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Introduction: China is rich in straw resources. The utilization of straw in the

cultivation of edible fungi partially resolves the resource conflicts between

mushroom cultivation and forest industry and also contributes to

environmental protection.

Methods: In this study, based on the technology of replacing wood by grass, the

straw formula for mycelial culture of Hericium erinaceus was optimized with

Simplex-lattice method commonly used in mixture design. By measuring the

growth rate and the activity of lignocellulose degrading enzymes of mycelia in

different formulations, and further combining with model optimization, the

optimal formulation was screened and validated for mushroom cultivation.

Results: In the experiments, different kinds of straw used as the main material

showed interaction effects, further affecting the growth rate of mycelia and the

activities of laccase, cellulase, and neutral xylanase. The screened optimal

formula was composed of 16.3% rice straw, 59.7% cob, 20.0% wheat bran,

2.0% gypsum, 1.0% sucrose, and 1.0% calcium superphosphate. In the

mushroom cultivation, 445.69 g of fresh mushroom were obtained and the

biological efficiency reached 89.14%. The growth period of the first mushroom

was shortened by 7-9 days. Some nutritional components of fruiting bodies, such

as crude fats (6.10%), crude proteins (152.02 g/kg), K (19.71 g/kg), P (2.48 g/kg),

and Se (6.06 g/kg), were significantly higher than those of the control formula.
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Discussion: These above indicators indicated that the screened formula could be

applied in the high-yield and high-quality cultivation ofH. erinaceus. Our study lays

the foundation for expanding cultivation and strains improvement of H. erinaceus,

and is conducive in promoting the rapid development of H. erinaceus industry.
KEYWORDS

Hericium erinaceus, substrate formulation, replacing wood by grass, simplex-lattice
method, enzyme activity
1 Introduction

H. erinaceus is a precious edible and medicinal mushroom with

delicious taste and high nutritional value (Friedman, 2015; Sangtitanu

et al., 2020). Its fruiting bodies are rich in polysaccharide

polypeptides, essential amino acids, and trace elements (Gong

et al., 2004; Zhu et al., 2014). H. erinaceus has a variety of

pharmacological properties, such as relieving gastric diseases (Yuan

et al., 2021), anti-inflammatory (Yao et al., 2015; Tada et al., 2022),

anti-cancer (Li et al., 2015; Liu et al., 2020), and liver protection (Cui

et al., 2016; Jiang et al., 2016). The wide range of medicinal values of

H. erinaceus has been increasingly concerned and its demand and

cultivation scale have been increasing. As a typical wood-decay

fungus, H. erinaceus utilizes wood as the main raw material.

However, with the rapid development of the mushroom industry

in recent years, the resource conflict between mushroom cultivation

and forestry has become increasingly prominent, and the expansion

of the cultivation industry of edible fungi are facing difficulties.

Therefore, it is necessary to search for new raw materials for H.

erinaceus cultivation with the reduced cost.

China is one of the countries with the richest straw resources in

the world and the average annual output of straw in China reaches

700 million tons (Yang et al., 2023). Traditional straw treatment

methods include open burning and landfilling, which caused waste

and serious environmental pollution (He et al., 2016; Montero et al.,

2016; He et al., 2018). Replacing wood by grass is a new technology

developed in recent years in the edible fungus industry. With the new

technology, herbaceous plants (mainly gramineous plants) and waste

agricultural residues were used in mushrooms cultivation. This

technology can resolve the resource conflicts between mushroom

cultivation and forest industry, reduce the cultivation cost of edible

fungi, utilize biological resources (Dedousi et al., 2024), decrease

environmental pollution, and realize the sustainable development of

edible fungus industry. At present, this technology has been widely

applied in the cultivation of Auricularia auricula (Zhang et al., 2016),

Pleurotus pulmonarius (Wang et al., 2022), Pholiota microspora

(Meng et al., 2019), Pleurotus eryngii (Moonmoon et al., 2010), and

Lentinula edodes (Pedri et al., 2015). In addition, Simplex-lattice

method in mixing design has been applied by mushroom cultivators

in the optimization of edible fungus straw cultivation formulas due to

its advantages of less test points, simple statistical methods, and high
02
fitting accuracy and has significantly increased mushroom

production (Song et al., 2018; Wu et al., 2019a).

During the growth process of edible fungi, they decompose

lignin, cellulose, and other biomacromolecules in the substrate. In

the growth process, extracellular enzymes play an indispensable role

and the activities of extracellular enzymes are related to

physicochemical properties of culture media, species of edible

fungi, and growth stage (Ball and Jackson, 1995; Kabel et al.,

2017; Cesur et al., 2022). At present, the extracellular enzymes of

edible fungi detected in production mainly include cellulase (Sun

et al., 2021), xylanase (Agustinho et al., 2021), laccase, protease

(Majumder et al., 2016) and SOD enzyme, which largely improve

the utilization rate of the substrate and the growth rate of mycelium.

The measured activities of these extracellular enzymes can be used

to guide the high-yield cultivation of edible fungi.

In this study, we screened suitable cultivation substrates from

domestic major crop straws and designed the substrate formulas

with Simplex-lattice method. The relationships between mycelial

growth rate and extracellular enzyme activities in different formulas

were analyzed to determine suitable formulas for the cultivation of

H. erinaceus. Our study lays the foundation for the large-scale

cultivation of H. erinaceus with the technology of replacing wood

by grass.
2 Materials and methods

2.1 Test strain

H. erinaceus 20190111, one strain with fast growth rate

(4.92mm/d), high yield (biological efficiency 91.85%), and good

quality screened by previous germplasm resource evaluation, was

provided by the Center of Edible Fungus Research of Jilin Province

Vegetable and Flower Research Institute, China.
2.2 Screening straw for the cultivation
formula with wood replaced with grass

Based on the basic substrate formula (76.0% wood chips, 20.0%

wheat bran, 2.0% gypsum, 1.0% sucrose, 1.0% superphosphate, and
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62.0% water), all wood chips (76.0%) were completely replaced by corn

straw, cob, rice straw, wheat straw, soybean straw, peanut straw and

rapeseed straw, respectively. After thematerials were completely mixed,

spread in petri dishes (9 cm in diameter), sterilized, and then cooled for

use. Round pieces (6 mm in diameter) of mycelia (cultured for 7-10 d

on PDA medium at 25 °C, with darkness) were inoculated in the

middle of petri dish, and the culture conditions (25 °C, dark) were

invariable. When the mycelia were fully grown, draw “+” mark on the

back of the petri dishes with the inoculation point as the center, and use

the cross-hatchmethod tomeasure the colony diameter (Shrestha et al.,

2006; Dedousi et al., 2024). Use SPSS software to calculate the daily

growth rate of mycelia and perform analysis of variance, with 10

biological replicates per treatment.
2.3 Design and optimization of straw
formulas with wood replaced with grass

The Simplex-lattice method in the software Design-Expert 8.0.6.1,

which limit the upper and lower boundaries of various components in

mixture design (Ghorbani et al., 2021; Jeswani et al., 2021; Ghislain

et al., 2022), was used to design and optimize straw formulas for the

growth of H. erinaceus mycelia. Based on the preliminary screening

results, suitable kinds of straw were selected as the main ingredient (X)

to replace wood chips, and the replacement ratio of each straw were set

as the level of the investigation factor. All replacement ratios need to

meet Xn ≥ 0, and X1+X2+…+Xn=1. After obtaining the replacement

ratio of each straw, convert it according to the addition ratio of wood

chips (76%) in the formula, and finally obtain the actual addition ratio

of each straw. The mycelial growth rate and the activities of laccase

(Ren et al., 2023), cellulase (Zhao et al., 2020), and neutral xylanase

(Agustinho et al., 2021) of each formula were further determined and

the correlation analysis was performed to establish quadratic regression

models for each main material. The effects of the changes and

interactions of the components in the ratios of the substrates on

mycelial growth were analyzed. Further validate the authenticity of

the model and optimize its parameters to maximize the response value,

and finally obtain the optimal formula.
2.4 Verification test

The optimized formula and control formula were simultaneously

verified in mycelial growth test and cultivation test at the Jilin

Province Vegetable and Flower Research Institute. The growth

conditions (25 °C, dark) in mycelial growth test were consistent

with those in straw screening (section 2.2), and the mycelial growth

rates were measured using cross-hatch method, and the activities of

laccase, cellulase, and neutral xylanase were detected with

microcalorimetry enzyme activity assay kits (COMIN, Suzhou,

China). The cultivation conditions for the cultivation test were set

according to Zhu et al. (2019), and make appropriate modifications.

During the mycelial stage, the temperature was controlled at 25 °C,

the relative humidity of the air was 60%, and avoid light. After 30

days, the cultivation temperature should be adjusted to 17-22 °C for
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post ripening (10 d), while keeping other conditions unchanged.

Then transferred the mushroom bags to the mushroom room for

fruiting, and provided weak scattered light. The temperature should

be controlled at 15-18 °C, the air humidity was 90-95%, and the CO2

concentration was 0.03% (no special treatment was required for bud

pressing). The cultivation period from inoculation to mushroom

emergence was about 50-60 days, and the agronomic traits such as

primordia formation time, fresh mass, biological efficiency, color,

shape, firmness, fungal spines, and anti-bacteria capacity were

recorded. In the above tests, 20 replicates were arranged.

Furthermore, the contents of the nutrients in the fruiting bodies of

H. erinaceus cultivated in two formulas were detected, including

crude fat (Soxhlet method), crude protein (Kjeldahl method), crude

fiber (acid-base hydrolysis method), ash (burning method, GB

5009.4-2016), and polysaccharides (phenol sulfuric acid method).

Meanwhile, the trace elements (K, Ca, Fe, Zn, Mn, Cu, P, and Se)

were also detected using the ICP-MS method in three replicates. The

above results were comprehensively analyzed to verify the feasibility

of the optimized formula. The results of mycelial growth rate, enzyme

activity, nutrient contents and trace elements were analyzed by SPSS

software and plotted using Origin software. The Design Expert 8.0.6.1

software was used for formula design, correlation analysis and

contour drawing.
2.5 Statistical analysis

The variance analysis of mycelial growth rate, enzyme activity,

nutrient contents and trace elements were conducted using SPSS

software, and the corresponding figures were drawn using Origin

software. The correlation analysis and linear regression analysis

between mycelial growth rate/enzyme activity and various straws, as

well as the corresponding contour drawing, were conducted in the

Design Expert 8.0.6.1 software.
3 Results

3.1 Straw screening test

As shown in Figure 1, the mycelia growth rate was the fastest on

peanut straw (4.03 mm/d) and rice straw (3.98 mm/d), which were

not significantly different from that on wood chips. Next were

soybean straw (3.78 mm/d), rapeseed straw (3.67 mm/d), and corn

cob (3.54mm/d), with the slowest growth rate on wheat straw and

corn straw. Therefore, a total of five kinds of straws (rice, soybean,

peanut, rapeseed straw, and cob) were initially selected as the main

substrates for mycelial culture of H. erinaceus.
3.2 Mixture formula and
measurement results

A total of 21 formulas were designed by constraining the

proportion of each ingredient in the main material with the
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design software (Table 1). The mycelial growth rate in formulas

1, 6, 12, and 17 was significantly faster than that in the control

formula (CK). The laccase activity in formula 2 was the highest

and the laccase activity in most formulas was higher than that in

CK. The cellulase activity in formula 4 was the highest and much

higher than that in CK. The neutral xylanase activity in Formula

8 was the highest and much higher than that in other formulas

and CK. In short, different straw formulas had significant effects

on the mycelial growth rate and enzyme activities of H.

erinaceus, and some straws were more conducive to the

production of extracellular enzymes in H. erinaceus mycelia

than wood chips.
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3.3 Correlation analysis

3.3.1 Correlations between mycelial growth rate
and various straws of H. erinaceus

The regression equation between mycelial growth rate and each

main material is expressed as: Y=4.52X1 + 4.19X2 + 4.17X3 + 4.22X4

+ 3.96X5 + 0.74X1X2 - 0.30X1X3 - 0.65X1X4 - 1.76X1X5 - 0.86X2X3 -

0.41X2X4 + 1.88X2X5 + 0.76X3X4 + 0.44X3X5 + 0.90X4X5 +

103.37X1
2X2X3 - 280.97X1

2X2X4 + 67.85X1
2X2X5 + 78.16X1

2X3X4

+ 64.99X1X2
2X3, correlation coefficient of R2 = 0.9178. (1)

Based on the variance analysis of the quadratic multiple

regression model for fitting mycelial growth rate (Table 2), the
FIGURE 1

Growth states of H. erinaceus mycelium on different straw medium plates. (I-A): Peanut straw; (I-B): Rice straw; (I-C): Wood chips; (I-D): Soybean
straw; (I-E): Rapeseed straw; (I-F): Cob; (I-G): Wheat straw; (I-H): Corn straw; II: Mycelial growth rate. Significance, different lowercase letters
represent significant differences, and the same letter represents insignificant differences).
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P-values of the linear mixed model and the quadratic regression

model were both less than 0.0001, suggesting both models fitted the

relationship between the main ingredients and mycelial growth rate

well, and the data could be used in the subsequent analysis. From

the regression coefficients (K value) of the regression equation, it

can be inferred that the effects degree of various straws on mycelial

growth rate was in the following order: rice straw (KX1 = 4.52) >

peanut straw (KX4 = 4.22) > soybean straw (KX2 = 4.19) > cob (KX3

= 4.17) > rapeseed straw (KX5 = 3.96). According to the analysis of

variance (Table 2), the interaction terms of X1X2, X1X4, X1X5, X2X3,

X2X5, X3X4, X4X5 and X1X2
2X3 were extremely significant (p ≤

0.01), indicating that their interaction can significantly affect the

mycelial growth of H. erinaceus. Based on the regression equation

and contour plot analysis (Figure 2I): for X1X2(k=0.74, red), X1X4

(k=-0.65, blue) and X1X5(k=-1.76, blue), the effect of X1 on mycelia

growth was associated with the addition of X2, X4, and X5 in the

formula; for X2X3 (k=-0.86, blue), X2X5(k=1.88, red) and X1X2
2X3

(k=64.99), the effect of X2 on mycelia growth was associated with

the addition of X3, X5 and X1-X3 (simultaneously add X1 and X3) in
Frontiers in Plant Science 05
the formula; for X3X4(k=0.76, red), adding X4 to the formula can

enhance the effect of X3 on mycelial growth rate, indicating that

their interaction was beneficial for mycelia growth; for X4, the

interaction effect (k=0.90, red) of adding X5 to the formula was

beneficial for improving the mycelial growth rate.

3.3.2 Correlation of laccase activity and various
straws of H. erinaceus

The regression equation between laccase activity and each main

material is expressed as: Y = 76.91X1 + 345.50X2 + 188.99X3 +

169.70X4 + 134.41X5 - 264.85X1X2 - 359.14X1X3 + 52.54X1X4 +

147.29X1X5 - 445.31X2X3 - 636.46X2X4 + 176.52X2X5 + 306.94X3X4

- 62.18X3X5 + 40.58X4X5 + 2.134E + 0.05X1
2X2X3 +

60765.33X1
2X2X4 - 1.082E + 005X1

2X2X5 - 1.633E + 005X1
2X3X4

- 46157.78X1X2
2X3, correlation coefficient of R2 = 0.9230. (2)

Based on the variance analysis of the quadratic multiple

regression model for laccase activity (Table 3), the P-values of the

linear mixed model and the quadratic regression model were both

less than 0.0001, suggesting both models fitted the relationship
TABLE 1 Formula design and measurement results of culture materials.

Formula

Straw (%)
Average

growth rate
(cm/d)

Laccase
activity
(nmol/
min/g)

Cellulase
activity (mg/

min/g)

Neutral
xylanase
(nmol/
min/g)

X1

Rice
straw

X2

Soybean
straw

X3

Cob
straw

X4

Peanut
straw

X5

rapeseed
straw

1 100 0 0 0 0 4.52 ± 0.01a 77.85 ± 2.38gh 749.47 ± 7.92de 3658.81 ± 111.76gh

2 0 100 0 0 0 4.19 ± 0.07fg 346.44 ± 79.87a 808.19 ± 1.22bcd 3607.70 ± 88.17gh

3 0 0 100 0 0 4.17 ± 0.06fg 189.93 ± 5.81c 778.12 ± 1.98cde 5563.85 ± 434.66de

4 0 0 0 100 0 4.22 ± 0.1efg 170.64 ± 8.52cd 1028.87 ± 146.05a 4046.91 ± 112.39gh

5 0 0 0 0 100 3.96 ± 0.13h 135.35 ± 10.22ef 809.69 ± 0.92bcd 6672.49 ± 361.39c

6 50 50 0 0 0 4.54 ± 0.01a 145.53 ± 11.37de 832.29 ± 16.71bcd 7673.40 ± 583.29b

7 50 0 50 0 0 4.27 ± 0.11def 43.70 ± 5.63i 861.90 ± 67.67bc 6768.57 ± 573.17c

8 50 0 0 50 0 4.21 ± 0.02efg 136.98 ± 11.47def 797.00 ± 61.21bcd 8859.79 ± 377.91a

9 50 0 0 0 50 3.8 ± 0.08i 143.02 ± 4.14de 572.05 ± 53.61f 4790.94 ± 388.66f

10 0 50 50 0 0 3.96 ± 0.09h 156.45 ± 7.80de 871.98 ± 58.28b 5014.28 ± 216.97ef

11 0 50 0 50 0 4.1 ± 0.01g 99.02 ± 4.20gh 833.88 ± 26.76bcd 1302.72 ± 77.69j

12 0 50 0 0 50 4.54 ± 0.02a 284.62 ± 8.65b 887.90 ± 6.50b 1884.65 ± 107.93i

13 0 0 50 50 0 4.39 ± 0.02bcd 256.62 ± 10.33b 885.74 ± 9.18b 6023.20 ± 215.44de

14 0 0 50 0 50 4.18 ± 0.03fg 146.69 ± 1.00de 869.44 ± 43.69bc 4908.71 ± 177.69f

15 0 0 0 50 50 4.32 ± 0.03de 162.74 ± 7.32cde 699.29 ± 19.55e 3444.51 ± 156.56h

16 60 10 10 10 10 4.21 ± 0.09efg 74.94 ± 4.48ghi 848.21 ± 35.94bc 6067.39 ± 375.66de

17 10 60 10 10 10 4.46 ± 0.07ab 107.06 ± 3.15fg 842.51 ± 33.22bc 1994.17 ± 12.30i

18 10 10 60 10 10 4.34 ± 0.04cde 139.88 ± 2.49de 858.58 ± 22.85bc 5293.96 ± 360.79ef

19 10 10 10 60 10 4.17 ± 0.09fg 93.17 ± 3.19gh 857.60 ± 30.43bc 5050.34 ± 502.71ef

20 10 10 10 10 60 4.21 ± 0.08efg 99.61 ± 4.30gh 841.19 ± 14.86bc 6064.74 ± 499.49de

21 20 20 20 20 20 4.27 ± 0.08def 88.56 ± 6.11gh 800.50 ± 14.66bcd 5238.31 ± 325.40ef

Ck Wood chips 100 4.44 ± 0.04abc 68.29 ± 1.38hi 816.05 ± 61.58bcd 2357.59 ± 165.70i
Different lowercase letters in the table represent significant differences, whereas the same letter represents insignificant differences.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1436385
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2024.1436385
between the main ingredients and laccase activity well, and the data

could be used in the subsequent analysis. From the regression

coefficients (K value) of the regression equation, it can be inferred

that the effects degree of five kinds of straw on laccase activity

ranked in the following decreasing order: soybean straw (KX2 =

345.50) > cob (KX3 = 188.99) > peanut straw (KX4 = 169.70) >

rapeseed straw (KX5 = 134.41) > rice straw (KX1 = 76.91). According

to the analysis of variance (Table 3), the p-values corresponding to

the interaction terms of X1X2, X1X3, X1X5, X2X3, X2X4, X2X5, X3X4,

X1
2X2X3, X1

2X2X5, X1
2X3X4, and X1X2

2X3 were all less than 0.001,

indicating that their interaction can significantly affect the laccase

activity of H. erinaceus. Based on the regression equation and

contour plot analysis (Figure 2II): for X1X2 (k=-264.5, blue), X1X3

(k=-359.14, blue), X1X5 (k=147.25, red), X1
2X2X3 (k=0.05, red),

X1
2X2X5 (k=0.05, red) and X1

2X3X4(k=0.05, red), the effect of X1 on

laccase activity was associated with the amount of X2, X3, X5, X2-X3

and X2-X5 in the formula; for X2X3 (k=-445.31, blue), X2X4(k=-

636.46, blue), X2X5(k=176.52, red) and X1X2
2X3(k=-46157.78), the

effect of X2 on laccase activity was associated with the addition of
Frontiers in Plant Science 06
X3, X4, X5 and X1-X3 in the formula; for X3X4(k=306.94, red),

adding X4 to the formula can enhance the effect of X3 on laccase

activity, indicating that their interaction was beneficial for

lignin degradation.

3.3.3 Correlations between cellulase activity and
various straws of H. erinaceus

The regression equation between cellulase activity and each

main material is expressed as: Y=751.86X1 + 810.57X2 + 780.51X3 +

1031.26X4 + 812.07X5 + 209.77X1X2 + 388.33X1X3 - 372.77X1X4 -

834.22X1X5 + 311.21X2X3 - 342.71X2X4 + 311.75X2X5 - 75.14X3X4

+ 298.05X3X5 - 884.07X4X5 -1.106E + 005X12X2X3 -

96289.73X1
2X2X4 + 1.307E + 005X1

2X2X5 + 97272.77X1
2X3X4 +

7313.02X1X2
2X3, correlation coefficient of R2 = 0.8195. (3)

Based on the variance analysis of the quadratic multiple

regression model for cellulase activity (Table 4), the P-values of the

linear mixed model and the quadratic regression model were both

less than 0.0001, suggesting both models fitted the relationship

between the main ingredients and cellulase activity well, and the

data could be used in the subsequent analysis. From the regression

coefficients (K value) of the regression equation, it can be inferred that

the effects degree of five kinds of straw on cellulase activity ranked in

the following decreasing order: peanut straw (KX4 = 1031.26) >

rapeseed straw (KX5 = 812.07) > soybean straw (KX2 = 810.57) >

cob (KX3 = 780.51) > rice straw (KX1 = 751.86). As shown in Table 4,

The p-values corresponding to the interaction terms of X1X3, X1X4,

X1X5 and X4X5 were all less than 0.01, indicating that their interaction

can significantly affected the cellulase activity of H. erinaceus. Based

on the regression equation and contour plot analysis (Figure 2III), for

X1X3(k=388.33, red), X1X4(k=-372.77, blue) and X1X5(k=-834.22,

blue), the effect of X1 on cellulase activity was associated with the

amount of X3, X4 and X5 in the formula; for X4, the interaction effect

(k=-884.07, blue) of adding X5 to the formula was not conducive to

cellulose degradation.

3.3.4 Correlations between neutral xylanase
activity and various straws of H. erinaceus

The regression equation between neutral xylanase activity and

each main material is expressed as: Y=3646.14X1 + 3595.03X2 +

5551.18X3 + 4034.24X4 + 6659.82X5 + 16182.29X1X2 +

8650.69X1X3 + 20049.46X1X4 - 1477.11X1X5 + 1735.73X2X3 -

10076.61X2X4 - 13000.07X2X5 + 4892.99X3X4 - 4816.13X3X5 -

7639.03X4X5 - 3.971E + 006X1
2X2X3 - 2.700E + 006X1

2X2X4 +

3.354E + 006X1
2X2X5 + 3.235E + 006X1

2X3X4 - 83254.70X1X2
2X3,

correlation coefficient of R2 = 0.9777. (4)

Based on the variance analysis of the quadratic multiple regression

model for neutral xylanase activity (Table 5), the P-values of the linear

mixed model and the quadratic regression model were both less than

0.0001, suggesting both models fitted the relationship between the

main ingredients and neutral xylanase activity well, and the data could

be used in the subsequent analysis. From the regression coefficients (K

value) of the regression equation, it can be inferred that the effects of

five kinds of straw on neutral xylanase activity ranked in the following

decreasing order: rapeseed straw (KX5 = 6659.82) > cob (KX3 =

5551.18) > peanut straw (KX4 = 4034.24) > rice straw (KX1 =

3646.14) > soybean straw (KX2 = 3595.03). As shown in Table 5,
TABLE 2 ANOVA for the fitted quadratic polynomial model of mycelium
growth rate.

Sources Sun
of squares

df
Mean
square

F P

Model 2.20 19 0.12 25.26 <0.0001

Linear
mixed model

0.29 4 0.073 15.92 <0.0001

X1X2 0.069 1 0.069 15.10 0.0003

X1X3 0.011 1 0.011 2.5 0.1215

X1X4 0.053 1 0.053 11.49 0.0015

X1X5 0.39 1 0.39 84.73 <0.0001

X2X3 0.093 1 0.093 20.29 <0.0001

X2X4 0.021 1 0.021 4.57 0.0383

X2X5 0.44 1 0.44 96.14 <0.0001

X3X4 0.072 1 0.072 15.65 0.0003

X3X5 0.025 1 0.025 5.38 0.0252

X4X5 0.10 1 0.10 21.97 <0.0001

X1
2X2X3 3.347E-003 1 3.347E-003 0.73 0.3976

X1
2X2X4 0.032 1 0.032 6.96 0.0115

X1
2X2X5 3.004E-003 1 3.004E-003 0.66 0.4227

X1
2X3X4 1.687E-003 1 1.687E-003 0.37 0.5473

X1X2
2X3 0.041 1 0.041 8.96 0.0046

Residual 0.20 1 0.20

Lack of fit 3.19E-003 1 3.19E-003 0.69 0.4104

Pure error 0.19 42 4.617E-003

Cor total 2.40 62
F, Evaluate whether the influence of inter group factors is significant, and larger F-value
represents more significant difference between groups compared to within group differences.
P, Evaluate whether the impact is statistically significant, and smaller P-value indicating the
higher statistical significance of the result.
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except for X1X5, X2X3, and X1X2
2X3, the p-values of other f interaction

terms were less than 0.01, indicating that other interaction terms all can

significantly affect the neutral xylanase activity of H. erinaceus. Based

on the regression equation and contour plot analysis (Figure 2IV), for

X1X2(k=16182.29, red), X1X3(k=8650.69, red), X1X4(k=20049.46, red),

X1
2X2X3 (k=0.06, red), X1

2X2X4 (k=0.06, red), X1
2X2X5 (k=0.06, red)

and X1
2X3X4(k=0.06, red), adding X2, X3, X4, X2-X3, X2-X4, X2-X5 or

X3-X4 to the formula can enhance the effect of X1 on neutral xylanase

activity, indicating that their interaction was beneficial for the

hemicellulose degradation; for X2, the interaction effect of adding X4

(k=-10076.61, blue) or X5 (k=-13000.07, blue) to the formula was not

conducive to hemicellulose degradation; for X3X4 (k=4892.99, red) and
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X3X5 (k=-4816.13, blue), the effect of X3 on neutral xylanase activity

was associated with the amount of X4 and X5 in the formula; for X4, the

interaction effect (k=-7639.03, blue) of adding X5 to the formula was

not conducive to hemicellulose degradation.
3.4 Formula optimization and
validation test

Based on the above regression equations, the expected response

values of the evaluation indices were analyzed and set and then the

formula with wood replaced by grass for the mycelial growth of
FIGURE 2

Contour map. I: Contour Figure (I-A) shows the effect of the interaction between various main ingredients on mycelial growth rate: the interaction
among rice straw, soybean straw, and cob; (I-B): The interaction between rice straw, soybean straw, and peanut straw; (I-C): The interaction
between rice straw, peanut straw, and rapeseed straw; (I-D): The interaction between soybean straw, cob, and peanut straw; (I-E): The interaction
between soybean straw, cob straw, and rapeseed straw; (I-F): The interaction between cob, peanut straw, and rapeseed straw; (I-G): The interaction
between rice straw, peanut straw, and rapeseed straw. II: Contour Figure (II-A): The interaction between rice straw, soybean straw, and cob; (II-B):
The interaction between rice straw, soybean straw, and peanut straw; (II-C): The interaction between rice straw, peanut straw, and rapeseed straw;
(II-D): Interaction between soybean straw, cob, and peanut straw; (II-E): The interaction between soybean straw, cob straw, and rapeseed straw;
(II-F): The interaction between cob, peanut straw, and rapeseed straw; (II-G): The interaction between rice straw, peanut straw, and rapeseed straw.
III: Contour Figure (III-A): The interaction between rice straw, soybean straw, and cob; (III-B): Interaction between rice straw, soybean straw, and
peanut straw; (III-C): Interaction among rice straw, peanut straw, and rapeseed straw; (III-D): Interaction among soybean straw, cob, and peanut
straw; (III-E): Interaction among soybean straw, cob straw, and rapeseed straw; (III-F): Interaction among cob, peanut straw, and rapeseed straw;
(III-G): The interaction between rice straw, peanut straw, and rapeseed straw. IV: Contour (IV-A): The interaction between rice straw, soybean straw,
and cob; (IV-B): The interaction between rice straw, soybean straw, and peanut straw; (IV-C): The interaction between rice straw, peanut straw, and
rapeseed straw; (IV-D): Interaction between soybean straw, cob, and peanut straw; (IV-E): The interaction between soybean straw, cob straw, and
rapeseed straw; (IV-F): The interaction between cob, peanut straw, and rapeseed straw; (IV-G): The interaction between rice straw, peanut straw,
and rapeseed straw. The closer the color of the contour map is to red, the higher the numerical value and the contribution rate; the closer it is to
blue, the lower the numerical value and the contribution rate).
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TABLE 3 ANOVA for the fitted quadratic polynomial model of laccase activity.

Source Sun of squares df Mean square F P

Model 3.19E+05 19 16805.74 45.32 < 0.0001

Linear mixed model 1.16E+05 4 29011.96 78.24 < 0.0001

X1X2 8770.3 1 8770.3 23.65 < 0.0001

X1X3 16126.91 1 16126.91 43.49 < 0.0001

X1X4 345.11 1 345.11 0.93 0.3401

X1X5 2712.52 1 2712.52 7.32 0.0098

X2X3 24793.68 1 24793.68 66.87 < 0.0001

X2X4 50647.09 1 50647.09 136.59 < 0.0001

X2X5 3896.09 1 3896.09 10.51 0.0023

X3X4 11779.81 1 11779.81 31.77 < 0.0001

X3X5 483.45 1 483.45 1.3 0.2598

X4X5 205.87 1 205.87 0.56 0.4602

X1
2X2X3 14262.73 1 14262.73 38.47 < 0.0001

X1
2X2X4 1493.37 1 1493.37 4.03 0.0511

X1
2X2X5 7637.26 1 7637.26 20.6 < 0.0001

X1
2X3X4 7361.1 1 7361.1 19.85 < 0.0001

X1X2
2X3 20709.83 20709.83 55.85 < 0.0001

Residual 15944.16 43 370.79

Lack of fit 1299.64 1 1299.64 3.73 0.0603

Pure error 14644.52 42 348.68

Cor total 3.35E+05 62
F
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TABLE 4 ANOVA for fitted quadratic polynomial model of cellulase activity.

Source Sun of squares df Mean square F P

Model 4.35E+05 19 22891.07 10.28 < 0.0001

Linear mixed model 1.39E+05 4 34649.88 15.56 < 0.0001

X1X2 5501.69 1 5501.69 2.47 0.1234

X1X3 18855.16 1 18855.16 8.47 0.0057

X1X4 17373.61 1 17373.61 7.8 0.0078

X1X5 87011.88 1 87011.88 39.07 < 0.0001

X2X3 12109.31 1 12109.31 5.44 0.0245

X2X4 14684.56 1 14684.56 6.59 0.0138

X2X5 12151.37 1 12151.37 5.46 0.0242

X3X4 705.91 1 705.91 0.32 0.5764

X3X5 11106.83 1 11106.83 4.99 0.0308

X4X5 97720.89 1 97720.89 43.87 < 0.0001

X1
2X2X3 3831.75 1 3831.75 1.72 0.1966

X1
2X2X4 3749.86 1 3749.86 1.68 0.2014

(Continued)
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H. erinaceus was optimized as follows: 16.3% rice straw, 59.7% cob,

20.0% wheat bran, 2.0% gypsum, 1.0% sucrose, and 1.0% calcium

superphosphate. The validation results of plate test and mushroom

production (Table 6) showed that mycelial growth rate, laccase

activity, cellulase activity, and neutral xylanase activity of the

optimized formula were better than that of control formula. The

differences in agronomic traits or fruiting body morphology between

the optimized formula and the control formula were not significant,

but the differences in the contents of nutrients in fruiting bodies were

significant. The contents of crude fats, crude proteins, K, P, and Se in

the optimized formula were significantly higher than those in the

control, but the contents of crude fibers, crude polysaccharides, Ca,
Frontiers in Plant Science 09
Fe, Zn, and Cu in the optimized formula were lower. The results

indicated that the optimized formula could replace the conventional

wood chip formula for the cultivation of H. erinaceus.
4 Discussion

The cultivation substrate for edible fungus was usually

composed of main material, auxiliary materials and water,

providing carbon source, nitrogen source, and trace elements for

the growth and development of mycelia and fruiting bodies. It was

one of the three elements (strains, cultivation substrate, and
TABLE 4 Continued

Source Sun of squares df Mean square F P

X1
2X2X5 11148.51 1 11148.51 5.01 0.0305

X1
2X3X4 2612.56 1 2612.56 1.17 0.2848

X1X2
2X3 519.85 1 519.85 0.23 0.6315

Residual 95772.73 43 2227.27

Lack of fit 8383.73 1 8383.73 4.03 0.0512

Pure error 87389.01 42 2080.69

Cor total 5.31E+05 62
TABLE 5 ANOVA for the fitted quadratic polynomial model of neutral xylanase activity.

Source Sun of squares df Mean square F P

Model 2.13E+08 19 1.12E+07 99.29 < 0.0001

Linear mixed model 6.07E+07 4 1.52E+07 134.06 < 0.0001

X1X3 9.36E+06 1 9.36E+06 82.7 < 0.0001

X1X4 5.03E+07 1 5.03E+07 444.23 < 0.0001

X1X5 2.73E+05 1 2.73E+05 2.41 0.1278

X2X3 3.77E+05 1 3.77E+05 3.33 0.075

X2X4 1.27E+07 1 1.27E+07 112.21 < 0.0001

X2X5 2.11E+07 1 2.11E+07 186.77 < 0.0001

X3X4 2.99E+06 1 2.99E+06 26.46 < 0.0001

X3X5 2.90E+06 1 2.90E+06 25.63 < 0.0001

X4X5 7.30E+06 1 7.30E+06 64.49 < 0.0001

X1
2X2X3 4.94E+06 1 4.94E+06 43.64 < 0.0001

X1
2X2X4 2.95E+06 1 2.95E+06 26.07 < 0.0001

X1
2X2X5 7.34E+06 1 7.34E+06 64.85 < 0.0001

X1
2X3X4 2.89E+06 1 2.89E+06 25.54 < 0.0001

X1X2
2X3 67375.87 1 67375.87 0.6 0.4445

Residual 4.87E+06 43 1.13E+05

Lack of fit 2.36E+05 1 2.36E+05 2.14 0.1507

Pure error 4.63E+06 42 1.10E+05

Cor total 2.18E+08 62
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cultivation technology) in the production of edible fungi. An

appropriate cultivation formula can improve the growth state of

edible fungi and reduce the cultivation cost. In recent years, the

technology of replacing wood by grass has been used to optimize

the cultivation formula of edible fungi. The technology resolved the

resource conflicts between mushroom cultivation and forest

industry and reduced the production cost. H. erinaceus is an

important edible and medicinal mushroom and its cultivation

area gradually increases. Therefore, the optimization of

cultivation formula of H. erinaceus is important. In this study,

corn straw, cob, rice straw, wheat straw, soybean straw, peanut

straw, and rapeseed straw were collected in China and used in the

optimization of mycelial growth formula ofH. erinaceus, in order to

obtain a high-yield and high-quality straw cultivation formula for

the sustainable development of H. erinaceus industry.
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With Simplex-lattice method, the quantitative relationships

between matrix ratios and evaluation indexes were firstly

explored, and expected response values were then set based on

the quantitative relationships and actual production demands in

order to optimize the formula. Simplex-lattice method has been

successfully used to optimize the formulas of Waffle ice cream cones

(Mahulkar et al., 2024) and novel adsorbent materials (Ghorbani

et al., 2021) and the concentrations of O2 and CO2 for the purposes

of maintaining the quality of mango fruits and extending the shelf

life (Ntsoane et al., 2020). In recent years, the method has also been

well applied in edible fungus cultivation. With the method, Wu et al.

(2019a) optimized a high-yield formula of Pleurotus pulmonarius,

which increased biological efficiency by 15.2% and shortened the

fertility period by 6 days. Song et al. (2018) used the method to

optimize a high-yield formula of Grifola frondosa, which increased
TABLE 6 Comparison between optimized formula and control formula.

Categories Test items VF CK

Mycelia stage Mycelia growth rate (mm/d) 4.55 ± 032 4.43 ± 0.11

Laccase activity (U/g) 80.67 ± 1.76 68.29 ± 2.02

Cellulase activity (U/g) 858.98 ± 4.19 816.05 ± 8.25

Neutral xylanase activity (U/g) 6075.54 ± 78.45 2357.59 ± 61.12

Mushroom emergence period Primordium formation time (d) 7 8

Average fresh weight (g) 445.69 ± 5.49 462.45 ± 3.87

The fertility period of the first
mushroom crop

50-53 57-59

Average biological conversion rate (%) 89.14 ± 1.23 92.49 ± 3.46

Fruiting body color white white

Fruiting body shape Round, monkey head-shaped Round, monkey head-shaped

Fungal spines Long Long

Firmness of fruiting body Tight and compact Tight and compact

Disease resistance Strong Strong

Ingredients of fruiting body Crude fats (%) DW 6.10 ± 0.11 5.28 ± 0.12

Crude proteins (g/kg) DW 152.02 ± 0.39 82.03 ± 0.59

Crude fiber (%) DW 15.11 ± 0.13 17.00 ± 0.39

Ash content (%) DW 7.78 ± 0.14 7.00 ± 0.08

Crude polysaccharides (mg/g) DW 343.1 ± 0.55 435.13 ± 3.15

Water content (%) 65.72 ± 0.07 64.26 ± 0.11

K (g/kg) DW 19.71 ± 0.28 10.03 ± 0.09

Ca (mg/kg) DW 240.63 ± 10.34 340.63 ± 10.34

Fe (mg/kg) DW 88.04 ± 1.13 111.21 ± 2.20

Zn (mg/kg) DW 10.45 ± 0.22 28.53 ± 0.85

Mn (mg/kg) DW 4.37 ± 0.18 4.87 ± 0.06

Cu (mg/kg) DW 8.10 ± 0.06 10.10 ± 0.34

P (g/kg) DW 2.48 ± 0.15 1.53 ± 0.12

Se (ug/kg) DW 6.06 ± 4.42 2.08 ± 0.27
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the yield by 39.97% and the biological efficiency by 38.53%

compared to its control formula. In this study, we also optimized

a formula with wood replaced by grass for the mycelial growth ofH.

erinaceus by setting the expected response value of each evaluation

index according to the major crop straw resources in Jilin Province.

The biological efficiency of this optimized formula (89.14%) was

much higher than that (69.77%) of the wheat straw-based formula

(Jahedi et al., 2024). The fertility period of the first mushroom crop

was shortened by 7 to 9 days, and even 1 to 2 days shorter than the

results of Atila (2019). Its average fresh biomass was also higher

than that cultivated from rice straw by Bunroj et al. (2017). In short,

the optimized formula could be used as an advantageous formula

for H. erinaceus cultivation.

The quantitative relationship between each main material and

evaluation indexes is the key to further optimize the cultivation

formula. In the designed formulas of five kinds of agricultural straw

selected in this study, it was found that the interactions between

different kinds of straw affected the evaluation indexes such as

mycelial growth rate, laccase activity, cellulase activity, and neutral

xylanase activity. The interactions between two kinds of straw

(soybean straw-rapeseed straw; peanut straw-rapeseed straw)

positively contributed to the mycelial growth of H. erinaceus and

the above combinations of two kinds of straw could maximize the

contribution. With the same method, Zhang (2023) studied sand-

washing residual mud-based low-carbon gelling materials and also

found the interaction between various factors. Wu et al. (2019b)

also obtained the same results in the study on the formula of

Pleurotus djamor. The positive interaction between different kinds

of straw might be interpreted as follows. The straw combination

provided a more suitable C/N ratio and physicochemical conditions

for the mycelial growth of edible fungi (Feng, 2011). Carbon and

nitrogen sources are important factors affecting lignin degradation

and production of extracellular enzymes by fungi. When various

media with different C/N were used to cultivate Pleurotus geesterani,

the activities of extracellular enzymes, such as laccase and

hemicellulase showed significant differences. The limited supply

of carbon and nitrogen nutrients could stimulate the fungus to

synthesize lignin-degrading enzymes. The mixture of carbon

sources showed the more significant stimulation action than a

single carbon source (Wang, 2019).

In mushroom formulas studies, the quality and nutrient

contents of fruiting bodies were also important agronomic traits

for evaluate formulas. Cultivation substrates affect the nutrient

composition and nutrient contents of mushroom (Bhattacharjya

et al., 2015; Meng et al., 2019; Elkanah et al., 2022). In our study, we

found that the contents of K, P and other trace elements in the

fruiting bodies of optimized formulas were significantly improved

because H. erinaceus might better absorb trace elements from cob

and rice straw and convert them into own nutritional components.

Edible fungi have always been an important source of high-quality

proteins (Zied et al., 2017; Yao et al., 2019) and the protein content

in H. erinaceus is even higher than that in most edible fungi (Zhang

et al., 2024). Atila et al. (2021) found that the protein contents of H.

erinaceus are greatly affected by fruiting temperature. Each strain

has the ability to produce fruiting bodies at different temperatures

(15 °C, 20 °C, and 25 °C), but the protein content varies greatly.
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Among them, the protein content of strain He Ankara reached a

maximum of 19.7% at 20 °C. Jahedi et al. (2024) cultivated H.

erinaceus with different crop formulas, and found that carbon

nitrogen ratio (C/N) was an important factor affecting the protein

content of fruiting bodies. When the nitrogen content in the

formula is high, the protein content of the fruiting body is also

high (up to 19.33%). In the fruiting bodies obtained with the

optimized straw cultivation formula in this study, the content of

crude proteins was 152.02 g/kg (15.2%), significantly higher than

that of the conventional wood chip formula. The differences

between the results of Atila and Jahedi may be caused by

differences in strains, fruiting temperature, and the carbon

nitrogen ratio of formulas. In the future, we can achieve high

protein targeted improvement of H. erinaceus 20190111 by

adjusting the temperature and formula carbon nitrogen ratio,

providing high-quality strain for the H. erinaceus industry.
5 Conclusion

In this study, a straw cultivation formula was optimized with

Simplex-lattice method: 16.3% rice straw, 59.7% cob, 20.0% wheat

bran, 2.0% gypsum, 1.0% sucrose, and 1.0% calcium

superphosphate. We also found that the mixtures of different

kinds of straw as the main material would produce the

interactions and affect the mycelial growth rate, laccase activity,

cellulase activity, and neutral xylanase activity. In the mushroom

production validation experiments, the biological efficiency of the

optimized formula was as high as 89% and the fertility period of the

first crop of mushrooms was shortened by 7 - 9 days. In addition,

the contents of crude proteins and crude fats were also significantly

increased. The optimized formula can be used in the production of

H. erinaceus. This study lays the foundation for expanded

cultivation and targeted breeding of varieties of H. erinaceus, and

is conducive to the rapid development of H. erinaceus industry.
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