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Introduction: Crop height and above-ground biomass (AGB) serve as crucial

indicators for monitoring crop growth and estimating grain yield. Timely and

accurate acquisition of wheat crop height and AGB data is paramount for guiding

agricultural production. However, traditional data acquisition methods suffer

from drawbacks such as time-consuming, laborious and destructive sampling.

Methods: The current approach to estimating AGB using unmanned aerial

vehicles (UAVs) remote sensing relies solely on spectral data, resulting in low

accuracy in estimation. This method fails to address the ill-posed inverse

problem of mapping from two-dimensional to three-dimensional and issues

related to spectral saturation. To overcome these challenges, RGB and

multispectral sensors mounted on UAVs were employed to acquire spectral

image data. The five-directional oblique photography technique was utilized to

construct the three-dimensional point cloud for extracting crop height.

Results and Discussion: This study comparatively analyzed the potential of the

mean method and the Accumulated Incremental Height (AIH) method in crop

height extraction. Utilizing Vegetation Indices (VIs), AIH and their feature

combinations, models including Random Forest Regression (RFR), eXtreme

Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRT),

Support Vector Regression (SVR) and Ridge Regression (RR) were constructed

to estimate winter wheat AGB. The research results indicated that the AIH

method performed well in crop height extraction, with minimal differences

between 95% AIH and measured crop height values were observed across

various growth stages of wheat, yielding R2 ranging from 0.768 to 0.784.

Compared to individual features, the combination of multiple features

significantly improved the model’s estimate accuracy. The incorporation of AIH

features helps alleviate the effects of spectral saturation. Coupling VIs with AIH

features, the model’s R2 increases from 0.694-0.885 with only VIs features to

0.728-0.925. In comparing the performance of five machine learning algorithms,

it was discovered that models constructed based on decision trees were superior
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to other machine learning algorithms. Among them, the RFR algorithm

performed optimally, with R2 ranging from 0.9 to 0.93.

Conclusion: In conclusion, leveraging multi-source remote sensing data from

UAVs with machine learning algorithms overcomes the limitations of traditional

crop monitoring methods, offering a technological reference for precision

agriculture management and decision-making.
KEYWORDS

unmanned aerial vehicle, vegetation indices, accumulated incremental height, crop
height, above-ground biomass
1 Introduction

Wheat, as one of China’s three major cereal crops, plays a pivotal

role in agricultural production. Given the impact of global population

growth and climate change, monitoring the growth status of wheat

and achieving stable growth in wheat production are imperative for

realizing sustainable agricultural development, ensuring national

food security and meeting market demands (Zhu et al., 2023a).

Crop height and above-ground biomass (AGB) are considered

crucial indicators reflecting the wheat growth status and essential

components of grain yield. Real-time and accurate estimation of

winter wheat crop height and AGB at various growth stages is

paramount importance for guiding fertilizer application, managing

irrigation, estimating crop yield and informing national macro-level

decision-making (Huang et al., 2016).

Traditional methods for collecting AGB typically involve the

destructive acquisition of crops in the field. While the measurement

results are relatively accurate, there are drawbacks such as time-

consuming, laborious, elevated costs and poor timeliness. At the

same time, the random sampling in the manual data collection

process lacks spatial variability, which may result in data that does

not adequately represent the different characteristics and conditions

within the small planting area (Meng et al., 2016). In recent years,

remote sensing as a novel technological approach, has provided a

fresh alternative for estimating AGB in crops, owing to its non-

contact, convenient, efficient and flexible characteristics. Remote

sensing technology, with its ability to capture the spectral

reflectance characteristics of vegetation, offers extensive and high

spatiotemporal resolution surface information. Therefore, it

demonstrates significant potential in various studies such as crop

growth monitoring, pest and disease prediction (Pinto et al., 2020),

AGB estimation (Yue et al., 2019), yield and quality prediction

(Maimaitiyiming et al., 2019; Chen, 2020). The large-scale

estimation of AGB based on satellite remote sensing has been

widely applied in the fields of forests and grasslands (Chen, 2015;

Wang et al., 2019). However, for the retrieval of AGB in small-scale

agricultural fields, higher spatial and spectral resolution is required.

In recent years, unmanned aerial vehicle (UAV) remote sensing
02
technology has rapidly developed, providing the possibility for

precise monitoring and large-scale applications due to its

advantages of high resolution, flexibility, and low cost (Sagan

et al., 2019). Currently, UAV remote sensing employs various

sensors for crop phenotyping analysis, including RGB,

multispectral, hyperspectral and Light Detection and Ranging

(LiDAR) sensors. Hyperspectral sensors offer detailed spectral

information but widespread adoption are hindered by high costs

and complexity. On the contrary, multispectral sensors are

affordable, easy to handle and encompass several key bands

commonly used for crop growth monitoring (Kross et al., 2015).

Compared to hyperspectral sensors, multispectral sensors are more

widely used in crop phenotyping analysis (Feng et al., 2020). The

single-band reflectance of a spectrum provides information only

about a specific wavelength range, which may limit a

comprehensive understanding of crop canopy features. In

contrast , vegetation indices are simple mathematical

combinations or transformations of reflectance in two or more

spectral channels to represent vegetation status conditions, capable

of highlighting specific features or details of crops. Several

vegetation indices are widely used to assess information such as

the growth status, coverage, biomass and productivity of crop (Wei

et al., 2021). Wang et al. utilized multispectral images to construct

44 vegetation indices and employed three machine learning

algorithms to predict the AGB of winter wheat (Wang et al.,

2022). Despite biomass estimation based on spectral features

being a hot topic in remote sensing crop phenotyping analysis,

spectral saturation is a common issue during the later stages of crop

growth. This phenomenon often leads to lower accuracy in biomass

estimation models (Fu et al., 2014). To address such issues, previous

studies have tackled the overreliance on spectral data in inversion

models by incorporating texture features (Xu et al., 2022), canopy

coverage (Lee and Lee, 2013) and elevation data (Tilly et al., 2015).

By incorporating these additional features, the accuracy of inversion

models is improved, and stability is enhanced.

Crop height and AGB are crucial indicators of crop growth

status. Previous studies have found that integrating crop height has

a positive impact on improving the accuracy of AGB estimation and
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addressing spectral saturation issues (Malambo et al., 2018). With

the advancement of remote sensing technology, the methods for

measuring crop height have shifted from traditional manual

approaches to extraction utilizing UAV images. However, nadir

photography often captures only limited canopy information,

lacking highly accurate crop height details. Utilizing UAVs

equipped with visible light cameras for oblique photogrammety

offers significant advantages, including the capture of color

information, higher point cloud density in the horizontal

direction, lower cost and greater flexibility. Methods for

measuring crop height values using the UAV-mounted RGB

cameras primarily involve the mean method and the accumulated

incremental height (AIH) method. In a statistical unit, the AIH is

calculated by sorting all normalized point clouds by height and

computing the accumulated height of all points. The accumulated

height percentile of X% of the points within each statistical unit

represents the percentile of accumulated height for that unit. Li et al.

established a crop height retrieval model based on the mean crop

height and the 50% and 90% AIH, comparing with field

measurements (Li et al., 2016). They found that mean height

value and the 90% AIH can effectively represent crop height in

the crop height model. Jimenez-Berni et al. utilized point cloud data

to construct various AIH and found that the 95.5% AIH exhibited

the smallest error, demonstrating a strong correlation with the true

values (Jimenez-Berni et al., 2018). Therefore, due to the high

degree of alignment between the predicted values obtained based

on the accumulated incremental height method and the actual

values. It is anticipated that coupling AIH and spectral features will

further enhance the accuracy of estimating crop phenotypic

parameters. Previous studies have already confirmed the

correlation between height indicators and crop biomass (Madec

et al., 2017). Crop height indicators, such as AIH, obtained from

drone imagery, have been identified as key variables for estimating

crop biomass (Li et al., 2016; Kotivuori et al., 2020; Lu et al., 2021).

With the advancement of digital photogrammetry, multi-view

stereo vision technology and other advanced techniques, it has

become feasible to reconstruct the 3-Dimension (3D) point cloud

based on multi-view images (Jayathunga et al., 2018). Building upon

the acquisition of two-dimensional images through oblique

photography, the structure from motion (SFM) algorithm

autonomously seeks and connects matching points to derive

relative depth information in three-dimensional space,

establishing a high precision 3D point cloud. Currently, one of

the most widely used methods for obtaining crop height is to utilize

the UAV equipped with RGB camera to perform three-dimensional

reconstruction of images and generate point cloud. The canopy

structure information derived from point clouds generated through

oblique photography has found extensive application in estimating

tree biomass (Wallace et al., 2017). Lu et al. combined vegetation

indices (VIs) with crop height to enhance the accuracy of wheat

AGB prediction (Lu et al., 2019). Maimaitijiang et al. captured RGB

images and employed oblique photography to construct point

cloud, assessed the potential of the vegetation index weighted

canopy volume model (CVMVI), which integrates canopy

spectral and volume information, in estimating AGB for soybeans

(Maimaitijiang et al., 2019).
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With the increasing maturity of artificial intelligence, machine

learning, and other algorithms, various machine learning

algorithms have been extensively applied in crop monitoring

(Singh et al., 2023). By coupling remote sensing data from

different periods with machine learning algorithms, it is possible

to more accurately reveal the growth patterns of winter wheat.

Ridge regression (RR) is suitable for handling the linear relationship

between remote sensing variables and crop biochemical parameters,

aiming to enhance the stability of the model. In comparison to

linear regression algorithms, non-linear regression algorithms such

as Random Forest Regression (RFR), Support Vector Regression

(SVR), eXtreme Gradient Boosting (XGBoost), and Gradient

Boosting Regression Trees (GBRT) can handle high-dimensional

data and non-linear relationships. Studies have demonstrated that

machine learning regression algorithms exhibited higher accuracy

in biomass estimation compared to traditional regression

algorithms, yielding superior regression results (Li et al., 2016).

The RFR algorithm, initially proposed by Leo Breiman, Adele

Cutler and others, falls under the ensemble learning method

Bagging and is applicable to both classification and regression

tasks. By combining multiple weak classifiers, the model achieves

high accuracy and generalization performance (Ehlers et al., 2022).

GBRT is a type of ensemble learning, specifically belonging to

Boosting. It comprises Regression Trees (RT) and Gradient

Boosting (GB). It is an iterative ensemble algorithm for regression

decision trees. It uses gradient descent to iterate over new learners.

The core idea is that each tree learns the conclusions and residuals

of all the previous trees. The objective is to minimize the difference

between the true values and predicted values, and the conclusions of

all regression trees are accumulated to obtain the final result (Wen

et al., 2022). XGBoost is an abbreviation for eXtreme Gradient

Boosting, which is a decision tree ensemble regression algorithm

that combines base functions with weights to enhance data fitting. It

demonstrates increased efficiency when dealing with large-scale

datasets and complex models. The algorithm follows the gradient

boosting approach by iteratively training a series of weak learners

(typically decision trees) to correct the residuals from the previous

iteration. Through iterations, it continually enhances the overall

performance of the model, ultimately combining these weak

learners into a strong learner. In comparison to the GBRT

algorithm, XGBoost introduces regularization terms in the loss

function (L1: alpha, L2: lambda). As some loss functions pose

challenges in computing derivatives, XGBoost utilizes the second-

order Taylor expansion of the loss function as a fitting, which helps

mitigate the impact of overfitting (Zhang et al., 2022). SVR is

founded on the vapnik-chervonenkis dimension theory and the

principle of structural risk minimization. It addresses the challenge

of function approximation and is grounded in ordered risk

minimization, forming a small-sample statistical theory. SVR

exhibits the capability to alleviate overfitting to some extent,

providing good stability and generality. It has found widespread

applications in various fields such as computer vision, data analysis

and mining (Abdollahpour et al., 2020; Li et al., 2021). Ridge

Regression is a regression method employed for the analysis of

collinear data, offering biased estimates to tackle issues such as

multicollinearity in regression analysis. It essentially serves as an
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improved method of the ordinary least squares estimation, aiming

to alleviate the adverse effects of multicollinearity. The concept

behind RR is that when multicollinearity is present in the data, a

small ridge parameter k (0<k<1) is introduced and added to the

main diagonal elements of the matrix x 0 x. This adjustment makes

the degree of singularity approached by x 0 x + k is much smaller

than the degree of singularity approached by x 0 x, leading to

enhanced stability in parameter estimation (Li et al., 2023). Zhang

et al. utilized Landsat imagery along with five machine learning

algorithms, namely SVR, RFR, k-Nearest Neighbors (k-NN) and

Artificial Neural Network (ANN), for predicting grass biomass

(Zhang et al., 2018). The research results indicated that ANN and

SVR produced similar outcomes in estimating biomass.

Simultaneously, the stability of different algorithms is significantly

affected by the number of features. An excessive number of features

can lead to overfitting and the curse of dimensionality, while a small

number of features may easily result in underfitting. Therefore,

conducting correlation analysis or feature selection can enhance the

accuracy and stability of the algorithms (Zhai et al., 2023).

While the inversion of crop physiological parameters based on

UAV RGB and multispectral images has been extensively utilized

(Yue et al., 2019; Sun et al., 2021), there is limited research on

integrating crop height indicators and spectral information

provided by UAV remote sensing with machine learning to

estimate winter wheat AGB. Additionally, relying solely on

spectral information for AGB inversion is susceptible to spectral

saturation phenomena. In summary, the primary objectives of this

study are as follows: (1) To quantify the potential of the mean

method and AIH method in extracting wheat crop height. (2) To

analyze the impact of AIH, VIs and their feature combinations on

AGB estimation at different growth stages of wheat. (3) To explore

the performance of different machine learning algorithms in winter

wheat AGB estimation, providing references and support for

precision agricultural management.
2 Materials and methods

2.1 Study area and experimental design

The study area is situated at the Xinxiang Comprehensive

Experimental Base of the Chinese Academy of Agricultural

Sciences (35.2°N, 113.8°E), with an annual average temperature of

14°C and precipitation of approximately 573.4 mm, it was suitable

for the growth of winter wheat. Daily irrigation was carried out

using moving lateral irrigation machines. The experiment designed

six different nitrogen fertilizer treatments (N1: 300 kg/ha, N2: 240

kg/ha, N3: 180 kg/ha, N4: 120 kg/ha, N5: 60 kg/ha, N6: 0 kg/ha).

Each treatment encompassed 30 plots, totaling 180 plots. Each plot

measured 1.4m×4m, with a planting row spacing of 15 cm, and the

basic seedling density was around 150,000 plants per mu, as

illustrated in Figure 1. Nitrogen fertilizer was administered to

wheat during the jointing and heading stage, with a 2:1 ratio for

fertilizer distribution. Other field management practices adhered to

the local conditions of winter wheat production (Yang et al., 2020).

To ensure data quality, a total of 21 ground control points were set
Frontiers in Plant Science 04
up in the study area, and precise coordinates for these control points

were obtained using Global Navigation Satellite System technology.
2.2 Data acquisition

2.2.1 Field data acquisition
Since the jointing stage, heading stage and grain filling stage

represent key transition points in wheat growth, they can

comprehensively reflect the growth status and yield potential of

wheat at different developmental stages. This study conducted

experiments during the jointing stage, heading stage and grain

filling stages, primarily collecting data on the crop height and AGB

of winter wheat. The crop height was measured using a ruler with

millimeter precision. Six random measurements were taken within

each experimental plot, and the average value was used as the true

height of winter wheat. For above-ground biomass assessment, six

representative wheat plants were selected as samples in each plot.

After measuring the fresh weight, the samples were placed in paper

bags and baked at 105°C in a drying oven for 30 minutes.

Subsequently, the temperature was adjusted to 75°C, and the

samples were baked until a constant weight was reached

(approximately 24-48 hours). After the dry weight of each sample

was determined, the winter wheat AGB (t/hm²) per unit area was

calculated based on population density and sample dry weight.

Table 1 summarizes the statistical information of winter wheat crop

height and AGB parameters.

2.2.2 Acquisition and preprocessing of UAV
remote sensing data

In this study, DJI Mavic 3M and DJI Mavic 3T (SZ DJI

Technology Co., Shenzhen, China) were utilized for UAV data

acquisition (Figure 2). To mitigate the impact of changes in solar

zenith angle, images were collected between 11:30 a.m. and 12:30

p.m. on sunny days. The RGB sensor on the DJI Mavic 3M had 20

MP effective pixels and 24 mm format equivalent. The multispectral

sensor had 5 MP effective pixels and 25 mm format equivalent, and

a total of four bands: green (G, 560 ± 16nm), red (R, 650 ± 16nm),

red edge (RE, 730 ± 16nm) and near infrared (NIR, 860 ± 26nm).

For capturing RGB and multispectral images in the study area, DJI

Mavic 3M was utilized for the flight. The flight routes were planned

using DJI Pilot 2 (SZ DJI Technology Co., Shenzhen, China), with a

photography mode set to time interval shot. The UAV’s camera was

maintained vertical to the ground, and the relative flying height was

set to 30 meters. The forward overlap rate and the side overlap rate

were both set at 80%. Oblique photography data were collected

using the RGB sensor equipped on DJI Mavic 3T. The RGB sensor

had 48 MP effective pixels and 24 mm format equivalent. To

generate point cloud data for winter wheat through 3D

reconstruction, a five-way oblique photography mode with a tilt

angle of 45 degrees (vertical downward, forward oblique, backward

oblique, left oblique and right oblique) was employed. To determine

the bare ground height, images of the bare soil were immediately

captured after the completion of wheat planting.

After completing the UAV’s flight mission, the RGB and

multispectral images were aligned and stitched using Pix4Dmapper
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4.5.6 (Pix4D, Lausanne, Switzerland), resulting in the generation of

orthomosaic. The processing workflow included key steps such as

importing ground control points (GCPs), georeferencing, image

alignment, building dense point clouds and radiometric correction.
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Subsequently, utilizing ArcGIS 10.6 (Environmental Systems Research

Institute, Inc., Redlands, CA, USA), georeferencing was applied to

UAV images taken at various growth stages, and vegetation index

maps were generated. VIs were extracted by drawing polygon vectors
FIGURE 1

Location and experimental design of the study area. The red boxes represent different treatment.
TABLE 1 Statistics of crop height and AGB parameters at different growth stages.

Growth stages Sample size
Crop Height(m) AGB(t/hm2)

Min Max Mean CV(%) Min Max Mean CV(%)

Jointing stage 180 0.362 0.588 0.484 8.74 0.16 3.92 2.33 37.72

Heading stage 180 0.635 0.913 0.768 7.27 2.18 7.012 4.96 21.67

Grain filling stage 180 0.660 1.012 0.836 8.08 4.48 10.80 8.25 15.56
f

CV, coefficient of variation, Used to describe the central tendency and dispersion of data.
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for each plot. Building upon an analysis of existing research literature,

this study extracted 18 vegetation index features based on the spectral

information fromRGB andmultispectral imagery, as shown in Table 2.

2.2.3 Crop height extraction
Utilizing DJI Terra software (SZ DJI Technology Co., Shenzhen,

China) for three-dimensional reconstruction of images obtained

through oblique photography, the reconstructed point cloud data

was imported into LiDAR360 (V. 5.2, Green Valley, Co. Ltd.

Beij ing, China) for preprocessing. This preprocessing

encompassed essential tasks, including clipping, denoising,

filtering and normalization of the point cloud data. Based on the

normalized point cloud data, the point cloud was sorted in

ascending order of height to generate the AIH. The Canopy

Height Model (CHM) was commonly used for estimating crop

height. Digital Surface Model (DSM) with a resolution of 0.5 meters

and Digital Elevation Model (DEM) were generated through

Kriging interpolation. CHM was obtained by subtracting DSM

from DEM. For each research plot, the mean estimated crop

height was computed by summing all pixel values in the CHM

and dividing by the total number of pixels. The AIH method

selected the height value at a lower AIH as the baseline and the

height value at a higher AIH as the upper boundary of the

vegetation. The difference between these two height values yielded

the estimated crop height for the study area. In this study, 99%,

95%, 90% and 80% AIH were individually used for crop height

prediction, aiming to identify the optimal AIH. To accurately

predict wheat AGB and explore the impact of AIH features on

AGB estimation, this study evaluated and analyzed the model’s

estimation performance using extracted 5%, 20%, 40%, 60%, 80%
Frontiers in Plant Science 06
and 95% AIH features. The crop point cloud distribution for the

planting plot is shown in Figure 3.
2.3 Methods

2.3.1 Machine learning algorithms
Machine learning regression algorithms have the capability to

handle both linear and nonlinear relationships between remote

sensing variables and crop biochemical parameters. Compared to

other regression algorithms, machine learning algorithms exhibit

superior performance in regression predictions that involve

multiple input variables. This study developed wheat

aboveground biomass (AGB) estimation models using five

machine learning algorithms: RFR, GBRT, XGBoost, SVR and RR.

K-fold cross-validation is a statistical method that divides data

samples into smaller subsets (Figure 4). It can be employed as a

method for accuracy testing and hyperparameter selection when

dealing with small sample sizes (Shah et al., 2019).In this study, the

data were divided into five folds through five-fold cross-validation.

During each iteration, four folds are sequentially used as the

training set, while the remaining fold serves as the validation

dataset. Through five iterations, the model performance could be

effectively evaluated. This approach was beneficial for improving

overfitting and underfitting. The experiment encompassed 180

samples, including canopy feature data collected by different

sensors and winter wheat AGB. These samples were divided into

a training set and a test set in a 7:3 ratio. To ensure each model

achieved optimal biomass prediction performance, the grid search

algorithm was employed to determine the optimal parameters. The
FIGURE 2

The UAV and working principles. (A) DJI Mavic 3T. (B) DJI Mavic 3M. (C) ground control points. (D) oblique photography principle.
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parameters set for the grid search algorithm include the model to be

optimized, a dictionary of hyperparameter combinations for the

model, 5-fold cross-validation, and the evaluation metric of root

mean square error. Iterating through all parameter combinations,

the optimal set of parameters for the highest accuracy model was

determined. The RFR, GBRT, XGBoost, SVR and RR models,

optimized with parameters, were utilized to predict the biomass

of winter wheat at different growth stages in the region.
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2.3.2 Evaluation metrics
The model accuracy is evaluated using three metrics: R2, root mean

square error (RMSE) and normalized root mean square error (nRMSE).

The R2 value ranges from [0,1], with a higher value indicating better

estimation performance of the model. Smaller values for RMSE and

nRMSE improved predictive performance of the model.

R2 = 1 − on
i=1

(xi−yi)
2

on
i=1

(xi−�y)
2 (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − yi)
2

n

s
(2)

nRMSE = RMSE
�y � 100% (3)

In the formula, xi   represents the measured value of AGB; yi  

represents the estimated value of AGB; n is the number of samples;

  �y   is the average value of the measured values. In order to

understand the experiment more intuitively, the experiment

flowchart (Figure 5) was created based on the experiment design,

data collection and processing.
3 Results

3.1 Winter wheat crop height estimation

This study conducted the estimation of winter wheat crop

height using both the mean method and the AIH method. To

determine the optimal AIH for estimating crop height, crop height

estimation was conducted using 80%, 90%, 95% and 99% AIH.

Figure 6 shows that the 95% AIH had the smallest error, with R2

ranging from 0.768-0.784. Figure 7 illustrated the regression plots

for crop height estimation during the jointing, heading and grain

filling stages of winter wheat. It was observed that both methods

exhibited good accuracy across different growth stages. The R2,

RMSE and nRMSE values during the different growth stages follow

similar changing trends, with ranges of 0.699-0.784, 2.49cm-4.61cm

and 3.83%-5.98%, respectively. In the crop height extraction based

on the mean method, the heading stage boasted the highest R2, with

a value of 0.744, followed by the jointing and grain filling stages. The

RMSE reached the minimum during the jointing stage, at 2.89 cm,

while the nRMSE achieved the minimum during the grain filling

stage, at 5.51%. In contrast, in the crop height extraction based on

the 95% AIH, R2 reached its maximum during the heading stage, at

0.784. The RMSE attained its minimum during the jointing stage, at

2.49 m, which was relatively small. The nRMSE reached its

minimum during the grain filling stage. Compared to the mean

method, the AIH method exhibited higher R2 in all growth stages.

The difference in R2 was particularly notable during the jointing

stage, with a 7% gap, while the differences in the heading and grain

filling stages were relatively small. Meanwhile, the RMSE and

nRMSE values were slightly lower than those for the mean

method. The RMSE and nRMSE showed the greatest variation
frontiersin.o
TABLE 2 Vegetation indices used in this study.

Vegetation Indices Formula Reference

Chlorophyll Index-Red
Edge (CI-REG)

(NIR=EDGE) − 1
(Gitelson

et al., 2003)

Two-Band Enhanced
Vegetation Index (EVI2)

(2:5(NIR − R))=(1 + NIR + 2:4R)
(Jiang

et al., 2008)

Excess Green Index (ExG) 2G−R−B
(Zhang

et al., 2019)

ExG-ExR Vegetation
Index (ExGR)

(2G−R−B)−(1:4R−G)
(Meyer and
Neto, 2008)

Green Leaf Index (GLI) (2G−R−B)=(2G+R+B)
(Zhang

et al., 2019)

Kernel Normalized
Difference Vegetation

Index (kNDVI)
tanh ((NIR−R)=(2� s ))2

(Camps-Valls
et al., 2021)

Leaf Chlorophyll
Index (LCI)

(NIR−EDGE)=(NIR−R)
(Xiao

et al., 2014)

Normalized Difference
Vegetation Index (NDVI)

(NIR−R)=(NIR+R)
(Li

et al., 2004)

Normalized Green Red
Difference Index (NGRDI)

(G−R)=(G+R)
(Li

et al., 2019)

Optimized Soil-Adjusted
Vegetation Index (OSAVI)

1:6½(NIR−R)=(NIR+R+0:16)� (Blanco
et al., 2020)

Renormalized Difference
Vegetation Index (RDVI) (NIR−R)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(NIR+R)

p (Roujean and
Breon, 1995)

Renormalized Difference
Vegetation Index - Red
Edge (RDVI-REG)

(NIR−EDGE)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(NIR+EDGE)

p (Roujean and
Breon, 1995)

Red Green Blue
Vegetation Index (RGBVI)

(G2−(R�B))=(G2+(R�B))
(Bendig

et al., 2015)

Core Red Edge Triangular
Vegetation Index
(RTVI-CORE)

100(NIR−EDGE)−10(NIR−G)
(Walsh

et al., 2018)

Ratio Vegetation
Index (RVI)

NIR=R
(Liu

et al., 2021)

Visible Atmospherically
Resistant Index (VARI)

(G−R)=(G+R+B)
(Huang

et al., 2023)

visible-band difference
vegetation index (VDVI)

(2G−(R+B))=(2G+(R+B))
(Li

et al., 2022)

Vegetative Index (VEG)   G=(RaB1−a )   (Hague
et al., 2006)
R, red band reflectivity; G, green band reflectivity; B, blue band reflectivity; NIR, near infrared
band reflectivity; EDGE, red edge band reflectivity. a=0.667, s=0.5(NIR+RED).
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during the grain filling stage, with changes of 1.41 cm and 1.68%.

During the jointing and heading stages, changes were relatively

small. In summary, compared to the mean method, the AIH

method selected in this study for estimating winter wheat crop

height demonstrated higher accuracy.
3.2 Estimation of AGB based on
different features

In order to prevent overfitting during the model training

process and reduce the number of feature variables, this study

utilized the feature importance analysis algorithm integrated into

RFR. Feature importance analysis was conducted for both VIs and

AIH features, as illustrated in Figure 8. RTVI-CORE, LCI, RDVI-

REG, H80, OSAVI, and H60 exhibited relatively high feature

importance, all exceeding 6%, with RTVI-CORE having the

highest feature importance at 14.14%. Among the AIH features,

except for H20 and H40, the other AIHs demonstrated relatively high

feature importance. ExG, NGBDI, CVI, H20, VARI, H40, CH and

GBRI had feature importance below 1%. Therefore, to prevent
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model overfitting, features such as ExG, NGBDI, GBRI, CH and H40

were excluded.

The estimation results for wheat AGB using AIH features, VIs

features and their combinations were presented in Table 3. When

predicting wheat AGB solely based on AIH features, the accuracy

was relatively low, with R2 ranging from 0.416 to 0.632, RMSE

ranging from 0.523 to 0.885 t/hm2 and nRMSE ranging from 9.11%

to 31.23%. Estimating AGB based on VIs features showed better

performance compared to using only AIH features, with R2 ranging

from 0.694 to 0.885, RMSE ranging from 0.314 to 0.694 t/hm2 and

nRMSE ranging from 7.28% to 17.23%. By coupling AIH and VIs

features, the highest accuracy was achieved in estimating winter

wheat AGB. The R2 increased to 0.728-0.925, indicating that the

model fitting performance was good. Simultaneously, the RMSE

decreased to 0.197-0.617 t/hm2 and nRMSE decreased to 4.58%-

16.58%. This indicated that the addition of AIH features played a

positive role in improving the accuracy of the AGB estimation

model, reducing estimation errors.

Figure 9 displays the scatter plot distributions of regression

predictions on different growth stages in the test set, considering

both individual VIs features and feature combinations. The figure
FIGURE 3

Crop height variables. (A) Point cloud distribution in a single plot. (B) Profile point cloud in a single plot (the red line represents 95% AIH, and the
purple line represents ground height). (C) Number of point clouds at different heights in the profile.
FIGURE 4

Overview of k-fold (5-fold) cross-validation for model evaluation.
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distinctly reflected the consistency between the predicted values of

wheat AGB and the measured values. In comparison to the

relatively scattered distribution of sample points in SVR and RR

models, the sample points of RFR, XGBoost and GBRTmodels were

concentrated around the 1:1 regression line, indicated its superior

regression performance. The red circles in the figure indicated that

at different growth stages, as the measured AGB values increased,

the predicted values exhibited slow growth and lower than the

measured values, suggesting the occurrence of spectral saturation.

In AGB estimation based on the fusion of multiple features, it was
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discovered that the model accuracy improved, mitigating the

spectral saturation phenomenon to some extent.
3.3 Performance evaluation of different
machine learning algorithms

For evaluating the performance and generalization effects of

different machine learning algorithms, a comparative analysis was

conducted on the accuracy of five algorithms: RFR, XGBoost,
FIGURE 5

Experimental flowchart. (UAV, Unmanned Aerial Vehicle; DSM, Digital Surface Model; DEM, Digital Elevation Model; CHM, Canopy Height Model; CH,
Crop Height; AIH, Accumulated Incremental Height; AGB, Above-Ground Biomass; VIs, Vegetation Indices; RFR, Random Forest Regression;
XGBoost, eXtreme Gradient Boosting; GBRT, Gradient Boosting Regression Trees; SVR, Support Vector Regression; RR, Ridge Regression).
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GBRT, SVR and RR (Figure 10). The results clearly demonstrated

that machine learning algorithms based on decision tree methods

exhibited higher accuracy and smaller errors compared to the

other two algorithms. This reflected the significant advantage of

decision tree based regression algorithms in handling non-linear

relationships without the need for feature scaling. The median

values of R2 were consistently higher than 0.80, RMSE median

values were consistently lower than 0.49t/hm2, and nRMSE

median values were consistently lower than 12%. Among

machine learning algorithms, the RFR algorithm was considered

the best, slightly outperforming the XGBoost algorithm. The R2

median for the RFR algorithm was 0.835 and the RMSE median

was 0.452 t/hm2. The least performing algorithm was RR, a

traditional machine learning algorithm, with R2 median was

0.728 and RMSE median was 0.617 t/hm2. Overall, RMSE and

nRMSE exhibited relative stability across the five machine

learning algorithms, indicating that the differences between the

original and estimated values of biomass during various growth

stages show no significant variations.
4 Discussion

4.1 Extraction of winter wheat crop height

As a critical growth parameter for crops, the extraction of crop

height, especially for winter wheat, has been the focus of numerous

studies (Jia et al., 2022; Ma et al., 2022). In comparison to

orthophoto map, oblique photography technology has

revolutionized the limitations of capturing images only from a

vertical perspective. Based on the planning of five flight paths,

oblique photography technology tilts the camera at a specific angle

to comprehensively capture target images. With its features of

extensive coverage, high accuracy, and high resolution, it provides

an intuitive representation of crop texture, location, height and

other information, making it highly favored among surveying and

mapping professionals. However, the widespread adoption of

LiDAR has faced constraints due to its expensive cost and

limitations, such as the inability to capture color information of
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objects (Zhang et al., 2021). Grüner et al. successfully estimated

crop height in grassland vegetation using a UAV equipped with an

RGB camera (Grüner et al., 2019). In previous studies (Kawamura

et al., 2020; Bhandari et al., 2023), the use of CHM for extracting

crop height has been quite common. However, there is limited

research on the comparative analysis of the accuracy of different

crop height extraction methods. The mean method for extracting

crop height may result in less accurate crop height extraction due to

issues such as image matching, the sparse nature of wheat, the high

resolution of the crop DSM images, and the influence of bare soil.

This is consistent with the findings of Chang et al (Chang et al.,

2017). The AIH method involves normalizing the point cloud of

vegetation points with absolute elevations. The AIH values are then

employed as the crop height for wheat plants, mitigating the impact

of variations in wheat density. Moreover, different AIH exhibit

varied performance in crop height extraction. In a study based on

four different AIH values—80%, 90%, 95% and 99%—it was

observed that as the AIH increases, the accuracy of crop height

extraction shows a trend of initially increasing and then decreasing.

The highest accuracy is achieved at the 95% AIH (Hütt et al., 2023).

This differs from the findings of Lu et al (Lu et al., 2021), possibly

attributed to their study focus on summer maize crop height

extraction. The differences in the shape of the canopy top, where

the canopy top of summer maize is more spike-like, could be a

contributing factor.
4.2 Contribution of different features in
AGB estimation

In previous studies on winter wheat AGB estimation, the

utilization of VIs for AGB estimation has become widespread.

However, different features may have varying impacts on AGB

estimation, and relying solely on VIs extracted from RGB images

may result in suboptimal accuracy (Lu et al., 2019; Wang et al.,

2022). Su et al. (Su et al., 2024a) have demonstrated that spectral

features in the near-infrared band can accurately capture the

spectral differences of SPAD during the growth period of winter

wheat in SPAD estimation based on UAV multispectral imagery.
FIGURE 6

Performance of different AIH in estimating crop height.
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To enhance estimation accuracy, this study employed VIs

extracted from RGB and multispectral imagery as features. The

study indicates that during various growth stages, VIs associated

with the NIR band exhibit higher feature importance in AGB

estimation. Which reflects that the NIR band enhances the

contrast of vegetation vitality, aligning with prior research

findings (Tilly et al., 2014; Wang et al., 2023). In the random

forest variable importance analysis of vegetation index features,

it was found that the importance of RTVI-CORE, RDVI-REG,

LCI and OSAVI all exceeded 8.5%. These sensitive vegetation

indices are closely associated with the NIR band, further
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confirming the significance of the NIR band in monitoring

wheat growth. The NIR wavelength region is strongly

correlated with the internal structure and biochemical

composition of crop leaves. Crop cell structures reflect a high

proportion of NIR spectra, making this wavelength region highly

sensitive to crop health conditions (Su et al., 2024b). With the

progression of the growth stages, the predicted values are slightly

lower than the actual values, indicating the occurrence of

spectral saturation. Neumann et al . contend that the

occurrence of spectral saturation limits the accuracy of AGB

estimation in densely vegetated areas (Neumann et al., 2020).
FIGURE 7

Scatter plot of estimated crop height based on CHM and 95% AIH. The first column displays variables for crop height estimation based on CHM, and
the second column displays variables based on 95% AIH estimation. (A, B) Jointing stage. (C, D) Heading stage. (E, F) Grain filling stage. The dashed
lines indicate the expected 1:1 relationship.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1437350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1437350
During the jointing and early grain filling stage, wheat exhibits

robust growth with high leaf overlap, leading to the

manifestation of vegetation spectral saturation. Furthermore,

in the later stages of wheat growth, AGB is composed of

leaves, stems, and spikes. The spectral information of the

canopy is primarily influenced by both leaves and spikes.

Relying solely on spectral information obtained from the

canopy for AGB estimation may introduce some bias (Lu

et al., 2019).

Crop height provides an intuitive representation of the vertical

structure distribution of crop plants. Previous studies have

demonstrated that crop height for wheat (Lu et al., 2019; Walter

et al., 2019) and maize (Shu et al., 2023) exhibit correlation with

AGB. Over 90% AIH reflects the point cloud distribution of the

vegetation canopy, offering a relatively accurate representation of

crop height. AIH and AGB exhibit a moderate correlation (Walter

et al., 2019). In the feature importance analysis, the majority of AIH

features exhibit high importance in the AGB estimation models,

with only 40% AIH features having lower importance. This

phenomenon may be attributed to the fact that 40% AIH is

located roughly in the middle of the vertical distribution of the

crop. Due to the higher density of canopy leaves, there is a lower

point cloud count in that position, making it less accurate in

representing crop height. By coupling VIs and AIH features, the

limitations of spectral saturation can be mitigated. Zhu et al.

(2023b) developed a three-dimensional conceptual model

(3DCM) based on plant height and vegetation coverage to

mitigate the spectral saturation effect in wheat AGB estimation.

They found that the 3DCM model outperformed traditional
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vegetation index models and conventional multi-feature

combination models, with the highest accuracy at the wheat

nodulation stage, verifying the feasibility of synergistic use of

UAV height information with VIs. In practical applications,

integrating features extracted from multiple remote sensing data

sources can better address the characteristics of different regions

and vegetation types, enhancing the applicability and accuracy of

AGB estimation. The addition of AIH features had a positive impact

on all five models during various growth stages, mitigating spectral

saturation. This indicates that crop height is a crucial indicator of

wheat growth and development. The dynamic changes in AIH

provide an intuitive reflection of the growth status of wheat (Niu

et al., 2019). Furthermore, multivariate features incorporating

spectral and spatiotemporal information of the wheat population

exhibit superior predictive capabilities for AGB compared to single-

variable features (Liu et al., 2018). By delving into the multi-

dimensional information of vegetation, a better understanding of

the growth patterns of vegetation can be achieved, providing

robust support for agricultural production and ecological

environment monitoring.
4.3 Comparison of AGB modeling methods

This study evaluated the performance of five machine learning

regression algorithms—RFR, XGBoost, GBRT, SVR and RR in

estimating AGB, all of which achieved satisfactory accuracy. Non-

linear regression models, specifically RFR, XGBoost and GBRT,

exhibited superior accuracy compared to linear regression models
FIGURE 8

Feature importance analysis.
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SVR and RR. This discrepancy was attributed to the intricate non-

linear relationship between remote sensing data and biomass. Relying

solely on linear regression models was highly susceptible to the

influence of outliers, rendering it incapable of producing accurate

predictive results (Lu et al., 2019; Tatsumi et al., 2021). Among the five

machine learning algorithms, the RFR model outperformed others,

displaying the highest coefficient of determination and the lowest

errors. This could be credited to the model’s aggregation of multiple

decision trees, effectively mitigating the impact of noise and outliers.

However, the RFR model has some drawbacks, such as high

computational demands and a lack of interpretability. Moreover,

introducing extra randomness in sample extraction and feature

selection during model construction reduced the risk of overfitting,

enhancing model stability and estimation capabilities. RFR, XGBoost

and GBRT, all constructed based on multiple decision trees, achieved

high accuracy in estimating wheat AGB. XGBoost and GBRT showed

slightly lower estimation performance compared to RFR (Wang et al.,

2022). Regression algorithms based on decision trees can achieve

higher estimation accuracy due to its continuous iteration to reduce

errors, autonomous feature selection capabilities for handling high-

dimensional data, strong generalization ability and robustness (Liu

et al., 2022; Poudyal et al., 2022). Due to the interdependence among

weak learners, GBRT is challenging to train in parallel and may not

perform as well as neural networks when handling high-dimensional

data. Therefore, employing some local parallelization techniques within

decision trees during training can improve the model’s training speed.

As an efficient implementation of GBRT, XGBoost introduces feature

subsampling, which reduces overfitting and computational load.

However, during node splitting, it still needs to traverse the dataset,

and storing the feature values and their corresponding sample gradient
Frontiers in Plant Science 13
statistics requires twice the memory. However, SVR is not well-suited

for handling large-scale datasets, is sensitive to parameter tuning, has

high computational demands, and has lower accuracy in the presence

of high sample noise. In contrast, RR exhibited the lowest estimation

accuracy in this study. RR was highly sensitive to noise and outliers in

the data, and the decrease in estimation accuracy could be attributed to

the presence of data noise and nonlinear relationships. Therefore,

constructing accurate and compact decision tree machine learning

algorithms lays a solid foundation for agricultural production and

growth monitoring (Ji et al., 2023). This method provided a

quantitative means to evaluate the AGB of wheat with a simple and

efficient operation and had the potential to be used on a large scale.
4.4 Limits and significance of the study

UAVs with their advantages of maneuverability, convenience

and speed, were widespread applications in agricultural crop

information monitoring, providing real-time and accurate

decision support for agricultural production (Ji et al., 2019). The

crop height serves as a crucial indicator of crop growth status, and

the real-time and accurate prediction of crop height is essential for

monitoring the overall crop development. The utilization of AIH

extracted from point cloud data has achieved considerable accuracy

in crop height estimation. However, RGB point clouds obtained

through oblique photogrammetry mainly capture the top of the

vegetation canopy, with limited penetration ability and

susceptibility to significant environmental influences (Li et al.,

2016). In future research, the approach of low-altitude cross-

circular hovering oblique photography can be adopted to
TABLE 3 Estimation accuracy of wheat AGB with different features and their combinations.

Growth stage Jointing stage Heading stage Grain filling stage

Features AIH VIs VIs+AIH AIH VIs VIs+AIH AIH VIs VIs+AIH

RFR

R2 0.60 0.89 0.93 0.51 0.84 0.90 0.55 0.80 0.90

RMSE 0.59 0.32 0.20 0.78 0.45 0.35 0.86 0.60 0.37

nRMSE(%) 25.5 13.53 10.64 15.67 8.88 6.96 10.57 7.28 4.58

XGBoost

R2 0.58 0.85 0.91 0.58 0.81 0.89 0.63 0.78 0.82

RMSE 0.52 0.31 0.28 0.66 0.40 0.31 0.63 0.53 0.47

nRMSE(%) 17.67 8.54 7.40 13.73 10.15 7.84 12.39 10.05 8.92

GBRT

R2 0.47 0.82 0.89 0.52 0.81 0.84 0.45 0.75 0.86

RMSE 0.68 0.41 0.31 0.72 0.49 0.42 0.82 0.56 0.43

nRMSE(%) 19.4 11.42 8.91 15.22 11.17 10.0 15.57 10.75 8.00

SVR

R2 0.46 0.87 0.88 0.46 0.82 0.86 0.42 0.71 0.74

RMSE 0.69 0.35 0.33 0.83 0.44 0.4 0.89 0.64 0.60

nRMSE(%) 29.54 14.65 13.29 16.67 8.81 7.86 10.78 7.74 7.43

RR

R2 0.42 0.81 0.83 0.50 0.75 0.77 0.44 0.69 0.73

RMSE 0.72 0.41 0.39 0.74 0.52 0.49 0.76 0.69 0.62

nRMSE(%) 31.23 17.23 16.58 14.66 10.42 9.81 9.11 8.45 7.48
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FIGURE 9

The scatter plots depicted the AGB estimates obtained through five machine learning algorithms (RFR, XGBoost, GBRT, SVR, and RR) at various
growth stages. The corresponding columns represented the regression scatter plots for the jointing stage, heading stage and grain filling stage.
(A–C) RR. (D–F) SVR. (G–I) GBRT. (J–L) XGBoost. (M–O) RFR. The dashed lines indicate the expected 1:1 relationship.
FIGURE 10

Accuracy of AGB estimation using different machine learning algorithms. (A) R2. (B) RMSE. (C) nRMSE.
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construct a three-dimensional point cloud, achieving precise

acquisition of three-dimensional point cloud data (Hütt et al.,

2023). When estimating AGB using VIs extracted from RGB and

multispectral imagery, spectral saturation occurred during the grain

filling period. However, by incorporating multiple AIH features into

the model, the issue of spectral saturation was alleviated (Zhang

et al., 2023). Therefore, coupling feature extraction from multiple

remote sensing data sources can enhance AGB estimation accuracy.

In future research, exploring the impact of other features on

estimation accuracy could be considered.

A gradual increase in AGB was observed as the crop progressed

through growth and development. The complete growth cycle of

winter wheat spans from seed germination to the production of new

mature seeds, encompassing multiple growth stages. However, this

experiment focused solely on crop height and AGB estimation during

the jointing, heading, and grain filling stages of winter wheat,

potentially resulting in AGB changes is localized. Future research

should systematically investigate crop height and AGB variations

across all growth stages of the wheat lifecycle to uncover the

rhythms in wheat growth (Zhai et al., 2023). Previous studies have

indicated that estimating corn AGB by multiplying Leaf Area Index

(LAI) with crop height performs well (Shu et al., 2023). Due to the lush

foliage and higher plant density in the later stages of winter wheat

growth, LAI shows little variation and was not studied in this

experiment. Moreover, this experiment was conducted in a small-

scale farmland in the north of Henan, which may limit the model’s

applicability. Variations in factors such as temperature, soil type,

entropy, precipitation, and daylight length in different regions, there

are limitations in extending the wheat crop height and AGB estimation

model to other areas. In future research, a comprehensive

consideration of ground conditions and meteorological data,

collection of more extensive data, and conducting cross-validation

experiments on data from different regions should be performed to

enhance the model’s generalization ability (Sun et al., 2020).
5 Conclusions

This study aims to evaluate and analyze the effectiveness of the

mean method and AIH method in extracting crop height for winter

wheat. Additionally, the accuracy of winter wheat AGB estimation was

assessed using AIH, VIs and their combinations. Ultimately, the

estimation performance of the five machine learning algorithms was

compared and analyzed. The following conclusions were drawn:
Fron
(1)Crop height extraction methods based on UAV remote

sensing data reveal that the crop height extraction method

based on AIH is more accurate than the mean method

across various growth stages. When comparing the

performance of different AIH values in crop height

extraction, it was discovered that the 95% AIH accurately

represents crop height.

(2) In comparison to NDVI, kNDVI exhibited more higher

feature importance. VIs correlated with the NIR band were

more sensitive in monitoring crop growth conditions and
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demonstrated higher feature importance. Coupling VIs and

AIH features for AGB estimation achieved higher accuracy

compared to estimating AGB with a single feature.

Additionally, embedding AIH features into the estimation

model mitigated spectral saturation to some extent.

(3)Various machine learning algorithms showed different

performance in estimating wheat AGB. Ensemble learning

algorithms based on decision trees, represented by RFR,

XGBoost and GBRT, consistently demonstrated higher

accuracy compared to other linear machine learning

algorithms. Among the five machine learning algorithms,

RFR achieved the best estimation results at different

growth stages.
In summary, the use of point cloud data obtained through the

oblique photography technique provides an intuitive representation

of crop height information. The coupling of multiple features and

robust machine learning algorithms offer a new reference for

estimating AGB in wheat. Leveraging multi-source remote

sensing technology with UAVs meets the demand for convenient

and efficient acquisition of crop growth information. This provides

technical support for precision agriculture and decision-making in

agricultural fields.
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