pear tree was slightly

smaller than that of apple tree, the importance of texture features in

canopy SPAD monitoring research should not be ignored.

For the same tree species, the model results obtained with mixed

tree species information were a little weaker than the results

obtained with single tree species information, but the reduction
B

A

FIGURE 8

Prediction accuracy for the various growth stages of the apple tree (A) and the pear tree (B).
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was within the expectation considering the effect of tree

heterogeneity. Chlorophyll content can be effectively monitored

with tree canopy RF, and TF can facilitate the extraction of diversity

among tree species, which is beneficial to yield a chlorophyll content

assessment model with higher accuracy and more universality

ability. In the results obtained by Li et al. (2018) for remote

sensing imaging-based canopy chlorophyll estimation, the SVR

model with modified NDVI yielded R2 = 0.667 on the validation

set. In this paper, it can be concluded that canopy SPAD would be

monitored with the RF+TF+GPR method, R2 on the validation set

in single tree species was 0.788 for apple tree and 0.723 for pear tree,

and R2 on the validation set over different tree species was 0.763 and

0.706 for apple tree and pear tree, respectively. The results go

beyond a previous report, successfully getting a higher prediction

accuracy on original reflectance and texture data. Nevertheless, it is

worth noting that apple trees and pear trees both belong to the wild

fruit Rosaceae plant resources, which might be one of the reasons
Frontiers in Plant Science 14
supporting the high prediction accuracy in the mixed species study.

More research should be carried out to explore the significance of

RF+TF for other species with greater canopy differences. Moreover,

compared with satellite remote sensing technique, UAV imagery

has a wider range of application circumstance as high-throughput

phenotyping method, and the UAV images have a higher special

resolution which is beneficial to the extraction of TF. These

advantages of UAV imagery are conducive to the popularization

and application in agriculture.

From the overall trend of the lines in Figure 8, it was noted that

the optimization ability of texture features to model prediction

accuracy is more prominent for apple orchards than that for pear

orchards. Considering the actual planting situation, the high canopy

coverage of the apple orchard leads to serious airtight phenomenon

and poor light transmittance, resulting in invalid leaves exiting in

the canopy which get insufficient illumination. Being different from

the apple orchard, the tree rows spacing is regular in the pear
B

A

FIGURE 9

Statistical analysis map of the predicted canopy SPAD value (using GPR+RF+TF mixed tree species model) in different growth stages of the apple
tree (A) and the pear tree (B).
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orchard, and trees grow in uniform and adequate light conditions.

Therefore, the contribution of TF for canopy SPAD inversion for

pear orchard was not as prominent as that for the apple orchard.

However, the study results of two different tree species indicated

that the contribution of TF was still significant.
4.4 Analysis of model performance in
different growth stages

By analyzing the model performance obtained with RF+TF in

mixed tree species research, it can be found that the models yielded

high prediction accuracy during flowering stage to picking stage and

the R2 values between 0.66 and 0.75 for apple trees as well as the R2

values between 0.58 and 0.73 for pear trees, except at the second

stage. This may be attributed to the natural falling of fruits and

leaves in the second stage for pear trees. As the leaves fall off, the

canopy density will be reduced, and the background effect of canopy

gaps will cause the inhomogeneity of the reflectivity scene (Brewer

et al., 2022). Hence, the optimal conditions for predicting

chlorophyll content are missing in this stage. In addition, the

prediction accuracy of the chlorophyll model at the leaf

senescence stage was less than 0.4 for both apple and pear trees

due to the low chlorophyll content. Leaf senescence is a

degenerative process; chlorophyll and its associated proteins break

down during this stage, resulting in most bands being absorbed

(Guo et al., 2021; Brewer et al., 2022). In total, the RF+TF+GPR

model can effectively monitor the canopy SPAD for both apple and

pear orchards at different growth stages. More experiment area and

tree species need to be developed to improve the model universality

and prediction accuracy.

In addition, Figure 9 displays the statistical analysis results of

the predicted canopy SPAD at different growth stages by using the

mixed tree species model yielded by the GPR+RF+TF method.

Compared with Figure 3, which is the analysis results of the

measured canopy SPAD value, the predicted results can effectively

respond to the change in trend of the canopy chlorophyll content of

fruit trees over the various growth periods.
5 Conclusion

In this research, we presented the canopy SPAD evaluation in

apple and pear orchards using UAV multispectral imagery. For

univariate models, GNDVI was an efficient index in single tree

species research, but the same conclusion cannot be supported in

mixed tree species research. For multivariate models, GPR

algorithm performed better than other machine learning

methods; the RF+TF+GPR model yielded R2 value of 0.788 for

apple trees and 0.723 for pear trees in single tree species research

and trained R2 value of 0.763 for apple trees and 0.706 for pear trees

in mixed tree species research. Compared with the RF+GPR model
Frontiers in Plant Science 15
results, TF can retrieve more canopy structure information,

promoting the prediction accuracy of canopy SPAD. Moreover,

the RF+TF+GPR method is suitable for canopy SPAD during the

growth-beginning stage to the ripe-for-picking stage, which is

beneficial for canopy SPAD monitoring over various stages. The

future scope of this work would focus on more fruit tree areas and

species using large amounts of data to improve the universality and

accuracy of the models.
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