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soybean seeds for seed
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Mingliang Yang2, Xuhong Fan1, Xingmiao Sun1, Yuhong Zheng1,
Yunfeng Zhang1, Mingliang Wang1, Qingshan Chen2*,
Shuming Wang1* and Hongwei Jiang1*

1Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast
Innovation Center), Soybean Research Institute, Changchun, China, 2Northeast Agricultural University,
Harbin, Heilongjiang, China
Soybean quality and production are determined by seed viability. A seed’s

capacity to sustain germination via dry storage is known as its seed life. Thus,

one of the main objectives for breeders is to preserve genetic variety and gather

germplasm resources. However, seed quality and germplasm preservation have

become significant obstacles. In this study, four artificially simulated aging

treatment groups were set for 0, 24, 72, and 120 hours. Following an aging

stress treatment, the transcriptome andmetabolome data were compared in two

soybean lines with notable differences in seed vigor—R31 (aging sensitive) and

R80 (aging tolerant). The results showed that 83 (38 upregulated and 45

downregulated), 30 (19 upregulated and 11 downregulated), 90 (52

upregulated and 38 downregulated), and 54 (25 upregulated and 29

downregulated) DEGs were differentially expressed, respectively. A total of 62

(29 upregulated and 33 downregulated), 94 (49 upregulated and 45

downregulated), 91 (53 upregulated and 38 downregulated), and 135 (111

upregulated and 24 downregulated) differential metabolites accumulated.

Combining the results of transcriptome and metabolome investigations

demonstrated that the difference between R31 and R80 responses to aging

stress was caused by genes related to phenylpropanoid metabolism pathway,

which is linked to the seed metabolite caffeic acid. According to this study’s

preliminary findings, the aging-resistant line accumulated more caffeic acid than

the aging-sensitive line, which improved its capacity to block lipoxygenase (LOX)

activity. An enzyme activity inhibition test was used to demonstrate the effect of

caffeic acid. After soaking seeds in 1 mM caffeic acid (a LOX inhibitor) for 6 hours

and artificially aging them for 24 hours, the germination rates of the R31 and R80
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seeds were enhanced. In conclusion, caffeic acid has been shown to partially

mitigate the negative effects of soybean seed aging stress and to improve seed

vitality. This finding should serve as a theoretical foundation for future research

on the aging mechanism of soybean seeds.
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1 Introduction

Soybean (Glycine max L. Merr.), the most important

agricultural legume, was first planted in China around 5000 years

ago (Sedivy et al., 2017). Today, it is grown all over the world and

supplies 28% of vegetable oil and 70% of the protein meal consumed

globally (SoyStats, 2021). Since soybean has such high nutritional

and economic importance, conserving its genetic variety and

gathering its germplasm resources have been the top goals for

breeders (Lin et al., 2022). To address the rising need for plant

proteins, oils, and food, however, we must breed soybean

germplasm with improved performance due to climate change

and population expansion.

An important component of sustainable agricultural

production is the viability and longevity of high-quality seeds

during storage, and seed longevity is the ability of seeds to

germinate after they have been stored dry. The ripening and

storage of seeds is a complicated process affected by several

internal and external influences (Ramtekey et al., 2022). The seed

is the primary means of plant reproduction and represents a crucial

developmental stage with several unique characteristics. The

preservation of plant biodiversity and the success of crops are

both significantly hampered by seed life. Seeds have a variety of

mechanisms (protection, detoxification, and repair) to survive in

dry conditions and maintain a high germination capacity. As a

result, the seed system offers a useful model for researching lifespan

and aging (Rajjou and Debeaujon, 2008).

The vigor of crop seeds is crucial for maintaining the

germplasm and enhancing grain quality. Wang et al. conducted a

thorough analysis of the transcriptome and metabonomics of two

subspecies of rice with varying levels of seed vigor obtained through

sped-up senescence. They discovered that bZIP23 is most likely to

influence seed vigor through a common pathway with PER1A and

that overexpressing and knocking out these two genes increased and

decreased seed vigor, respectively (Wang et al., 2022b). For crop

yield, resistance to seed aging and quick seedling development are

crucial agronomic features. In comparison to the null segregant

(NS) control, maize seedlings grew more quickly after germination

due to the hyperaccumulation of IAA in the zygotic embryo of

zmdreb2a. Additionally, the zmdreb2a seeds showed reduced seed

aging tolerance due to reduced raffinose levels and decreased

expression of RAFFINOSE SYNTHASE (ZmRAFS) in their
02
embryos (Han et al., 2020). The longevity and vigor of seeds

during seed maturation and germination in peas, soybeans, and

Medicago truncatula are determined by RFO levels and the

expression of genes that influence its synthesis, such as ABI5,

raffinose synthase, and galactinol synthase (Salvi et al., 2016;

Zinsmeister et al., 2016; Pereira Lima et al., 2017).

Numerous difficulties with manufacturing, post-harvest storage,

and subsequent quality are always present in seeds. In addition, due

to climate change, various stressors may result in subpar seed

performance, such as decreased germination, uneven seedling

emergence, subpar seedling establishment, and destructive

changes in the root cell structure, significantly reducing yield

(Reed et al., 2022).

Seeds may age more slowly in the wild than in artificial

environments, which makes it difficult to understand the

physiological mechanism. Thus, the normal aging process of

mimicked seeds is accelerated by artificial conditions (Wang

et al., 2016, 2022). It offers a scientific foundation for an in-depth

examination of seed physiology and quality control procedures, and

it aids in our understanding of the physiological changes that occur

in seeds as they mature (Ku et al., 2014).

An increased storage time reduces seed vigor, and high-vigor

seeds have better yield potential than low-vigor seeds. Utilizing

artificial aging technology, we examined the physiological

alterations and associated molecular processes of soybean seed

aging by artificially aging two soybean lines with varying levels of

vigor (‘R80’ and ‘R31’). We also combined transcriptome and

metabolomics data analysis. This work offers fresh perspectives

on safeguarding and utilizing germplasm resources and serves as a

theoretical foundation for further research on the biology of

soybean seeds.
2 Materials and methods

2.1 Plant materials and artificial
aging conditions

The wild soybean ZYD00006 was used as the recipient parent,

and the soybean cultivar SN14 as the recurrent parent. A population

of 213 chromosome segment substitution lines (CSSL) was

assembled using hybridization, backcrossing, and selfing. In 2020,
frontiersin.org

https://doi.org/10.3389/fpls.2024.1437107
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1437107
the population was seeded in an experimental field in Gongzhuling

City, Jilin Province, China. The following were used: a randomized

block design, 15 cm plant spacing, 65 cm row spacing, and field

management based on traditional soybean production in the area.

To mimic the aging process, an artificial aging box was employed. A

humidifier holding 4–5 L of distilled or filtered water was connected

to a thermostat. From each variety, 600 seeds of a full and uniform

size were randomly chosen, packaged in small nylon mesh bags, and

placed on the net rack in an artificial seed aging box (LH-150S) (Xin

et al., 2016; Zheng et al., 2022).

Before use, the aging box was cleaned with 75% ethanol. The

appropriate quantity of sterilized or purified water was added to the

water tank, and the age box was opened. The temperature and

humidity for the aging period were set at 45°C and 95% relative

humidity, respectively. The aging process occurred for 24, 72, and

120 hours. Finally, the seeds were air-dried naturally.

A germination test was conducted and significantly changed

based on the germination conditions in the “International Seed

Inspection Regulations.” A solution of 4% sodium hypochlorite was

used to disinfect the seeds for 20–30 seconds before rinsing them 3

times in sterilized water. Forty soybean seeds from each variety were

randomly chosen and placed in a glass Petri dish. Water was slowly

added until a thin water film was visible on the paper. The seeds

were covered with a layer of filter paper, and more water was added

to moisten it (three instances). In an artificial incubator kept at a

constant temperature of 25°C and in complete darkness, seeds were

allowed to germinate. The number of germinated seeds was counted

every day. The water absorbed by the seeds was replaced with sterile

water. Germination was determined as follows: the radical be longer

than half of the seed; if the radicle was spiral, the seed was not

counted as germinated; and the number of germinated seeds was

recorded each day for 7 days. Based on the results of standard

germination tests and germination tests conducted after 96 hours of

artificial accelerated aging (Supplementary Table S1), a total of 213

CSSL soybean populations were used as experimental materials.

The stable phenotypic soybean lines R80 and R31, which had the

highest anti-aging and aging sensitivity, respectively, were screened.

Transcriptomic and metabolomic analyses of unaged R80 and R31

seeds and R31 and R80 seeds aged 24, 72, and 120 hours were

performed. For each group, three biological repetitions were

conducted for transcriptomic, and six biological repetitions were

conducted for metabolomic.
2.2 RNA isolation and sequence analysis

Following the manufacturer’s instructions, total RNA was

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA).

Using Nanodrop, Qubit 2.0, and Agilent 2100 devices, the purity,

concentration, and integrity of the RNA samples, respectively, were

determined. The poly(A) technique was employed to enhance the

mRNA once the samples were qualified. After the mRNAwas reverse

transcribed using oligo (dT) primers, the cDNA was broken apart.

RNA-seq was performed by Biomarker Bioinformatics Technology

(China) using a Hiseq 4000 PE150 sequencing technology to

sequence and analyze the RNA samples (Illumina, San Diego, CA,
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USA). HISAT2 (Kim et al., 2015) (version 2.0.5) with default settings

was used to map the raw sequencing reads to the soybean genome

(v2) after being filtered using FASTP (Chen et al., 2018). DESeq2

(version 1.20.0) (Love et al., 2014) was used to identify differentially

expressed genes (DEGs) (defined as those with an absolute value of

expression fold change ≥ 2 and an FDR ≤ 0.05). Supplementary Table

S2 provides the primers used for qPCR to concurrently measure the

transcript levels of genes associated with lipoxygenase (LOX).
2.3 Metabolite profiling

Biomarker Biotechnology Co., Ltd. (Beijing, China) conducted

the non-targeted metabolome study. In summary, 300 mL of 75%

methanol/water was added to 100 mg of material in a 1.5 mL

centrifuge tube, and the mixture was centrifuged at 12,000 rpm for

10 minutes at 4°C. The Metlin database was used to identify every

metabolite. An orthogonal partial least squares-discriminant

analysis model was used to identify the differential metabolites. It

had a variable importance of projection (VIP) score of ≥ 1 and a |

log2 (fold change)| of ≥1. Utilizing the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (http://www.kegg.jp/kegg/

compound/), the functional annotations of these metabolites

were acquired.
2.4 Enzyme, metabolite, and gene
expression changes as seeds age

H2O2 content and peroxidase (POD) activity were first

examined to evaluate aging-related cell damage or seed

degeneration. Seeds (0.2 g) were used to determine the H2O2

concentration following the technique of Doulis et al (Doulis

et al., 1997), and the results were computed as mol H2O2

decomposition min/1 g/1 FW. The thiobarbituric acid reaction

technique, as reported by Gao et al. (Gao et al., 2008), was used

to measure POD activity, which was determined using assay kits

(Comin, Suzhou, China). LOX activities contributed to seed healing

mechanisms. To obtain enzyme crude extract with 0.1 mM

potassium phosphate buffer, three replications of the same

procedure were performed using approximately 0.1 g of seed each

time (pH 7.8). When performing enzyme activity tests, the

supernatant was kept at 4°C. As previously mentioned, sodium

phosphate reaction buffer (150 mM, pH 8.0) and linoleic acid

substrate solution (10 mM linoleic acid) were produced for the

LOX tests (Stephany et al., 2015). A UV spectrophotometer was

used to measure the LOX reaction of 0.1 g of seeds at 234 nm.
3 Results

3.1 Dissecting the transcriptome profiles of
seed with different levels of vigor

This study’s artificial accelerated aging induction experiment

was used to assess the seed vigor. According to the characteristics of
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seed germination on aging stress, R31 lost its seed germination

ability, while R80 maintained a cumulative germination rate of

64.44% after 96 hours of treatment (Table 1). Based on the findings,

R31 was an aging-sensitive line, and R80 was an aging-resistant line.

The variation in seed vigor between R31 and R80 may be

influenced by changes in gene expression. The correlation study

revealed that at various stages of artificial aging stress, all biological

repetitions of the group internal sample of the R80 or R31 lines

showed relatively consistent gene expression levels (Supplementary

Table S3). Our study examined the expression profiles of two

soybean lines (R31 and R80) that differed in their ability to

withstand the effects of aging. Four comparison groups were

created: R31 0 h versus R80 0 h, R31 24 h versus R80 24 h, R31

72 h versus R80 72 h, and R31 120 h versus R80 120 h. In the four

comparison groups, 83 (38 upregulated and 45 downregulated), 30

(19 upregulated and 11 downregulated), 90 (52 upregulated and 38

downregulated), and 54 (25 upregulated and 29 downregulated)

differentially expressed genes (DEGs) were identified respectively

(Figure 1A; Supplementary Table S4).

The four artificial aging therapy groups shared 13 DEGs

(Figure 1B). In addition, 12 of the 13 DEGs consistently exhibited

upregulation and just one consistently showed downregulation in

each comparison group (Supplementary Figure S1; Supplementary

Table S4). KEGG functional enrichment analysis was then

performed on the DEGs between R80 and R31. The DEGs

between the non-aged groups (R80-0 h versus R31-0 h) were

mainly enriched in pathways including flavonoid biosynthesis,

circadian rhythm—plant, RNA polymerase, pantothenate and

CoA biosynthesis, phosphonate and phosphinate metabolism,

limonene and pinene degradation, glycosphingolipid biosynthesis

—globo and isoglobo series, flavone and flavonol biosynthesis,

histidine metabolism, sulfur metabolism, tryptophan metabolism,

sphingolipid metabolism, isoflavonoid biosynthesis, beta-alanine

metabolism, pyruvate metabolism, terpenoid backbone

biosynthesis, lysine degradation, fatty acid degradation, valine,

leucine and isoleucine degradation, and glycerolipid metabolism

(Figure 2). DEGs between aged seed groups [(R31 0 h versus R80 0

h, R31 24 h versus R80 24 h, R31 72 h versus R80 72 h, and R31 120 h

versus R80 120 h) were mostly related to phosphonate and

phosphinate metabolism, MAPK signaling pathway—plant,

glycerolipid metabolism, valine, leucine and isoleucine degradation,

fatty acid degradation, lysine degradation, pyruvate metabolism, beta-

alanine metabolism, sphingolipid metabolism, sulfur metabolism,

histidine metabolism, glycosphingolipid biosynthesis—globo and
Frontiers in Plant Science 04
isoglobo series, limonene and pinene degradation, pantothenate

and CoA biosynthesis, RNA polymerase, circadian rhythm—plant,

plant hormone signal transduction, spliceosome, protein processing

in endoplasmic reticulum, pentose and glucuronate interconversions,

galactose metabolism, inositol phosphate metabolism,

glycosylphosphatidylinositol—anchor biosynthesis, and ascorbate

and aldarate metabolism (Figure 2). Remarkably, the KEGG

enrichment study (Figure 2), before and after artificial aging

therapy, showed that R31 and R80 had different metabolic

pathways, especially with regard to flavonoid, flavonoid, and

flavanol metabolism. Between the two lines, these metabolic

pathways continuously varied (Table 2; Figure 2; Supplementary

Figure S2). The transcriptome study also revealed that aging

treatment caused a greater transcriptional difference between R80

and R31 seeds, explaining the increase in anti-aging processes in

R80 seeds.
3.2 KEGG analysis of differentially
accumulated metabolites in seed during
aging stress

The purpose of artificially accelerating aging was to identify the

metabolite differences between the R31 and R80 seeds. The R31 and

R80 seeds used in this study werematured for 0, 24, 72, and 120 hours

before being used as samples for Qualcomm quantitative metabolite

analysis. After metabolomics data analysis, 799 metabolites were

discovered. The correlation study revealed that at different stages of

artificial aging stress, all biological repetitions of the group internal

sample of the R80 or R31 lines showed relatively consistent

accumulated metabolite patterns (Supplementary Table S5). Four

comparison groups were created and measured in total. The control

group was the non-aged group, and the treatment groups comprised

three artificially aged groups, with aging for 24, 72, and 120 hours.

There were 62 (29 upregulated and 33 downregulated), 94 (49

upregulated and 45 downregulated), 91 (53 upregulated and 38

downregulated), and 135 (111 upregulated and 24 downregulated)

differentially accumulated metabolites (DAMs) in the four

comparison groups, respectively, identified using a VIP score of 1

and an absolute multiple change of 2 (Figure 3).

The KEGG enrichment indicates that the aging process of the

R31 and R80 seeds drastically changed several metabolic pathways.

These pathways included phenylpropanoid biosynthesis, flavonoid

biosynthesis, tryptophan metabolism, diterpenoid biosynthesis,
TABLE 1 Modification of seed germination in R31 and R80 after accelerated aging treatment.

Treatment ID Repetition1 Repetition2 Repetition3
Average

germination rate

CK R31 90.00% 93.33% 100.00% 94.44%

CK R80 93.33% 96.67% 70.00% 86.67%

Aging R31 0.00% 0.00% 0.00% 0.00%

Aging R80 60.00% 63.33% 70.00% 64.44%
The seeds were aged at 95% RH and below 45°C.
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fatty acid degradation, fatty acid elongation, linoleic acid

metabolism, biosynthesis of unsaturated fatty acids, alanine,

aspartate, and glutamate metabolism (Figure 4). With the use of

metabolic analysis network technologies, a metabolic network was

created to investigate any possible relationships between these

metabolites. These metabolites are associated with the key nodes

of the network involved in phenylpropanoid biosynthesis, flavonoid

biosynthesis, isoflavonoid biosynthesis, flavone biosynthesis, and

flavonol biosynthesis (Figure 5A). Several cumulative metabolites

(DAMs) were identified, including caffeic acid, coumarin, sinapic

acid, scopoletin, 4-hydroxy-3-methoxycinnamaldehyde, and

isoliquiritigenin (Figures 5A; Supplementary Table S6).

Unexpectedly, during aging stress, phenylpropanoid and

flavonoid levels rose, particularly during dynamic variations in

the concentration of caffeic acid. The results indicated that the

caffeic acid concentration of the R80 seeds exhibited an increasing

tendency and remained greater than that of the R31 seeds with the

extension of artificial aging time (Figure 5B). The experimental data
Frontiers in Plant Science 05
mentioned earlier suggest that caffeic acid may be a significant

factor in the functional modulation of seed vigor under aging stress.
3.3 Activities of LOX and
antioxidant enzymes

Reactive oxygen species (ROS) accumulation, ascorbic acid-

glutathione circulatory activity decline, and mitochondrial function

delay all contribute to mitochondrial dysfunction in aged soybean

seeds (Xin et al., 2014). Excess ROS buildup in mitochondria results

in the breakdown of the antioxidant system, which is the cause of

seed degeneration (Kurek et al., 2019). Two soybean cultivars, ‘R80’

and ‘R31,’ were shown to have endogenous H2O2 levels that

increased with age. Notably, R31 seeds did not exhibit aging

res is tance , but had much greater endogenous H2O2

concentrations than R80 seeds. Compared to the sensitive aging

variety R31, the endogenous H2O2 level of age-resistant variety R80
A

B

FIGURE 1

Statistics on the number of differentially expressed genes (DEGs) in seeds under aging stress (A); Venn diagram of changes in differentially expressed
genes (DEGs) in R31 and R80 seeds under aging stress (B).
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decreased by 5.28, 47.78, and 33.09% after rapid artificial aging for

24, 72, and 120 hours, respectively. In contrast, the endogenous

POD level of the aging-tolerant variety R80 increased by 55.56,

19.92, and 12.93% after rapid artificial aging for 24, 72, and 120

hours, respectively, compared to the sensitive aging variety R31.

Enzymes play crucial roles in the growth and development of plant

life. The LOX family of enzymes is one of the most important.
Frontiers in Plant Science 06
During seed storage, LOX can catalyze the oxidation of unsaturated

fatty acids and produce hydroperoxide, which reduces the vigor and

nutritional quality of seeds (Viswanath et al., 2020). Seed vigor,

antioxidant enzymes, and LOX activities, along with corresponding

gene expression, were evaluated after aging to gather more insight

into the possible mechanisms behind seed deterioration and to

validate the idea that LOX activity might be a new sensitive signal
TABLE 2 List of DEGs involved in phenylpropanoid metabolism pathway during aging of R31 and R80 seeds.

Gene_name R31 0 h versus
R80 0 h

R31 24 h versus
R80 24 h

R31 72 h versus
R80 72 h

R31 72 h versus
R80 72 h

KEGG_pathway_annotation

Glyma.19G254600 Down Normal Down Down Flavonoid biosynthesis

Glyma.08G247100 Up Up Up Up Isoflavonoid biosynthesis; flavone and
flavonol biosynthesis

Glyma.01G228700 Normal Normal Up Normal Flavonoid biosynthesis; circadian
rhythm—plant

Glyma.11G011500 Normal Normal Up Normal Flavonoid biosynthesis; circadian
rhythm—plant
FIGURE 2

KEGG pathway changes in aged seeds of R31 and R80.
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for predicting seed aging during storage. According to the findings,

under artificially generated aging stress, the R80 seeds showed

reduced LOX activity compared with the R31 seeds (Figure 6A).

Moreover, the R80 seeds had lower levels of LOX gene expression

than the R31 seeds (Figure 7A). LOX activity suppression research

is required to comprehend how soybean seeds age and to find a way

to postpone seed aging and extend seed life. Furthermore, LOX

activity was considerably inhibited by a few phenolic substances,

with caffeic acid being the most potent inhibitor (approximately

57% of inhibition) (Szymanowska et al., 2009). Additionally, by

soaking R31 and R80 in 1 mM caffeic acid for 6 hours and artificially

aging them for 24 hours, the germination rates of these seeds were
Frontiers in Plant Science 07
raised. These results showed that LOX promoted the aging of

soybean seeds and that reducing LOX activity preserved the

vitality and viability of aging seeds.
3.4 qRT-PCR verified the accuracy of RNA-
seq in detecting the gene expression level

In this work, the accuracy of transcriptome data in determining

gene expression levels was confirmed using qRT-PCR. Four genes

encoding DEGs and five genes encoding LOX were chosen at

random. The findings demonstrated that the transcriptome data
FIGURE 4

KEGG analysis of differentially accumulated metabolites (DAMs) in R31 and R80 seeds under aging stress.
FIGURE 3

Statistics on the quantity of differentially accumulated metabolites for seeds under aging stress.
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of these chosen genes were highly consistent with the qRT-PCR

results (Figure 7A) and that the qRT-PCR results and the relative

expression level of log 10(FPKM) of nine genes obtained by RNA-

seq exhibited a nearly linear correlation (Figure 7B).
4 Discussion

Seeds are essential for crop growth, human nutrition, and food

security. The primary elements influencing crop seed function are

the intricate features of seed vigor. Successful planting is critical to

crop productivity and resource efficiency. The strength, regularity,

and speed at which seeds germinate and generate seedlings under a

variety of environmental conditions are determined by their vigor

(Finch-Savage and Bassel, 2015). A chemical fingerprint, or

signature of an organism’s or sample’s metabolic condition at a
Frontiers in Plant Science 08
particular moment in time, can be obtained through metabolomic

analysis. The metabolites to be examined may be the end or

intermediate products of plant metabolic pathways, or they may

arise due to environmental influences from the outside world (Shen

et al., 2022). Extreme flexibility in phenylpropanoid metabolism can

result in a large variety of products that function in plant growth

and interactions with the environment in response to various

developmental stages and constantly shifting environmental

variables (Yuan and Grotewold, 2020). Seed permeability and

resistance to mechanical damage are correlated with the lignin

concentration of the soybean seed coat (Capeleti et al., 2005).

The seed coat is a type of composite structure that may be used

as a conduit for nourishment obtained from growing embryos. The

seed coat offers the embryos shelter and protection once the seeds

have dried and matured. It can also apply dormancy or cause

germination by regulating water absorption. The qualities of the
A

B

FIGURE 5

Venn diagram of the changes of differentially accumulated metabolites (DAMs) related to phenylpropanoid metabolism pathway in R31 and R80
seeds under aging stress (A); Compared with R31, the increasing proportion of different accumulated metabolites in R80 changed with aging
time (B).
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seeds as a whole and the usefulness of their derivatives will be

influenced by the features established by the seed coat for crops

such as soybean. Recently, fascinating instances of atypical genetic

pathways regulating seed coat breaking, gloss, and color have been

identified in soybean (Qutob et al., 2008). Plant physiology depends

on a large class of secondary plant metabolites generated from

phenylalanine. Seed coats contain phenolic chemicals that make the
Frontiers in Plant Science 09
seed harder and prevent microbial development. The seed coat

shields the seed from electrolyte leaks and hydration stress during

germination (Mohamed-Yasseen et al., 1994). In the current

investigation, we found that the seed vigor of line R80 was

superior to that of line R31 under the stress of aging (Table 1).

Natural phenolic compounds include phenylpropanoids. They are a

broad group of phenylalanine-derived secondary plant metabolites
A

B

C

FIGURE 6

Lipoxygenase (LOX) activity of R31 and R80 seeds during aging stress (A); inhibition of LOX activity increased the vigor of R31 and R80 seeds under
artificial aging stress (seed number n = 30) (B); and seed aging increased the contents of endogenous H2O2 and POD in R31 and R80 seeds (C).
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that are essential to plant physiology (Dong and Lin, 2021). These

substances serve as crucial cell wall building blocks, shielding plants

from a variety of biotic and abiotic environmental stressors

(Treutter, 2006; Vogt, 2010; Kiani et al., 2021). Integrating the

data from transcriptome and metabolome analyses showed that the

DAMs and DEGs of the four comparison groups (R80-0 h versus

R31-0 h, R31-24 h versus R80-24 h, R31-72 h versus R80 72 h, and

R31-120 h versus R80-120 h) were mapped to the KEGG database.

Phenylpropanoid, flavonoids, isoflavones, flavonoids, and flavonols
Frontiers in Plant Science 10
were among the co-mapped pathways. Particularly those connected

to the metabolite of seed coat known as caffeic acid were responsible

for the difference between R31 and R80 response to aging stress

(Figures 2, 4).

Seeds have evolved extraordinarily effective repair systems,

including enzymatic antioxidant systems, to achieve homeostasis

of H2O2 production (Xia et al., 2015). During lipid peroxidation in

the seeds of rice (Oryza sativa L.) and soybean (Glycine max (L.)

Merr.), LOX (LOX, EC1.13.11.12) plays a significant role (Lima
A

B

FIGURE 7

qRT-PCR verified the accuracy of RNA-seq in detecting gene expression levels. Heatmap of RNA-seq and RT-PCR gene expression levels for the
randomly selected DEGs. (A); Correlation analysis of RNA-seq and RT-PCR gene expression levels for the randomly selected DEGs (B).
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et al., 2010; Xu et al., 2015). When artificially generated aging stress

was applied to the R80 seeds, LOX activity was lower than that in

the R31 seeds (Figure 6A). Both internal metabolic processes and

external stimuli cause the generation of ROS, including superoxide

anion radicals, hydrogen peroxide, and hydroxyl radicals, in all

cells. Nonetheless, by activating several antioxidant mechanisms,

cells are often able to lower the oxidative potential of ROS. Several

substances, including caffeic acid and its derivatives, have been

shown to possess antioxidant qualities (Nardini et al., 2001). In

artificially aged soybean seeds, LOX activity was inhibited by the

application of caffeic acid. Additionally, the viability of the R80 and

R31 seeds improved dramatically after 24 hours of artificial aging,

suggesting that caffeic acid may strengthen the seeds’ resistance to

storage (Figure 6B). In contrast to the sensitive aging variety R31,

the aging-tolerant variety R80 demonstrated that after rapid

artificial aging for 24, 72, and 120 hours, the endogenous levels of

H2O2 fell by 5.28, 47.78, and 33.09%, respectively (Figure 6C).

In plant research, there has been a great deal of interest in the

detection and characterization of differential gene expression from

tissues exposed to stress. The likelihood of advancing crop

improvement by direct genetic modification increases with the

identification of components involved in the response to a certain

stress (Dunwell et al., 2001). Previous work discovered a novel

WRKY transcription factor, OsWRKY29, that adversely controls

rice seed dormancy. OsWRKY29 overexpression decreased seed

dormancy, whereas its knockout and RNA interference increased

it (Zhou et al., 2020). For instance, transcription factors such as

WRKY3 and NFLX1, which are involved in plant defense, also have

an influence on seed survival by controlling the permeability of the

seed coat (Debeaujon et al., 2000). This study’s findings

demonstrated that under normal conditions, the expression level

of the WRKY (Glyma.08G142400) transcription factor in R80 was

much lower than that of R31. Thus, we concluded that R80

exhibited low WRKY expression (Figure 7A), which helped R80

seeds become dormant and avoid the negative effects of aging stress.

As a consequence of inter-cultivar vigor fluctuations and

artificial aging, we discovered numerous potential metabolites and

related DEGs by the interactive comparison of transcriptomic and

metabolomic data. The genetic and metabolic underpinnings of

inter-cultivar vigor variations and artificial soybean seed aging are

better understood because of this research.
5 Conclusion

Maintaining genetic variety and germplasm resources has

become a major concern for breeders to achieve seed quality and

germplasm preservation. This study compared and examined the

transcription and metabolic data of two soybean lines treated with

aging stress: R31 (aging sensitive) and R80 (aging tolerant). Four

sets of artificial aging treatments—0, 24, 72, and 120 hours—with

varying durations were performed. There were differences in the

DEGs and differentially accumulated metabolites between the two

soybean lines aged for different durations. The ability of soybean

seeds to withstand the effects of age has been revealed to be mostly

regulated by the phenylpropanoid metabolic pathway, particularly
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caffeic acid. Longer aging treatment periods produced higher levels

of caffeic acid, and this buildup enhanced the seed’s anti-aging

ability by blocking LOX activity. Moreover, the germination rates of

the R31 and R80 seeds were increased by immersing them in 1 mM

caffeic acid for 6 hours and artificially aging them for 24 hours.

Overall, this study indicates that the detrimental effects of seed

aging stress may be somewhat mitigated and that seed vitality can

be improved by the accumulation of metabolites, specifically caffeic

acid, in the soybean phenylpropanoid acid metabolic pathway. The

results of this study offer a theoretical framework for further

investigations into the mechanism of soybean seed aging.
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