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Introduction: Single-cell RNA-seq (scRNA-seq) technologies have been widely

used to reveal the diversity and complexity of cells, and pioneering studies on

scRNA-seq in plants began to emerge since 2019. However, existing studies on

plants utilized scRNA-seq focused only on the gene expression regulation. As an

essential post-transcriptional mechanism for regulating gene expression,

alternative polyadenylation (APA) generates diverse mRNA isoforms with

distinct 3’ ends through the selective use of different polyadenylation sites in a

gene. APA plays important roles in regulating multiple developmental processes

in plants, such as flowering time and stress response.

Methods: In this study, we developed a pipeline to identify and integrate APA sites

from different scRNA-seq data and analyze APA dynamics in single cells. First,

high-confidence poly(A) sites in single root cells were identified and quantified.

Second, three kinds of APAmarkers were identified for exploring APA dynamics in

single cells, including differentially expressed poly(A) sites based on APA site

expression, APA markers based on APA usages, and APA switching genes based

on 3′ UTR (untranslated region) length change. Moreover, cell type annotations

of single root cells were refined by integrating both the APA information and the

gene expression profile.

Results: We comprehensively compiled a single-cell APA atlas from five scRNA-

seq studies, covering over 150,000 cells spanning four major tissue branches,

twelve cell types, and three developmental stages. Moreover, we quantified the

dynamic APA usages in single cells and identified APA markers across tissues and

cell types. Further, we integrated complementary information of gene expression

and APA profiles to annotate cell types and reveal subtle differences between

cell types.

Discussion: This study reveals that APA provides an additional layer of

information for determining cell identity and provides a landscape of APA

dynamics during Arabidopsis root development.
KEYWORDS

alternative polyadenylation, single-cell RNA-seq, root development, RNA processing,
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1 Introduction

Recent advances in single-cell RNA-seq (scRNA-seq) have

opened an unprecedented opportunity to profile transcriptome-

wide cell-to-cell variability in any given organism. In particular,

scRNA-seq has revolutionized studies in animals to facilitate the

capture of cellular heterogeneity in gene expression profiles,

discovery of new cell types, and reconstruction of developmental

trajectories (Saliba et al., 2014; Kolodziejczyk et al., 2015; Wang and

Navin, 2015). In contrast to the massive studies on animal tissues,

the application of scRNA-seq in plants did not begin until 2019,

which mainly because that the presence of plant cell walls hinders

the isolation of individual cells. Thus far, most scRNA-seq studies in

plants focused on the well characterized Arabidopsis root system

(Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et al., 2019;

Shulse et al., 2019; Zhang et al., 2019; Shahan et al., 2022).

Generally, these abundant studies utilized routine scRNA-seq

analytical pipelines, such as Seurat (Butler et al., 2018; Stuart

et al., 2019) and Scanpy (Wolf et al., 2018), to analyze the single-

cell gene abundance data, which define major or minor cell types in

Arabidopsis root (e.g., epidermis, endodermis, cortex, stele, and

root cap) and reveal developmental trajectories of major cell types.

Current studies aiming to dissert cell types from scRNA-seq

relied mostly on the gene-cell abundance matrix to perform gene-

level analysis. More recently, one interesting line of research,

leveraging the isoform resolution of scRNA-seq data, revealed

prevalent cell-to-cell heterogeneity in isoform expression and found

cell-type-specific isoforms (Shalek et al., 2013; Marinov et al., 2014;

Velten et al., 2015; Song et al., 2017; Arzalluz-Luque and Conesa,

2018). Previously, a number of studies based on 3′ end sequencing or
bulk RNA-seq have highlighted the importance of alternative

polyadenylation (APA) in regulating gene expression and affecting

mRNA stability, translation and localization (Tian and Manley, 2017;

Gruber and Zavolan, 2019). APA is a crucial regulatory mechanism

generating diverse mRNA isoforms with distinct 3′ ends, which

contributes to transcriptome diversity. Most APA sites located

within the terminal exon downstream of the stop codon, resulting

in transcript isoforms with distinct 3′UTRs (untranslated regions). A
small portion of APA sites are located within internal introns/exons,

which may producemRNA isoforms encoding distinct proteins. APA

is prevalent and conserved across all eukaryotes and up to 70% of

genes in plants possess APA sites (Wu et al., 2011; Thomas et al.,

2012; Fu et al., 2016; Zhou et al., 2019; Wang et al., 2023). APA is also

highly modulated in a tissue-specific manner and is involved in

proliferation, development, differentiation, and disease (Tian and

Manley, 2017; Gruber and Zavolan, 2019). In plants, APA has been

indicated important in controlling flowering time (Xing et al., 2008),

responding oxidative stress (Thomas et al., 2012) and high-salt

environments (Wang et al., 2023), and regulating agriculturally

important traits (Fu et al., 2016). Given the importance of APA,

computational approaches have been proposed to derive additional

information on APA isoforms from standard scRNA-seq data

without redesigning sequencing experiments (Ye et al., 2023). For

example, using scRNA-seq data from 10X Chromium, our group

investigated cell-type-specific APA dynamics in acute myeloid
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leukemia (Ye et al., 2019a) and released the scDAPA tool for

analyzing APA dynamics across different cell types (Ye et al.,

2019b). By pooling cells of the same cell type from full-length

scRNA-seq to mimic the analysis in bulk RNA-seq, Kim et al.

found that APA usages combined with gene expression contribute

to separating tumor and non-tumor cells (Kim et al., 2019). Lately, a

few computational tools are emerging for identifying APA sites in

individual cells from scRNA-seq data [reviewed in (Ye et al., 2023)],

such as scAPA (Shulman and Elkon, 2019), Sierra (Patrick et al.,

2020), and scAPAtrap (Wu et al., 2021). Based on a similar strategy of

peak identification, these tools identify and quantify single-cell APA

sites at the whole genome level from 3′ tag-based scRNA-seq, such as
10X Chromium, CEL-seq, and Drop-seq. The single-cell profile of

APA isoform usages provides an additional layer of gene expression

regulation, which contributes greatly to the discovery and annotation

of new cell types. For example, the APA profile, independent of gene

expression, has been shown to help discern cell identities in different

stages during mouse sperm cell differentiation (Wu et al., 2021).

Arabidopsis root comprises the complex structure with diverse

but relatively small number of cell types, and numerous tissue/cell-

type marker genes have been defined by abundant genomic studies

(Birnbaum et al., 2005; Bruex et al., 2012; Efroni et al., 2015; Li et al.,

2016), which makes it an ideal plant tissue for the application of

scRNA-seq. Recently, several landmark studies using scRNA-seq on

Arabidopsis roots have revealed major cell types such as pericycle

cells as well as very small cell populations such as quiescent center

(QC) cells (Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et al.,

2019; Shulse et al., 2019; Zhang et al., 2019; Shahan et al., 2022).

However, even in this well studied system, there are still cell clusters

cannot be annotated due to the lack of marker genes. As a highly

tractable and well characterized system, Arabidopsis root is also an

ideal tissue for the study of cell-to-cell heterogeneity of APA and

cell-type-specific APA in plants, especially with the availability of a

compendium of scRNA-seq datasets from many pioneering studies.

Recent studies based on standard scRNA-seq have revealed cell-

type-specific APA regulation and discovered cell subpopulations

invisible to conventional gene expression analysis (Gao et al., 2021;

Wu et al., 2021). Therefore there is a great potential to detect more

robust marker genes for dissecting cell types in roots based on

complementary information from both layers of APA isoforms and

genes derived from the same scRNA-seq experiments.

In this study, we comprehensively compiled a single-cell APA

atlas from five scRNA-seq studies, covering over 150,000 cells

spanning four major tissue branches, twelve cell types, and three

developmental stages. High-confidence poly(A) sites in single root

cells were identified and quantified. Moreover, three kinds of APA

markers were identified for exploring the dynamic APA usages in

single cells, including differentially expressed poly(A) sites based on

APA site expression, APA markers based on the APA ratios, and

APA switching genes based on 3′ UTR length. By integrating both

the APA information and the gene expression profile, cell type

annotations of single root cells were refined. This study reveals that

APA provides an additional layer of information for determining

cell identity and provides a landscape of APA dynamics during

Arabidopsis root development.
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2 Materials and methods

2.1 Datasets

A total of 28 scRNA-seq datasets of wild-type Arabidopsis root

tissue from five studies were collected for this study (Supplementary

Table S1). These data cover 150,697 single cells sequenced by 10X

Chromium or Drop-seq, including 1,076 cells from roots of 7-day-

old seedlings (Jean-Baptiste et al., 2019), 7,522 cells from 5-day-old

root tips (Ryu et al., 2019), 31,578 cells from 5- and 7-day-old whole

roots (Shulse et al., 2019), 7,695 cells from root tip tissue 10 days

after growth (Zhang et al., 2019), and 102,826 cells from 5- and 7-

day-old primary root tips (Shahan et al., 2022).
2.2 Annotation of cell types in
Arabidopsis roots

We used the single-cell gene expression profiles to annotate cell

types. The gene-cell expression matrices were obtained from the

original studies. For each matrix, we retained cells containing at

least 200 expressed genes, and genes expressed in at least three cells.

We also excluded mitochondrial genes, chloroplast genes, or genes

affected by protoplasts. The gene expression profile of each matrix

was normalized using SCTransform function in Seurat. To construct

a unified expression profile at single-cell resolution, gene-cell

expression matrices from individual studies were combined by

gene IDs. Then we retained genes expressed in all matrices and

kept cells containing at least 500 expressed genes, and genes

expressed in at least five cells. Finally, a matrix with 12,191 genes

in 128,549 cells was obtained. Then batch effects removed using

IntegratedData function in Seurat (Butler et al., 2018). Similar to the

previous study (Shahan et al., 2022), we integrated three strategies

to annotate the cell type of each cell to improve the reliability. First,

we collected published microarray data and RNA-seq data from

Arabidopsis roots to compile the reference gene expression profile

(Brady et al., 2007; Li et al., 2016). Pearson’s correlation coefficient

was then calculated between the expression profile of each cell and

the reference profile. Second, we downloaded gene expression

profiles of Arabidopsis root tissue cells from the Arabidopsis

Genus Gene Expression Database (AREX LITE) and then used

the Index of Cell Identity (ICI) (Birnbaum and Kussell, 2011; Efroni

et al., 2015) to determine cell identity. Third, we clustered cells

based on gene expression profiles and identified cluster-specific

genes based on differential analysis. Then we referred to known cell

type-specific marker genes to determine cell types. Each cell would

be assigned one cell type by each strategy. Cells that were assigned

the same cell type in at least two strategies were defined as labeled

cells, and remaining cells were defined as unlabeled cells. Next, for

labeled cells, the average expression levels of genes in different cell

types were calculated, and the average expression levels of the top

200 highly variable genes in different cell types were selected as the

reference expression profile. Pearson’s correlation coefficient was

calculated between the expression profile of each unlabeled cell and

the reference profiles of labeled cells, and the category label of the
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cell group with the highest correlation coefficient was used as the

initial identity of the unlabeled cell. Finally, we annotated eleven

sub-cell types, yet not covering the stem cell niche. Further, we

combined the cell category labels (four in total) obtained by

different strategies. Next, we filtered out the quiescent center cells

not assigned with quiescent center in at least two from the four cell

category labels and re-annotated these quiescent center cells as stem

cell niche.
2.3 Identification of poly(A) sites from
scRNA-seq

We used scAPAtrap (Wu et al., 2021) to identify poly(A) sites at

the single-cell level from scRNA-seq data. First, Cell Ranger (Zheng

et al., 2017) was used for sequence alignment for 10X data. For data

from other sequencing protocols, such as Drop-seq, we first extracted

the cell barcodes and unique molecular identifiers (UMIs) from the

read 1 file using UMI-tools (Smith et al., 2017), and appended the

read identifiers to the read 2 file to generate a new file. The new read 2

file was aligned to the reference genome by STAR to generate a BAM

(Binary Alignment and Map) file (Dobin et al., 2013). The TAIR9

reference genome was used for alignment, and the Arabidopsis

genome BSgenome object (“BSgenome.Athaliana.TAIR.TAIR9”)

with TAIR10 gene annotation file was used in scAPAtrap for poly

(A) site identification and annotation. Genome-wide poly(A) sites

were identified from the BAM files using scAPAtrap (Wu et al.,

2021), which pinpointed the location of each poly(A) site and

quantified the expression of the poly(A) site in each cell. Next, the

annotatePAC function of movAPA (Ye et al., 2021) was used to

annotate poly(A) sites with different genomic regions. Similar to

previous studies (Wu et al., 2011; Zhu et al., 2020; Wu et al., 2021),

the annotated 3′ UTR regions were extended by 1000 bp, using the

ext3UTRPACds function of movAPA, to include more potential 3′
UTR poly(A) sites in downstream regions. Only poly(A) sites located

in 3′ UTR or extended 3′ UTR regions of protein-coding genes were

retained for further analysis. Finally, for each scRNA-seq dataset, we

obtained a poly(A) site expression matrix, with each row denoting a

poly(A) site and each column a cell. The annotation information of

each poly(A) site, including the chromosome location, the peak

range, gene, and strand, was also recorded.
2.4 Integration of poly(A) sites from
multiple sources

Unlike genes in a gene expression matrix, which are annotated

by gene names, each poly(A) site in a poly(A) site matrix is

represented by a peak region. Consequently, the peak intervals

assigned to the same poly(A) site may not fully overlap across

different samples. To compile a map of poly(A) sites at the whole-

genome level, we used a snowball like approach to merge poly(A)

sites from different sources. Briefly, poly(A) sites of all datasets were

sorted according to their peak starting positions. Then poly(A) sites

(peaks) with intersecting peak intervals were combined into the
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same site and assigned the same ID. The most distal peak end was

set as the coordinate of the combined poly(A) site. This process was

repeated until all poly(A) sites were processed. After re-annotating

peak ranges of poly(A) sites from all sources, the expression level

(read count) of each poly(A) site in each cell of each dataset was

recalculated. To further eliminate batch effects, poly(A) sites from

different datasets were integrated using the RunHarmony function

in harmony (Korsunsky et al., 2019). Finally, an integrated poly(A)

site expression matrix from different samples was obtained.
2.5 Identification of APA markers with
differential APA usages

Three kinds of APA markers were identified, including

differentially expressed poly(A) sites (DEPAs) based on APA site

expression, APA markers based on APA usages, and APA switching

genes based on 3′ UTR length change.

Based on the poly(A) site expression matrix, DEPAs for each cell

type were identified using the Seurat package (Butler et al., 2018;

Stuart et al., 2019). For each poly(A) site, the expression profile in a

given cell group was compared with expression profile of cells in the

remaining cell groups. The P values were adjusted for multiple

hypothesis testing using the Bonferroni method. We used

FindAllMarkers function in Seurat (parameters: test.use = wilcox,

min.pct = 0.25, logfc.threshold = 0.25) to initially identify DEPAs.

Resulting DEPAs with expression ratio greater than 20% cells of a

given cell group and less than 20% in other cell groups were retained.

To quantify APA dynamics that reflect the change of 3′ UTR
length of genes, first we obtained genes with at least two poly(A)

sites in 3′ UTR (called 3′ UTR-APA genes). Further, the percentage

of the proximal poly(A) site usage index (PPUI) was calculated

(Equation 1). The PPUI for gene i in cell s was calculated as the ratio

of the read counts for proximal poly(A) site p (Ep,i) to the total read

counts for all 3′ UTR poly(A) sites on that gene.

PPUIs,i =
Ep,i

oEi
(1)

The PPUI score ranges between 0 and 1, which represents the

relative 3′ UTR length of a gene in a cell. A higher PPUI indicates

increased use of the proximal site, i.e. shortening of the 3′ UTR,
whereas a lower PPUI indicates lengthening of the 3′ UTR.

Next, we determined APA-switching genes that exhibit

significant 3′ UTR length change among cell types. Genes with

differential APA usages (called APAmarkers) were identified by test

the difference of APA ratios between two cell groups using

Wilcoxon rank sum test. To further determine the direction of

APA switching (i.e., shortening or lengthening), we first calculated

the relative 3′ UTR length for each cell group (Equation 2). Briefly,

the average expression of the poly(A) site i in a given cell s was

calculated (Es,i), and the distance of poly(A) site i to the nearest stop

codon (i.e., 3′ UTR length) was obtained (Li). Then the relative 3′
UTR length of a gene with n poly(A) sites in cell s was calculated as

the 3′ UTR length weighted by the expression level.
Frontiers in Plant Science 04
Ls =
on

i=1Es,i*Li

on
i=1Es,i

(2)

Finally, the difference of relative 3′ UTR length of each gene

between the two cell groups was further tested by Wilcoxon rank

sum test.
2.6 Refining cell type annotations by
combining gene and APA profiles

Cells remained unannotated after applying above three

strategies on the gene-cell expression matrix were considered as

unlabeled cells. Unlabeled cells present in both the integrated gene

expression matrix and APA matrix were retained for further cell

type annotation. We used three kinds of gene sets, including DEPA

gene sets, APA marker sets, and highly variable gene (HVG) sets,

for cell type annotation. First, we used the GeneSetCollection

function in the GSEABase package to construct sets of DEPAs

targeting the twelve cell types in Arabidopsis roots. Next, the

activity degree of different DEPA sets in each cell was calculated

using the AUCell_calcAUC function in AUCell (Aibar et al., 2017).

The area under curve (AUC) was used to calculate the proportion of

poly(A) sites from different DEPA sets that were highly expressed in

each cell. The cell type corresponding to the DEPA set with a higher

activity degree for each cell was considered as the cell identity.

Similarly, Unlabeled cells were also re-annotated using the APA

marker sets. Moreover, unlabeled cells were annotated based on the

gene expression profile. Firstly, top 200 HVGs for each cell type

were selected based on the gene-cell expression matrix of labeled

cells, and the average expression profile of HVGs in each cell type

was considered as cell-type specific reference profile. Then the

Pearson’s correlation coefficient between the expression profile of

each unlabeled cell and the reference profile of each cell type was

calculated. Finally, the cell label with the highest correlation

coefficient was considered as the identity of the unlabeled cell. By

combining the annotation results based on gene expression, DEPAs,

and APA markers, we used the cell type with the highest frequency

of occurrence among the three annotation results as the identity of

the cell. If the three annotation results are different from each other,

then the annotation result based on DEPAs was used.
3 Results

3.1 A pipeline to identify APA sites and
analyze APA dynamics in single root cells
of Arabidopsis

In this study, we developed a pipeline to identify and integrate

APA sites from different scRNA-seq data and analyze APA

dynamics in single cells. A total of 28 scRNA-seq datasets of

Arabidopsis root tissue sequenced by 3′ tag based scRNA-seq

were collected from five studies (Figure 1A). Then gene-cell

expression profiles of the five studies were integrated. Three
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strategies based on gene expression profiles from bulk data and cell

type-specific marker genes were proposed to annotate the cell type

of each cell (Figure 1B). Cells that were not assigned the same cell

type in at least two strategies were defined as unlabeled cells. Next,

poly(A) sites at the single-cell level from each scRNA-seq dataset

were identified and quantified, and 28 single-cell poly(A) site

matrices were obtained (Figure 1C). To integrate poly(A) sites
Frontiers in Plant Science 05
from multiple studies, a unified poly(A) site list was compiled

and then the expression levels of poly(A) sites in each cell of each

dataset were re-calculated based on the unified list (Figure 1D).

Further, two APA metrics, including the percentage of the proximal

poly(A) site usage index (PPUI) and the weighted 3′ UTR length,

were used to measure APA dynamics of each gene in each cell

(Figure 1E). Next, three kinds of APA markers were identified by
FIGURE 1

A pipeline to integrate APA sites and analyze APA dynamics in single cells. (A) Single-cell RNA-seq datasets collected from five studies. (B) Cell type
annotation by three methods using gene expression profiles. (C) Single-cell poly(A) site identification and quantification. (D) Integration of multiple
poly(A) site datasets. (E) Calculation of two APA metrics based on the integrated poly(A) site matrix. (F) Identification of three types of genes with APA
dynamics (G) Refining cell type annotations by integrating gene and APA profiles. pA, poly(A) site; DEPA, differentially expressed poly(A) site; PPUI,
proximal poly(A) site usage index. PCC, Pearson’s correlation coefficient; ICI, index of cell identity.
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testing the difference of score (i.e., APA site expression, PPUI, and

weighted 3′ UTR length) between two cell groups (Figure 1F).

Finally, by combining information of gene expression and APA

profiles, cell type annotations of unlabeled cells could be

refined (Figure 1G).
3.2 Integration of gene expression profiles
from multiple scRNA-seq studies reveals
major root cell types

Originally, a total of 150,697 cells were obtained from 28

published scRNA-seq datasets of wild-type Arabidopsis root

tissue from five studies (Supplementary Table S1). These gene-cell

expression matrices were combined with batch effect removed (see

Materials and Methods) to construct a unified gene expression

matrix containing 12,191 genes and 128,549 cells. The UMAP

(Uniform Manifold Approximation and Projection) plot shows

clearly the removal of batch effects of individual heterologous

datasets (Figure 2A). Next, we designed three strategies (see

Materials and Methods) to annotate these cells, which defined

four root tissue branches and two major cell types (Figure 2B)

and 12 cell types (Figure 2C). It could be seen that these cells

continuously divide and differentiate to form four main branches,

including the root cap tissue composed of lateral root cap and

columella cells; the epidermis tissue composed of trichoblast (hair)

and atrichoblast (non-hair) cells; the ground tissue composed of

cortex and endodermis cells; and the stele tissue composed of

phloem, xylem, procambium, and pericycle cells. Referred to
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published Arabidopsis root bulk RNA-seq data (Brady et al.,

2007; Li et al., 2016), each cell could be further categorized into

the three phases of root development: meristem, elongation, and

maturation. Stem cells are mainly stored in the stem cell niche

(SCN) at the root tip (Benfey, 2016), which contains the quiescent

center (QC) as well as its surrounding stem cells (Aichinger et al.,

2012). Figure 2D reflects the temporal developmental process. All

cells start from stem cells, then gradually differentiate along the

branches and undergo growth processes in the elongation zone,

ultimately maturing at the branch tip. Overall, these results suggest

that the gene expression atlas at the single-cell resolution highlights

existing root development process and can help to explain the

interconnections between and within different cell types.
3.3 An atlas of poly(A) sites at single-cell
resolution in Arabidopsis roots

Single-cell poly(A) sites were identified and quantified from

each of the 28 RNA-seq datasets, with the number of sites ranging

from 8,825 to 18,298 (Figure 3A). Next, we proposed a integration

strategy to integrate the poly(A) site profiles from these 28 batches,

and a unified poly(A) site list of Arabidopsis root with the

expression profile in each sample was obtained (see Materials and

Methods). Finally, a poly(A) site expression matrix with 29,784 poly

(A) sites in 128,134 cells was constructed, with batch effect removed

(Figure 3B). To examine the accuracy of the obtained poly(A) sites,

we compared the integrated poly(A) site list with annotated 3′ UTR
poly(A) sites of Arabidopsis from PlantAPAdb (Zhu et al., 2020).
FIGURE 2

Integration of gene expression profiles from multiple studies reveals major cell types in wild-type Arabidopsis root tissue. (A) UMAP plot based on
the integrated gene expression matrix from 28 scRNA-seq datasets. (B) UMAP plot with the annotation of four major branches and two stem cell
types. (C) UMAP plot with the annotation of twelve cell types. (D) UMAP plot with the annotation of three root developmental stages.
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Single-cell poly(A) sites identified in this study were located near

annotated poly(A) sites in PlantAPAdb, with up to 77.5% poly(A)

sites located within 100 bp of annotated sites (Figure 3C). The

general distribution pattern of nucleotide composition surrounding

poly(A) sites identified in this study was similar to that in

PlantAPAdb (Figure 3D). Moreover, three typical plant poly(A)

signal regions, including far upstream element (FUE), near

upstream element (NUE), and cleavage element (CE) (Loke et al.,
Frontiers in Plant Science 07
2005), can be revealed from the base compositions surrounding

poly(A) sites (Figure 3D). Polyadenylation is guided by poly(A)

signals in these regions that are recognized by core polyadenylation

factors. The NUE located at -25 ~ -15 bp upstream of the poly(A)

site contains the most conserved poly(A) signal AAUAAA

(Figure 3D). The FUE is located at -100 ~ -25 bp upstream of the

poly(A) site and is typically U-rich. The cleavage element is located

at -15 ~ +15 bp around the poly(A) site, with YA (Y=C/U) at the
FIGURE 3

Atlas of poly(A) sites at single-cell resolution in Arabidopsis roots. (A) Number of 3′ UTR poly(A) sites identified from each of the 28 scRNA-seq
datasets from five studies. (B) UMAP plot based on the integrated poly(A) site expression matrix. (C) Distribution of distance from identified single-
cell poly(A) sites to annotated poly(A) sites in PlantAPAdb. (D) Nucleotide compositions of the sequences surrounding poly(A) sites. The top panel
presents the single nucleotide profile of 3′ UTR poly(A) sites identified in this study. The bottom panel presents single nucleotide profile of 3′ UTR
poly(A) sites collected from PlantAPAdb. X-axis denotes the position and 0 is the position of the poly(A) site, i.e., the cleavage site (CS). The poly(A)
signal regions around poly(A) sites in plants were marked, including the far upstream element (FUE) located at -100 ~ -25 bp, the near upstream
element (NUE) located at -25 ~ -15 bp, and the cleavage element (CE) located at -15 ~ +15 bp. The sequence logo of hexamers in the NUE shows
the most dominant poly(A) signal AAUAAA. (E) Scatterplot of correlation between gene expression from the gene-cell matrix and the gene
expression by summarizing poly(A) sites in each gene. Each dot represents a single cell. (F) UMAP plot based on the poly(A) site matrix with the
annotation of twelve cell types. (G) UMAP plot based on the poly(A) site matrix with the annotation of three developmental stages.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1437118
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bi et al. 10.3389/fpls.2024.1437118
cleavage site situated within a U-rich region. Further, we examined

the poly(A) site quantification by comparing the expression profile

from poly(A) sites with that from the gene-cell expression matrix.

We summed the expression levels of all poly(A) sites on a gene to

represent the expression level of the gene. The single-cell expression

profile based on the gene expression data was highly correlated

with that based on the poly(A) site data (Pearson’ correlation

coefficient = 0.92, P value < 2.2e-16) (Figure 3E), demonstrating

the high confidence of our poly(A) site data. Moreover, through the

UMAP plot based on the expression matrix of poly(A) sites, it can

be found that the distribution of cell clusters with the cell

annotation results based on the APA profile is similar to that

based on gene expression profile (Figures 3F, G). Cells from the

same tissue branches are grouped together, and cells gradually

matures along the branches.
3.4 Differential analysis of APA dynamics
across cell types

After integrating the panorama of poly(A) sites for Arabidopsis

root cells, differential usage of poly(A) sites for four main tissue types

and twelve cell types was assessed, and DEPAs were obtained for each

cell type (see Materials and Methods). A total of 3,261 cell type-

specific DEPAs were obtained for the twelve cell types, ranging from

46 to 540 DEPAs for each cell type (Figure 4A; Supplementary Table

S2). Particularly, DEPAs of representative marker genes in root cell

types were also discovered (Figure 4B), such as WEREWOLF 1

(WER1) specifically expressed in atrichoblast (Lee and Schiefelbein,

1999); COBRA-LIKE 9 (COBL9) specifically expressed in trichoblast

(Kamiya et al., 2016); ALTERED PHLOEM DEVELOPMENT (APL)

specifically expressed in phloem (Bonke et al., 2003); CASPARIAN

STRIP MEMBRANE DOMAIN PROTEIN 1 (CASP1) specifically

expressed in endodermis (Roppolo et al., 2011). DEPAs located in

these genes were highly enriched in relevant cell types. Moreover, it

can be found that there is no significant relationship between the

number of cells in a cell type and the number of DEPAs (Figure 4B).

For example, atrichoblast and pericycle contain more cells and more

DEPAs, whereas quiescent center contains very few cells yet with the

highest number of DEPAs. This may suggest that many poly(A) sites

are specifically expressed in nondividing quiescent cells of the root tip

tissue during Arabidopsis root cell development, regulating the

differentiation of the tissue.

We further investigated the dynamic changes in the usage of APA

sites across different cell types and developmental periods. To this end,

we constructed an APA ratio matrix (see Materials and Methods), and

obtained 3648 APAmarkers with differential APA usages across 12 cell

types (Supplementary Table S3; Figure 4C). Specifically, some APA

markers are expressed in a specific cell type, but their corresponding

genes do not exhibit specific gene expression in that cell type. For

example, the proximal poly(A) site of AT5G64816 is up-regulated in

stem cells (stem cell niche and quiescent center), but the gene is

expressed at an average level across all cell types (Figure 4D). These

APAmarkers are particularly useful for discovering and annotating cell

types that are difficult to identify based solely on gene level analysis,

which are important in analyzing the gene regulatory role of APA in
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cell differentiation and tissue development in Arabidopsis. Particularly,

DEPA genes and APA markers show a relatively small overlap

(Figure 4E). For example, 508 DEPAs and 359 APA markers were

found specific to Atrichoblast, and up to 753 genes were retained after

removing redundancy (Figure 4E). Finally, 219 to 753 cell type-specific

genes with DEPAs or APA markers were obtained for different cell

types (Figure 4E), which represent an important gene resource related

to APA dynamics in Arabidopsis single cells.

To further investigate the dynamic pattern of APA usages during

Arabidopsis development, we summarized PPUI score of all genes in

each cell to represent the usage of proximal poly(A) for each cell. PPUI

scores are evenly distributed in most of the cells, but appear to be

aggregated in some tissues (Figure 4F). PPUI scores in individual

tissues were further compared (Figure 4G). It can be seen that PPUI

scores were significantly decreased on root cap tissues compared with

stem cells (stem cell niche and quiescent center), while PPUI scores in

other tissues were similar to that of stem cells. This suggests that during

the development process of Arabidopsis root, stem cells are more likely

to be more inclined to use the proximal poly (A) site. As the cells

gradually mature, the majority of mature cells that differentiate into

root cap gradually decrease their use of the proximal poly(A) site,

indicating an increasing trend of 3′ UTR lengthening.
3.5 APA dynamics between trichoblast
and atrichoblast

Next, we focused on the epidermis tissue and explored the

difference in APA dynamics between trichoblast (hair) and

atrichoblast (non-hair). Firstly, APA markers that are

differentially used between trichoblast and atrichoblast were

identified to obtain genes with APA switching between cell types.

We adopted the relative 3′ UTR length weighted by number of read

counts to further determine the direction of switching (see

Materials and Methods). A total of 486 genes with 3′ UTR

lengthening in atrichoblast and 461 genes with 3′ UTR

shortening in atrichoblast were obtained, respectively (Figure 5A).

In contrast, 2,892 differentially expressed genes (DEGs) between

trichoblast and atrichoblast were obtained based on the gene

expression profile, with 1,335 up-regulated genes and 1,557

down-regulated genes in atrichoblast. There is moderate overlap

between DEGs and APA switching genes, with 44% (416/947) of

APA genes overlapping with DEGs (Figure 5B). GO (Gene

Ontology) analysis was performed on these genes to investigate

their biological functions (Supplementary Tables S4, S5). Genes

with APA switching were enriched in biological terms specific to the

two cell types (Figure 5C). The 3′ UTR lengthened genes in

atrichoblast are involved in cell growth and cell morphogenesis

which are mainly associated with morphological changes in cells,

demonstrating the biological process of plant epidermal cell

differentiation. In contrast, the 3′ UTR shortened APA switching

genes in atrichoblast are involved in the response to water

deprivation and response to acid chemical which are mainly

related to stress responses under various conditions,

demonstrating the adaptive differentiation of plant fibers to the

environment. We also conducted GO analysis on DEGs and found
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FIGURE 4

Differential analysis of APA dynamics across cell types in Arabidopsis roots. (A) Number of differentially expressed poly(A) sites (DEPAs) identified in
each of the twelve cell types. (B) Representative DEPAs for the twelve cell types. Bar plots show the number of cells and number of identified DEPAs
in each cell type. Violin plots show the expression profiles of representative DEPAs of different genes in different cell types. (C) Number of APA
markers identified in each of the twelve cell types. (D) Violin plots showing the gene expression profile (top) and the DEPA expression profile
(bottom) of the gene AT5G64816 in different cell types. (E) Number of non-redundant genes with DEPAs or APA markers in each cell type. (F) UMAP
plot showing the overall distribution of the proximal poly(A) site usage index (PPUI) of all the genes in a single cells. (G) Boxplot showing the overall
distribution of PPUI of all the genes in different cell populations.
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that the GO term were different from the APA results (Figure 5D).

Specifically, up-regulated DEGs were enriched in several common

GO terms such as rRNA metabolic process, protein folding, and

protein maturation. Down-regulated DEGs were enriched in

biological processes related to stress responses such as hypoxia.

This result indicates that APA switching genes and differentially

expressed genes are relatively independent gene sets, representing

different layers of gene expression regulation.
3.6 Inclusion of APA markers for
annotating cell types

We integrated three strategies to assign cell type label for each

root cell based on the single-cell gene expression profile alone (see
Frontiers in Plant Science 10
Materials and Methods), but 6,057 cells (from 128,134 cells) were

still remained unannotated (called unlabeled cells) (Figure 6A). Our

above analysis indicates that APA information can represent the

differential use of different APA isoforms of the same gene

(Figures 4D, 5B), which may help to supplement gene expression

information to improve cell identity determination. Therefore, we

integrated the annotation results based on gene expression, DEPAs

and APA markers (see Materials and Methods) to obtain new

identities for these unlabeled cells (Figure 6B). For comparison, we

roughly annotated these unlabeled cells by calculating Pearson’s

correlation coefficient between the gene expression profile of each

unlabeled cell and the reference profile of the labeled cell types

(Figure 6C). We then used the alluvial map to further demonstrate

the refining of cell identities after the inclusion of the APA profile

(Figure 6D), and found some interesting observations. For example,
FIGURE 5

Differential analysis of APA dynamics between trichoblast and atrichoblast. (A) Number of APA switching genes with 3′ UTR lengthening or
shortening in atrichoblast. (B) Venn diagram showing the overlap between differentially expressed genes (DEGs) and APA switching genes. (C) Gene
ontology analysis of the APA switching genes with 3′ UTR lengthening or shortening in atrichoblast. (D) Gene ontology analysis of the DEGs up-
regulated or down-regulated in atrichoblast.
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147 cells originally classified as atrichoblast based solely on the gene

expression level were reassigned to other cell types such as

trichoblast or cortex after correction with APA information. Such

reassignment not only indicates that some single cells may have
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multiple developmental potentials, but also reflects that the

boundaries between some cell types may be less clear than

expected. Specifically, there are the greatest number of genes with

differential APA usage in atrichoblast (Figure 4E), suggesting that
FIGURE 6

Inclusion of APA markers for annotating cell types. (A) Number of labeled and unlabeled cells in each cell type. A total of 128,134 cells present in
both the integrated gene expression matrix and APA matrix were counted. Initial cell labels of unlabeled cells were determined by calculating
Pearson’s correlation coefficient between the gene expression profile of each unlabeled cell and the reference profile of the labeled cell types.
(B) UMAP plot showing unlabeled cells with the cell annotation after correction with DEPAs and APA markers. (C) UMAP plot showing unlabeled cells
with the cell annotation based on the gene-cell expression matrix alone. (D) Alluvial plot showing the re-assignment of cell labels for unlabeled cells
after correction with DEPAs and APA markers.
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APA dynamics may be the most intense in this cell type. As such,

APA information could be particularly important for determining

the identity of these atrichoblast-like cells. Overall, the integration

of the complementary information of gene expression and APA

profiles can help annotate cell types and reveal subtle differences

between cell types, which is of significant importance for the study

of cell fate determination and tissue development.
4 Discussion

ScRNA-seq technologies have been widely used to reveal the

diversity and complexity of cells, especially for gene expression

research at single-cell resolution. ScRNA-seq has shown great

potential in the field of biomedical applications (Chen et al., 2021;

Song et al., 2022; Feng et al., 2024), however, its application in plants

far lags behind due to technical limitations in isolating plant cells. It

was not until 2019 that the feasibility and effectiveness of scRNA-

seq in plants were confirmed (Denyer et al., 2019; Jean-Baptiste

et al., 2019; Ryu et al., 2019; Shulse et al., 2019; Zhang et al., 2019),

and thereafter, a large number of studies on scRNA-seq in plants

began to emerge (Luo et al., 2020; McFaline-Figueroa et al., 2020;

Wendrich et al., 2020; Bawa et al., 2022). Although these studies

have utilized scRNA-seq to analyze plant gene expression regulation

at the single-cell level, they were limited to the gene level, and there

is still a lack of research with single-cell resolution on the transcript-

isoform level. As an essential post-transcriptional mechanism for

regulating gene expression, APA plays important roles in regulating

flowering time, seed dormancy, root development, and stress

response in plants (Cyrek et al., 2016; Lin et al., 2017; Ma et al.,

2022; Yu et al., 2022). ScRNA-seq data not only provide the gene

expression profile, but also the usages of transcript isoforms in

single cells, providing richer information for characterizing single-

cell transcriptomes. In this study, we comprehensively compiled a

single-cell APA atlas of Arabidopsis roots covering 12 cell types in

four major tissue branches and three developmental stages.

Moreover, we quantified the dynamic APA usages in single cells

and identified APA markers across tissues and cell types. By

integrating both the APA information and the gene expression

profile, we improved cell type annotations of single root cells.

There are currently many computational methods for

annotating cell types based on gene expression (Huang et al.,

2021; Qi et al., 2020; Zhao et al., 2020; Lin et al., 2023; Xu et al.,

2023, 2024), but none of them is applicable to all situations. In this

study, we improved the reliability of cell type annotation by

combining three strategies, using annotations with the same cell

label in at least two strategies as the final annotation for each cell.

This approach combines the unsupervised method and methods

based on reference gene expression, reducing the possibility of cells

being incorrectly annotated by a single method. But admittedly, this

approach will lead to an increase in the number of unlabeled cells.

However, in this study, we focused on the transcriptome differences

between cell types, so we chose to use more accurate cell annotation

results to avoid bias caused by the introduction of incorrectly
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labeled cells. Moreover, it is worth noting that these unlabeled

cells are also likely to be indistinguishable solely based on the gene

expression profile. Usages of APA sites of a gene represent the

expression of different transcript isoforms of the same gene, which

may provide complementary information of gene expression for

determining cell identity (Figure 6B). We found that after using

APA information for cell type annotation, many unlabeled cells

were labeled, while many cells’ cell type labels obtained based on

gene expression and APA were different (Figure 6D). This may be

because our annotation considers more similar sub-cell types rather

than main cell types, and the differentiation between sub-cell types

may be subtle, making cell labels susceptible to changes due to

different input information. In the future, more information could

be included, such as experimentally-verified marker genes or

information from additional omics (e.g., spatial transcriptomics),

to validate cell type annotation results or better define cell identity.

At present, there aremanymethods for integrating gene expression

data from different studies or batches (Butler et al., 2018; Tran et al.,

2020; Yang et al., 2021; Xiong et al., 2022). However, these methods are

not suitable for integrating APA sites from different studies. This is

because APA sites are represented by genomic interval information,

and the intervals of the same APA site may not be completely same

across different data sources. We designed a method to combine APA

sites from different scRNA-seq batches. This method iteratively merged

APA site intervals from different batches to the same site, ensuring the

accuracy of APA site annotation. This approach can unify the

annotation of the same APA sites from different batches, while also

distinguishing adjacent or even overlapping but different APA sites.

The nucleic acid distribution and poly(A) signals surrounding the

combined APA sites confirm the effectiveness of our APA site

identification and integration pipeline (Figure 3D).

The collection of APA data from different studies provides a

high-quality data foundation for analyzing APA dynamics in single

cells. We identified three kinds of APA markers, including DEPAs

based on APA site expression, APA markers based on the APA

ratios, and APA switching genes based on 3′ UTR length. DEPA

identification is similar to traditional DEG analysis, while

considering the expression level of a single APA site. By

integrating the expression levels of all poly(A) sites in a gene, the

gene expression level can be approximated, further verifying the

accuracy of poly(A) site quantification (Figure 3E). The PPUI

indicator represents the usage of the proximal poly(A) site by

considering expression levels of different APA sites of a gene,

allowing for the comparison of proximal poly(A) usage of the

same gene among different cell types at the gene level (Figure 4F).

Although the PPUI indicator, to some extent, reflects the changes in

3′ UTR length (the higher the PPUI, the shorter the 3′ UTR), it
ignores the 3′ UTR length and the expression level of individual

sites within a gene. Therefore, we further calculated the weighted

average 3′UTR length for each gene to more accurately characterize

the significance of the 3′ UTR length changes of genes in different

cell types (Figure 5A). These diverse APA dynamic characterization

methods provide a more comprehensive APA dynamic profile

across different cell types in Arabidopsis roots.
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