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Soil salinization represents a significant challenge to the ecological environment

in arid areas, and digital mapping of soil salinization as well as exploration of its

spatial heterogeneity with crop growth have important implications for national

food security and salinization management. However, the machine learning

models currently used are deficient in mining local information on salinity and

do not explore the spatial heterogeneity of salinity impacts on crops. This study

developed soil salinization inversion models using CNN (Convolutional Neural

Network), LSTM (Long Short-Term Memory Network), and RF (Random Forest)

models based on 97 field samples and feature variables extracted from Landsat-8

imagery. By evaluating the accuracy, the best-performing model was selected to

map soil salinity at a 30m resolution for the years 2013 and 2022, and to explore

the relationship between soil electrical conductivity (EC) values and the

expansion of cotton fields as well as their spatial correlation. The results

indicate that:(1) The CNN performs best in prediction, with an R2 of 0.84 for

the training set and 0.73 for the test set, capable of capturing more local salinity

information. (2) The expansion of cotton fields has reduced the level of soil

salinization, with the area of severely salinized and saline soils in newly added

cotton fields decreasing from 177.91 km2 and 381.46 km2 to 19.49 km2 and 1.12

km2, respectively. (3) Regions with long-term cotton cultivation and newly

reclaimed cotton fields exhibit high sensitivity and vulnerability to soil salinity.

This study explores the excellent performance of deep learning in salinity

mapping and visualizes the spatial distribution of cotton fields that are highly

sensitive to soil salinity, providing a scientific theoretical basis for accurate

salinity management.
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1 Introduction

Soil salinization poses a significant challenge to global

agriculture, with saline soils now present in over 100 countries

and regions worldwide (Abbas et al., 2013). For example,

approximately one-quarter of the irrigated land in Pakistan has

been salinized, with annual economic costs estimated between $0.26

and $9.4 billion. The yields of wheat and rice grown in saline-alkali

soils have decreased by 32% and 48%, respectively (Sheikh et al.,

2022). Similarly, in Iraq's Mesopotamian region, crop yields in

salinized farmland have decreased by 30-60% (Wu et al., 2018). In

China, approximately 37.72% of the total irrigated land in Xinjiang

is affected by salinization (Muhetaer et al., 2022).The accumulation

of salt ions in the soil leads to physiological drought in plants,

inhibits nutrient absorption, ultimately resulting in poor

development, decreased yields, and even death (Ma and

Tashpolat, 2023). Soil salinization results in a disruption of the

water-salt balance in affected areas, which presents a significant

threat to the ecological environment and biosphere (Zhang et al.,

2022). In order to formulate optimized soil improvement policies to

address the persistent degradation of land in typical arid oasis areas,

the reversal of soil salinization has emerged as a significant area of

investigation within the field of salinization.

Oases are a distinctive geographical phenomenon that emerge

under specific natural geographical and climatic conditions. They

represent major areas for human habitation and development

(Huang et al., 2007). The Wei-Ku Oasis is one of the traditional

agricultural areas in Xinjiang. Since the 1950s, the Chinese

government has implemented policies to promote agricultural

growth, which has led to a notable expansion of cultivated land

(Shabiti et al., 2008). Based on long-term field surveys, our research

team has found that in the past decade (2013-2022), humans have

continuously reclaimed peripheral wasteland. Saline-alkali land has

been improved into arable land through drainage, flushing, salt

drainage, and appropriate agricultural measures, with cotton as the

main crop type. Cotton, as a significant cash crop, has made

outstanding contributions to the local economy. In previous

studies, research on cotton has mainly focused on identifying

planting distribution and predicting growth and yield. Exploring

the relationship between cotton and soil salinization can contribute

to the improvement of saline-alkali land, the safeguarding of

China's red line of 120 million hectares of arable land and the

assurance of food security are of paramount importance (Chen

et al., 2019).

Over the past decade, there has been a significant advancement

in the field of research pertaining to the reversal of soil salinization.

The three elements of available remote sensing image data—spatial

resolution, temporal resolution, and spectral resolution—have all

improved, and inversion methods have evolved from traditional

geostatistical analysis to the use of machine learning models.

Geostatistical methods permit the analysis of the spatial

distribution characteristics of soil salinity, employing semi-

variance functions and Kriging interpolation (Gong et al., 2012;

Rongjiang and Jingsong, 2009). Nevertheless, these methods do not

exhibit significant variability. With the widespread use of machine
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learning algorithm since the late 20th century. It requires fewer

parameters defined by researchers in soil salinity prediction studies,

have higher computational speed and efficiency, and can handle

advantages such as numerical ordinal and discrete predictor

variables (Wang et al., 2019). The model effectively addresses the

nonlinearity between soil and environmental factors. Commonly

used machine learning models include RF (Ma et al., 2021), GBDT

(Chen et al., 2021) and PLSR (Chengzhi et al., 2022). Over the past

decade, the computer field has experienced a period of rapid

development, deep learning has gradually emerged. It can be used

not only for image recognition tasks but also for sequence

prediction and other tasks. Representative deep learning models

include CNN (Amarasinghe et al., 2017), LSTM (Hochreiter and

Schmidhuber, 1997), BPNN (Hao et al., 2021), etc. By comparing

the mapping results of deep learning models and machine learning

models, it is possible to provide more robust scientific evidence for

the regional management of soil salinization.

Currently, the main methods for exploring the relationship

between two factors include Pearson correlation analysis (Gogtay

and Thatte, 2017) and grey relational analysis (Chakraborty et al.,

2023). However, these methods overlook their spatial heterogeneity.

Geographical Detector (Yu et al., 2021) addresses this issue by better

exploring the spatial heterogeneity between variables and

explaining their interactions. However, the Geographical Detector

cannot explore the local spatial expression of variables according to

their correlations. The Multiscale Geographically Weighted

Regression (MGWR) model (Fotheringham et al., 2017), as a

local modelling method derived from the GWR model has been

employed to analyze spatial relationships in ecological processes.

Unlike the GWR model, it can search for the optimal bandwidth

(scale) for regression analysis, thereby providing more detailed

regression coefficient estimates, which allows for a more accurate

capture of spatial heterogeneity. Consequently, this study

introduces the MGWR model in an innovative manner to

investigate the interrelationship between salinization and cotton

fields, thereby providing scientific evidence for the improvement of

salinization and the rational expansion of cotton fields. The

proposed method will achieve local sustainable development.

In soil salinity prediction, previous studies primarily used

machine learning models for regression predictions. Although

good prediction results were achieved, they did not integrate the

rapidly developing deep learning technologies of recent years. This

study explores two established deep learning models, CNN and

LSTM, as well as the most widely used machine learning model, RF.

The optimal model is selected to create digital maps of soil salinity.

Through the MGWRmodel, this study innovatively investigates the

local expression of how soil salinity affects the spatial heterogeneity

of cotton field yields, providing new directions for targeted and

regional management of cotton field soil salinization. The main

research objectives are as follows: (1) To compare the differences in

the inversion effects and accuracy of soil salinization between the

CNN, LSTM, and RF models to better depict soil salinity maps; (2)

To map the distribution of cotton planting and predict yield

distribution; (3) To study the improvement effects and spatial

heterogeneity of cotton field expansion on saline-alkali land.
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2 Materials and methods

Figure 1 presents the study's flowchart, which encompasses

three principal sections: a) Construction of CNN, LSTM and RF

inversion models for mapping of soil salinity distribution in 2013

and 2022; b) Identifying the distribution of cotton fields in 2013 and

2022, and calculating image-by-image metric yields of the cotton

fields; and c) Analyzing the soil salinity status of the newly added

cotton fields and exploring the spatial heterogeneous

response relationship.
2.1 Study area

The Wei-Ku Oasis is situated in the Aksu region of Xinjiang

(81°28′30″~84°05′06″E、39°29′51″~42°38′01″N) (Figure 2). The

oasis includes three counties: Xinhe, Shayar, and Kuqa. The

salinization problem of soil in the Wei-Ku Oasis is prominent,

with a total area of 523.76×104 hm2 for the three counties. Shayar

County has an average of 2667 hm2 of land planted with crops that

do not yield profits annually. Additionally, land salinization has led

to the degradation of grassland area, reaching 4.56×104 hm2. The

degradation area of grassland in Xinhe and Kuqa counties has

also reached 3.72×104 hm2 (Xueping, 2009). The climate of the

Wei-Ku Oasis is characterized by a temperate continental arid

climate, with an annual average evaporation of 1991.0 to 2864.3
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mm and an annual average precipitation of only 51.3 mm. The

multi-year average temperature ranges from 10.6°C to 14.8°C, with

the highest and lowest temperatures recorded at 41.3°C and -28.7°

C, respectively. High evapotranspiration ratios allow soil salts

to accumulate.
2.2 Data sources

2.2.1 Field soil sampling and laboratory analysis
The soil data sampling points were primarily selected based on

field surveys, taking into account the topography, vegetation cover,

and previous research results in the study area. This study selected

37 and 63 representative sampling points in the study area from

August 25 to September 5, 2013, and from June 20 to July 10, 2022,

respectively (with land use types recorded for the 2022 samples).

Portable Global Positioning System (GPS) devices were used to

record the geographical location of sampling sites. Soil samples were

collected at each sampling point in a uniform manner within a 1-

meter radius at a depth of 0-10 cm using a soil sampler. Five

samples were collected and mixed together within this radius, and

approximately 500 grams of the mixed sample were placed in

labeled waterproof sealed bags. All soil samples were subjected to

a series of treatments including natural drying, grinding, and

sieving (2.0mm) in the laboratory. Twenty grams of processed

soil and 100ml of distilled water were thoroughly shaken and left

to stand for 24 hours. The electrical conductivity (EC) values of the

leachate after standing were measured at 25°C using a multiple

parameter measuring instrument (WTWinoLab® Multi3420 Set B,

WTW GmbH, Germany).Following the removal of outliers, a total

of 97 sample data points were obtained. Consequently, the EC value

of the soil leachate can be employed as a reference index for the

evaluation of soil salinity (Hardie and Doyle, 2012).

2.2.2 Remote sensing data and processing
The Landsat-8 imagery used in the study came from Google

Earth Engine (GEE).As the soil sampling periods are concentrated

in late June, late August, and early September, we utilized cloud

masking functions in GEE and selected Landsat-8 images with

cloud cover below 40% from May to September to composite mean

images for the years 2013 and 2022. The cotton field identification

task involved synthesizing median composite images from mid-

April to mid-November for the full growing season of cotton to

obtain the 2013 and 2022 remote sensing images. Cotton yield

prediction utilized median composite remote sensing images

synthesized during the bolling period from July to mid-August.
2.3 Spectral bands selection for
salinity modeling

Spectral reflectance characterizes the degree of soil salinization

by the reflectance values at specific wavelengths; higher reflectance

values indicate more severe soil salinization at the land surface (Al-

Ali et al., 2021). Therefore, it is essential to include spectral

reflectance in the model's input feature variables. We selected B1-
FIGURE 1

Research workflow diagram.
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B7 as feature variable input models from the raw spectral bands

provided by the OLI sensor of Landsat-8.

2.3.1 Vegetation indices
The spectral reflectance of vegetation under salt stress can serve

as an indirect indicator of salt presence, especially in arid regions

with low vegetation coverage, where its sensitivity is higher.

Previous studies (Du et al., 2021) have indicated that vegetation

indices are employed in machine learning methods to effectively

elucidate the close relationship between vegetation and soil salinity,

thereby enhancing the accuracy of soil salinity information

retrieval. The formula for calculating the vegetation index selected

for this study is shown in Table 1.

2.3.2 Soil indices
Soil texture is one of the fundamental conditions for salt

accumulation. Gypseous desert soil is a type of desert soil with a

distinct layer enriched in gypsum, widely distributed in the Xinjiang

region. In addition to its elevated gypsum content, the substance in

question also exhibits a high salt content. High soluble salt content

in the soil is reflected below the gypsum accumulation layer,
Frontiers in Plant Science 04
typically forming sulfate salts at the gypsum surface. Gypsum

index (GYEX) can reflect the salt content status in bare soil areas.

Carbonate index (CAEX) and clay index (CLEX) reflect the soil's

water retention capacity based on the content of carbonate and clay

in the soil, thus indicating the salt migration capability. The

formulae used in this study to calculate the soil indices are shown

in Table 2.

2.3.3 Salinity indices
Salinity indices can directly reflect the degree of soil salinization

either on spectral bands or by influencing canopy reflectance. The

interaction among soil salinity, water content, and vegetation

maintains the dynamic equilibrium of ecosystems. In this study, a

total of 20 salt indices proposed by various researchers were

calculated, and the formulas are shown in Table 3.

2.3.4 Other indices
Considering that NDBI and MNDWI can characterize the

wetness or dryness of water content, we added NDBI and

MNDWI indices as covariates, with the calculation formulas

shown in Table 4.
FIGURE 2

Schematic map of study area and distribution of sampling points.
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2.4 Model construction

2.4.1 Convolutional neural network
CNN (LeCun et al., 1998) is a type of artificial neural network

widely used in image recognition (Figure 3). The core features of

CNN include their design with local connections and weight

sharing, which reduce the number of network parameters and

alleviate overfitting issues. Considering the one-dimensional

nature of our measured soil salinity data, we constructed a one-

dimensional convolutional neural network to address the regression

prediction problem of soil salinity. This model can effectively

extract local pattern features from time series data and achieve

good convergence within a relatively short time. The model consists

of two one-dimensional convolutional layers. The first layer uses 16

convolutional kernels with a kernel size of 3, a stride of 1, and

padding of 1. The second layer uses 32 convolutional kernels with a

kernel size of 3, a stride of 1, and padding of 1. Following the

convolutional layers is a one-dimensional max-pooling layer with a

pooling window size of 2, which reduces the size of the feature

maps. After the convolutional and pooling operations, the feature
Frontiers in Plant Science 05
maps are flattened and passed to two fully connected layers, with

the first layer having 120 nodes, the second layer having 84 nodes,

and the final output being a regression value. The model employs

the ReLU activation function to introduce non-linearity, uses the

Adam optimizer with a learning rate of 0.0006, and has a loss

function of mean squared error (MSE), with training conducted

over 300 epochs.

2.4.2 Long short-term memory
LSTM (Hochreiter and Schmidhuber, 1997) is a specific type of

recurrent neural network (RNN) (Figure 3). Unlike standard RNN,

LSTM has memory units capable of learning long-term

dependencies and can effectively handle sequential data. The core

component of the model is the LSTM layer, which has an input

feature dimension of 8 and maps to 256 hidden units. The LSTM

layer is responsible for capturing both short-term and long-term

dependencies in the time series. Next, a fully connected layer maps

the output of the LSTM to the regression result. During the forward

propagation process, the LSTM’s hidden states and memory cells

are initialized at each iteration, with the final step involving the

generation of the final prediction result through the fully connected

layer. The model uses mean squared error (MSE) as the loss

function, Adam as the optimizer, with a learning rate set to

0.0009, and is trained over 5000 epochs.

2.4.3 Random forest
RF (Breiman, 2001) is mainly used for classification and

regression problems (Figure 3). The core idea of Random Forest

includes random sampling, random feature selection, and

prediction through majority voting. The parameters of the

Random Forest model were set to 100 decision trees, a random

seed of 5, a maximum depth of 5, a minimum of 5 samples required
TABLE 1 Vegetation indices.

Vegetation Index Formula Reference

NDVI (NIR − R)=(NIR + R) (Hong et al., 2023)

EVI 2:5½ (NIR − R)
(NIR + 6� R − 7:5� B + 1)

� (Li et al., 2023)

DVI NIR − R (Haq et al., 2023)

GDVI (NIR2 − R2)=(NIR2 + R2) (Zhang et al., 2023)

MSAVI ½2NIR + 1 − ((2NIR + 1)2 − 8(NIR − R))0:5�=2 (Guo et al., 2023)

NLI (NIR2 − R)=(NIR2 + R) (Huete et al., 2002)

RVI NIR=R (Abulaiti et al., 2022)

OSAVI (NIR − R)=(NIR + R + 0:16) (Tian and Min, 1998)

ENDVI (NIR + SWIR1 − R)=(NIR + SWIR2 + R) (Song and Park, 2020)

IPVI NIR=(NIR + R) (Moradi et al., 2022)

GARI NIR − ½G + g � (B − R)�f g= NIR + ½G + g � (B − R)�f g (Gitelson et al., 1996)

GVMI ½(NIR + 0:1) − (SWIR1 + 0:02)�=½(NIR + 0:1) + (SWIR1 + 0:02)� (Xiao et al., 2023)
B represents the blue band; G represents the green band; R represents the red band; NIR represents the near-infrared band; SWIR1 represents the shortwave infrared band 1; SWIR2 represents
the shortwave infrared band 2; g is the parameter controlling atmospheric correction.
TABLE 2 Soil indices.

Soil
index

Formula Reference

CLEX SWIR1=SWIR2 (Prout et al., 2021)

GYEX (SWIR1 − NIR)=(NIR + SWIR2)
(Taghizadeh-Mehrjardi

et al., 2014)

CAEX G=B
(Taghizadeh-Mehrjardi

et al., 2014)

BI (G2 + B2)0:5 (Rafik et al., 2022)
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to split a node, and a minimum of 2 samples required to be at a leaf

node. The model was then trained.
2.5 Accuracy validation of soil
salinization inversion

In this study 70% samples are used as training set and 30%

samples are used as test set. The optimal parameters for all models

were obtained by tenfold cross-validation. The performance of the

model is assessed by the coefficient of determination (R2), mean

absolute error (MAE), and root mean square error (RMSE), with the

respective formulas as follows:
Frontiers in Plant Science 06
R2 = 1 − oi
(ŷ i−yi)

2

oi
(�yi−yi)

2 (1)

MAE = 1
mo

m

i=1
jŷ i − yij (2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
(yi − ŷ i)

2

s
(3)

In the formulas: yi represents the measured soil EC value; ŷ i

denotes the predicted soil EC value; �yi stands for the mean

measured soil EC value; and m represents the number of

sampling points.
2.6 Cotton planting distribution and
yield prediction

2.6.1 Environmental covariates
When extracting cotton planting areas, we selected Landsat-8

bands B1-B7, as well as NDVI and EVI spectral indices to identify

cotton planting regions (Wang et al., 2017). The calculation

formulae for NDVI and EVI are shown in Table 1.
2.6.2 Construction of classification models
Selecting the Random Forest model for cotton classification on

the GEE platform, as described previously. We set the specific

parameters of the Random Forest model in the GEE as follows: the

number of trees in the Random Forest is set to 100, with a sampling

proportion of 0.7 for the cotton classification task (Figure 3).

Similarly, we divided the sample 70:30.
2.6.3 Accuracy validation of cotton
field classification

To evaluate the classification performance of cotton fields, the

confusion matrix is used in this study. Currently, the confusion

matrix represents the most widely utilized methodology for

evaluating the accuracy of classification algorithms. This method

includes four evaluation metrics: producer's accuracy, user's

accuracy, overall accuracy, and Kappa coefficient. The calculation

formulas are as follows:

OA = TP+TN
TP+TN+FP+FN (4)

Kappa = PA−PE
1−PE (5)

UA = TP
TP+FP (6)

PA = TP
TP+FN (7)

In these formulas, TP, TN , FP, and FN represent the counts of

true positives, true negatives, false positives, and false negatives,

respectively; PA is the accuracy of the model on the actual data, PE

is the expected accuracy under random classification.
TABLE 3 Salinity indices.

Salinity
index

Formula Reference

S1 B=R (Allbed et al., 2014)

S2 (B − R)=(B + R) (Allbed et al., 2014)

S3 G� R=B (Allbed et al., 2014)

S5 B� R=G (Allbed et al., 2014)

S6 R� NIR=G (Allbed et al., 2014)

S7 (SWIR1 − SWIR2)=((SWIR1 + SWIR2) (Bannari et al., 2008)

S8 (G + R)=2
(Nicolas and
Walter, 2006)

S9 (G + R + NIR)=2
(Nicolas and
Walter, 2006)

SI (G + R)0:5 (Khan et al., 2005)

SI1 (G� R)0:5 (Khan et al., 2005)

SI2 (G2 + R2 + NIR2)0:5 (Khan et al., 2005)

SI3 (G2 + R2)0:5 (Khan et al., 2005)

SI4 SWIR1=NIR (Khan et al., 2005)

SIT (
R

NIR
)� 100 (Jia et al., 2022)

SSSI1 R − NIR (Bannari et al., 2008)

SSSI2 (R� NIR − NIR� NIR)=R (Bannari et al., 2008)

NDSI (NIR − SWIR1)=(NIR + SWIR1) (Ghazali et al., 2022)

CRSI ½NIR� R − G� B
NIR� R + G� B

�0:5 (Ma et al., 2023)
TABLE 4 NDBI and MNDWI.

Other
index

Formula Reference

NDBI (SWIR1 − NIR)=(SWIR1 + NIR) (Guo et al., 2015)

MNDWI (B − SWIR1)=(B + SWIR1) (Moisa et al., 2022)
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2.6.4 Cotton yield prediction
High correlation between cotton yield and NDVI, which has been

extensively validated in practice (Liu et al., 2015; Meng et al., 2019).

Therefore, in this study, raster image estimation is used to expand

county-level yield maps to pixel-level spatial distributions. By

combining data from statistical yearbooks and government bulletins

on cotton economic yield, the average cotton yield at the pixel level for

three county-level divisions in the study area is obtained (Cai and

Sharma, 2010) (the average yield of Xinhe County and Shayar County

is used to replace the missing cotton yield per mu in Kuqa City in

2022). Then, the cotton yield of individual pixels is expanded using the

NDVI index of cotton. The calculation formula is as follows:

YP = Yavg � NDVIP
NDVIavg (8)

Where YP represents the cotton yield of a single pixel (kg·hm-2);

Yavg is the average cotton yield at the county level, obtained from

statistical yearbooks and government bulletins; NDVIP is the NDVI

value during the flowering period of cotton; NDVIavg is the average

NDVI value during the flowering period at the county level.
2.7 MGWR model

2.7.1 Model principle
The MGWR model is a geographically weighted regression

model used to explore spatial heterogeneity in geospatial data
Frontiers in Plant Science 07
(Fotheringham et al., 2017). In contrast to traditional global

regression models, the MGWR model is capable of capturing

local spatial correlations in spatial data, thereby enhancing the

model's explanatory power and prediction accuracy. This model

allows regression coefficients to vary with spatial location, thus

better understanding the nonlinear relationships and spatial

heterogeneity in spatial data.

yi = b0(ui, vi) +op
j=1bj(ui, vi)xij + ei (9)

Where b0(ui, vi) and bj(ui, vi) represent the locally varying

regression coefficients, and ei denotes the error term. Typically, b0
(ui, vi) and bj(ui, vi) can be weighted averaged using an appropriate

spatial weighting function to reflect the spatial heterogeneity of

spatial data.
2.7.2 Accuracy validation of MGWR model
We use the adjusted coefficient of determination R2

adjusted to

validate the rationality of the MGWR model. The formula for

adjusted R2
adjusted is as follows:

R2
adjusted = 1 − (1−R2)(n−1)

n−p−1 (10)

Where: R2
adjusted is the adjusted coefficient of determination; n is

the sample size; p is the number of independent variables used in

the model.
FIGURE 3

Schematic diagram of the model used in this paper Figures (A–C) respectively show the structures of the models used for soil salinity prediction,
while figure (D) shows the structure of the Random Forest model used for crop classification.).
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3 Results

3.1 Digital mapping of soil
salinization inversion

3.1.1 Descriptive statistics of soil salinity
The EC in the study area exhibits a considerable range,

spanning from 0.17 to 117.9 dS/m, with a mean of 18.3 dS/m

(Table 5). It is generally considered that a coefficient of variation

(CV) less than 10% indicates weak variability, values between 10%

and 100% represent moderate variability, and values greater than

100% indicate strong variability. The coefficient of variation is

greater than 100%, indicating a high spatial variability of soil

salinity (Hu et al., 2023). The pH value ranges from 6.463 to

8.644, with relatively low variability.

3.1.2 Importance screening of soil salinity and
environmental variables

We obtained the importance ranking of environmental

variables by iterating 100 times using the random forest model

(Figure 4), and selected the top eight important environmental

variables (NLI, GVMI, S2, S1, S3, EVI, B4, GYEX) for modeling.

This indicates that apart from salinity index, nonlinear vegetation

index can also explain the EC content within the oasis, and soil

index is also an important variable for predicting soil EC.
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Furthermore, the correlation coefficients between each variable

and the soil EC value were obtained through Pearson correlation

coefficient analysis. The Pearson correlation coefficients calculated

using all feature variables were further validated, showing that the

Pearson correlation coefficients for the eight feature variables used

to construct the model were all above 0.5, indicating a strong

correlation with soil salinity and improving the accuracy of

the modeling.
3.1.3 Comparison of soil salinity mapping and
accuracy among different models

Based on the selection of eight feature variables, CNN, LSTM,

and RF models were established for soil salinization inversion. From

the perspective of modeling accuracy of the three different models, all

three models have achieved a good level of performance. RF is prone

to limitations due to the step size when processing data, which may

result in suboptimal performance in long-term prediction tasks and

does not exhibit higher stability compared to deep learning models.

Nevertheless, machine learning models represented by RF have a

significantly lower training time cost compared to deep learning

models, allowing for rapid predictions. LSTM aims to model

temporal dependencies in sequential data, emphasizing global

features. In contrast, CNN can capture subtle variations in data

features, which allows it to better identify local features, resulting in

superior performance in surface soil salinity prediction, with R2
FIGURE 4

Importance and correlation of feature variables Figure (A) represents the feature importance selection used for model construction, while Figure
(B) shows the Pearson correlation analysis of all feature variables. This analysis is used to further validate the selected features by checking if their
correlation with soil salinity exceeds 0.5.).
TABLE 5 Descriptive statistics of soil salinity.

Soil
properties

Minimum Maximum Mean
Standard
deviation

Variable
Coefficient%

EC/(ds·m-1) 0.17 117.9 18.3 24.71 135%

pH value 6.463 8.644 7.582 0.364 4.8%
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values of 0.84 and 0.73 for the training and testing sets, respectively

(Figure 5). Additionally, the MAE and RMSE values for the training

set are 6.56 dS/m and 10.16 dS/m, respectively, and for the testing set,

they are 5.17 dS/m and 11.36 dS/m, respectively.

Soil salinity is classified into five categories based on the criteria

for soil salinity levels: non-salinized (EC< 2), slight salinization (2<

EC< 4), moderate salinization (4< EC< 8), severe salinization (8<

EC< 16), and saline soil (EC > 16) (Scudiero et al., 2015). The three

models previously described were applied to Landsat-8 images in

order to obtain digital maps of soil EC for the Wei-Ku Oasis in 2013

and 2022. As shown in Figure 6, the spatial distribution

characteristics derived from the three models are similar. Soils

within the oasis have low salinity, while soils outside the oasis

generally have high salinity. The RF model can only show a general

trend in predicting soil salinity in the study area, which also

demonstrates its tendency for instability in long-term prediction

tasks. The LSTMmodel shows minimal local variation in predicting

salinity within oases and deserts, which aligns with its focus on

global features and neglects the depiction of local characteristics. In

contrast, the CNN model can capture more spatial details and

leverage its advantage in identifying local features of surface soil

salinity, consistent with the results of Wang et al. (2023b), and

effectively reveals the spatial heterogeneity of soil salinity in the

study area.

According to CNN prediction results, non-salinized and slightly

salinized areas are mainly concentrated within the oasis. The degree

of salinization increases in the desert areas extending outward from

the oasis edge’s desert interleaved belt. The deserts in the eastern part

of the oasis are primarily moderately and severely salinized, while the

central and western desert areas are mainly characterized by severe

salinization and saline soil, consistent with the results of He et al.

(2019). Analyzing over the time scale from 2013 to 2022, the saline-

alkali area in the study region has decreased by 484.3 km² over the

past decade. The areas of severe and moderate salinization have

shown slight changes, while the area of mild salinization has

increased by 164.59 km². The area of moderate salinization has not

changed significantly because moderate salinization has decreased in

desert areas, while some non-salinized and lightly salinized soils

within the oasis have transitioned to moderate salinization. Overall,
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the soil salinization problem in the Wei-Ku Oasis has been alleviated

and improved due to a series of government management measures.
3.2 Expansion of cotton fields and changes
in soil EC values

3.2.1 Cotton field identification
The overall accuracy of the cotton field recognition model

constructed using RF reached 94.4%, and the Kappa coefficient

reached 88.88%. In order to ascertain the veracity of the model in

2013, 500 validation points were randomly generated within the

classified results utilizing the ArcGIS 10.8 software (Figure 7). The

validation points were imported into Google historical imagery for

visual interpretation, and combined with historical on-site sampling

images from the laboratory, achieving an accuracy of 90.6%,

demonstrating good applicability.

3.2.2 Changes in soil EC values in cotton fields
We calculated the changes in cotton field area using a land use

transfer matrix (Figure 8). In 2022, 1334.68km² of cotton fields

remained unchanged, 500.78km² of cotton fields converted to non-

cotton fields, and another 1679.85km² of non-cotton fields

were converted to cotton fields through changes in crops and

cultivation of barren land. Among the areas converted to cotton

fields, 1145.18km² of land had varying degrees of salinization in 2013,

with severe salinization and saline-alkali areas reaching 177.91km²

and 381.46km², respectively. However, by 2020, the non-

salinized area had reached 1256.53km², with only 19.49km² and

1.12km² remaining for severe salinization and saline-alkali areas,

respectively. This significant change demonstrates the positive role of

cotton field expansion in addressing soil salinization issues.
3.3 Cotton field yield prediction and spatial
heterogeneity response of soil salinity

First, the average cotton yield of three counties and NDVI index

were used to plot the predicted cotton yield maps of the study area
FIGURE 5

Comparison of model accuracy (A represents the model determination coefficient, B represents the mean absolute error, C represents the root
mean square error, blue represents the accuracy verification of the soil salinity inversion model on the training set, and pink represents the accuracy
verification on the test set).
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for 2013 and 2022 to demonstrate the growth status of cotton

(Figure 9). In 2013, areas with low average cotton yields were

mainly concentrated in the western and peripheral regions of the

cotton fields. In 2022, areas with low average cotton yields were

mainly concentrated in the western, southern, and newly reclaimed

northeastern parts of the cotton fields.

The predicted cotton yield map and soil salinity level map were

resampled to 500m, and then the MGWR coefficients of soil EC value

and cotton yield were calculated (Figure 10). According to the accuracy

verification results, the R2 adjusted of the MGWR model in 2013 was

0.75, and in 2022 it was 0.86, reaching the expected level. Areas

sensitive to soil salinity are mainly distributed in the western part of

theWei-Ku oasis, in Xinhe County and Shaya County, as well as in the

northeastern part of Kuqa City, which has been newly reclaimed.
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4 Discussion

4.1 Impact of environmental variables on
soil salinity

Currently, a large number of research findings indicate that

various environmental factors are highly effective in constructing

soil salinity models. Zhu et al (2021) studied the relationship

between vegetation indices and salinity, finding that soil salinity

stresses crop growth, and vegetation greenness can indirectly reflect

soil salinity levels. The highest contribution of vegetation index NLI

in modelling soil salinity in arid zone was also found in the results of

this study. Analysis of vegetation indices at a finer field scale

(Polivova and Brook, 2021) showed that NDVI, EVI, GARI, and
FIGURE 6

Soil salinity maps for 2013 and 2022 generated by different models, along with the proportions of different degrees of saline-alkali soil Figures
(A–C) represent the soil salinity distribution maps for the year 2013, generated using the CNN, LSTM, and RF models, respectively. Figures
(D–F) represent the soil salinity distribution maps for the year 2022, generated using the CNN, LSTM, and RF models, respectively.).
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GDVI indices are highly sensitive to changes in vegetation. In this

study, the EVI vegetation index also showed good sensitivity in the

study area. The EVI index can eliminate the influence of soil and

atmospheric aerosols, especially suitable for densely vegetated areas

in oases, to obtain more accurate spectral information of vegetation
Frontiers in Plant Science 11
canopy and assist in determining the soil salinity information under

vegetation cover. A study conducted by Nguyen et al. (2021) in the

Mekong Delta of Vietnam revealed that 13 indices, including EVI,

CRSI, B5, B3, and B7, are the most effective in measuring soil

salinity. The results of this study indicate that vegetation factors
FIGURE 7

Cotton field identification and accuracy validation random points for 2013 and 2022 Figure (A) shows the distribution of cotton fields in 2013, figure
(B) shows the distribution of cotton fields in 2022, and figure (C) shows the random validation points used for the cotton field distribution in 2013.).
FIGURE 8

Cotton field expansion and improvement of saline-alkali soil area Figure (A) represents the distribution changes of cotton fields from 2013 to 2022,
figure (B) shows the soil salinity levels in newly added cotton fields in 2013, and figure (C) shows the soil salinity levels in newly added cotton fields
in 2022).
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play an important role in improving model accuracy and

monitoring soil salinity.

Salt index and soil index have been proven to be key variables in

soil prediction in arid areas in previous studies. Wang et al. (2022a)

pointed out in their another research that soil salinity directly changes

the spectral reflectance in various bands. GVMI, GYEX, andDEM are

among the factors with the highest contribution rates. The reason

why DEMwas not considered as a feature variable in this study is that

the altitude fluctuation in the Wei-Ku oasis is not significant, and the

differences are small, resulting in a low contribution rate to the

prediction of soil salinity. The favorable performance of the salt index

in this study corroborates the findings of Peng et al. (2019), namely,

the salt index is the optimal and effective method for soil salinity

monitoring in southern Xinjiang. Racetin et al. (2020) pointed out

that salt indices S1 and S2 have the highest positive correlation, which

can characterize the degree of salt influence in irrigated agricultural

areas. In this study, S1 and S2, two salinity indices, also have relatively

large contribution rates. S1 and S2 use the ratio of red band and blue

band information, highlighting that in vegetation-covered areas, the

red band has low absorption reflectance and a large ratio, while the

opposite is true in desert areas.

The spectral characteristics of saline encrustations are correlated

with soil roughness. The reflectance values increase with increasing

soil salinity (Günal et al., 2021). The high reflectance characteristic of

saline soils is readily discernible by satellite remote sensing, rendering
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it an invaluable tool for the remote monitoring of large-scale soil

salinization. Gypsum desert soils are widely distributed in Xinjiang,

with almost zero surface vegetation cover. Under intense wind

erosion conditions, the gypsum layer often approaches or exposes

the surface, making it prone to salt accumulation and the formation

of salt crusts. Shortwave infrared produces strong reflections in these

areas, resulting in relatively high gypsum index values. This suggests

that the GVMI and GYEX indices are more effective at detecting soil

salinity in arid areas with minimal vegetation cover or bare soil

surfaces compared to other indices.
4.2 The impact of different models on soil
electrical conductivity values

There is currently no universally acknowledged parameter

solution for evaluating the effectiveness of machine learning

(including deep learning) results, thus requiring a case-by-case

analysis (Domingos, 2012). The performance of most algorithms

on specific datasets highly depends on the learning parameters used

to train them, yet parameter settings that yield optimal performance

on one dataset may not generalize well to another (Bengio, 2012).

From a single-model analysis perspective, LSTM is suitable for

handling sequential data, capable of capturing long-term

dependencies within the data, thereby aiding in better future
FIGURE 10

Spatial heterogeneity relationship between cotton field yield and soil salinity in 2013 and 2022. (A) represents cotton field yield and soil salinization
spatial heterogeneity in 2013, and (B) represents cotton field yield and soil salinization spatial heterogeneity in 2022.
FIGURE 9

Cotton field yield (per pixel) in 2013 and 2022. (A) represents cotton field yield in 2013, and (B) represents cotton field yield in 2022.
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value prediction. Hence, we made the initial attempt to predict soil

salinity using LSTM in this study. Random forests, on the other

hand, can handle a large number of features and exhibit a certain

degree of robustness to missing values and outliers. They are

effective in illustrating trends between low and high salinity areas,

yet their ability to predict local soil EC values is not as prominent as

CNN. Therefore, as a relatively mature deep learning model, CNN

presents potential for exploring local information extraction across

different study areas in future research, facilitating a better

integration of soil salinity research with deep learning techniques.
4.3 Spatial heterogeneity response of soil
salinization in cotton fields

The research findings indicate that the expansion of cotton fields

can ameliorate soil salinization issues in the Wei-Ku oasis, particularly

evident in reclaimed wasteland. To investigate the spatial heterogeneity

of soil salinity and cotton field growth, the MGWRmodel was selected

as the optimal method to capture these features.

The MGWR coefficients elucidate the spatial heterogeneity

response of soil salinization to cotton growth, offering more detailed

insights into the spatial relationship between the two factors. Based on

the regression coefficients of soil EC values and cotton yield, we found a

close correlation between soil EC values and cotton growth. Xinjiang

has become an important cotton production base in China (Yang et al.,

2020). For over two decades, cotton cultivation has advocated and

employed plastic film-covered drip irrigation (Yang et al., 2022). It has

been demonstrated that the duration of drip irrigation is a significant

factor in the accumulation of soil salinity in cotton fields (Guan et al.,

2019). In winter without irrigation, a large amount of salt concentrated

in the subsoil will be redistributed upward, which leads to the

accumulation of salt in the topsoil again in the spring (Qin et al.,

2021), which is also the reason for the increase in salt in part of the

inner oasis in result 3.1.3 (Zong et al., 2022). This in turn leads to

reduced crop yields and reduced soil tillage capacity (Ajay, 2015).

Consequently, cotton fields require substantial irrigation water. The

prolonged percolation effects of long-term drip or surface irrigation

cause soil salinity to migrate to the periphery of the oasis with the river

flow. Thus, reducing irrigation water in the region may significantly

increase soil salinization levels, leading to soil quality degradation,

consistent with the findings of Yang et al (2022). Localized analysis

reveals a widespread high negative correlation in Shaya County and the

western part of Xinhe County. This area conforms to the

aforementioned irrigation characteristics, with cotton yields relatively

lower than in other regions. This suggests that changes in soil

salinization levels are more likely to affect cotton growth in this area.

The main reasons may be (1) the quality of irrigation water is partly

from shallow groundwater, whose dissolved salt ions exacerbate the

accumulation of salts. (2) The groundwater table is shallow and salt

ions accumulate upwards through evaporation. (3) Drip irrigation not

only fails to ensure sufficient irrigation water, but also keeps the soil in a

relatively wet state, which is more conducive to the collection of salts in

the upper layers. Therefore, a large amount of irrigation water is also

needed to wash salt. Additionally, in newly cultivated cotton fields such

as the northwest and northeast regions of the study area, the high
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sensitivity to soil EC values may be attributed to sparse surrounding

vegetation cover, arid climate, and imperfect irrigation and salinity

control measures, resulting in a strong response of cotton fields to soil

salinity (Wang et al., 2023a). For cotton fields that are highly responsive

to soil salinity, the following measures can be taken to reduce the

impact of soil salinity on cotton growth. (1) Application of different

types of organic, inorganic, and mixed amendments (Wang et al.,

2022b). Organic amendments mainly include compost, humus, and

plant residues (Scotti et al., 2015). They can increase soil organic matter

(OM) content, thereby enhancing soil permeability (Chen et al., 2020).

Additionally, they are rich in nitrogen and phosphorus, which can

enhance the diversity of soil bacterial communities and strengthen

interactions among microorganisms (Mao et al., 2022). Inorganic

amendments mainly include gypsum, desulfurized gypsum, and

aluminum sulfate, which are minerals or synthetically prepared

compounds (Zhou et al., 2019). They alter the chemical properties of

saline-alkaline soils through neutralization or ionic balance

adjustments, thus improving the soil environment (Nan et al., 2016).

Mixing organic and inorganic amendments can combine their

advantages to achieve more effective results (Wang et al., 2024a). (2)

Intercropping of cotton with halophytes. The main halophytes include

Suaeda salsa and alfalfa (Medicago) (Dıáz et al., 2018; Song andWang,

2015). These plants can improve the physical and chemical properties

of the soil by reducing bulk density, increasing soil porosity, and

enhancing hydraulic conductivity (Ashraf et al., 2010),thereby

promoting the leaching of soil salinity in saline-alkaline soils and

reducing soil salt accumulation (Liang and Shi, 2021). (3) Adopt the

Deep Vertical Rotary Tillage technique for cotton cultivation (Bai et al.,

2024). Deep tillage creates a more favorable soil environment for root

growth and development (Wang et al., 2020). It increases soil porosity,

enhances the downward migration of salts, and limits the upward

movement of water in soil capillaries, thereby reducing soil salinity and

achieving the goal of increasing crop yields (Wei et al., 2020).(4) The

impact of winter irrigation and water resource management (Li et al.,

2020; Yang et al., 2022; Zhao et al., 2021). Winter irrigation effectively

conserves soil moisture and inhibits salinity by pushing soil salts deeper

into the soil layers, preventing salt return due to evaporation in the

following year, thus providing favorable soil moisture and salinity

conditions for crop growth (Xiao et al., 2018). Water resource

management measures using subsurface drainage can reduce soil

salinity and improve cotton emergence rates (Feng et al., 2019).

Meanwhile, combining subsurface drainage with surface drainage

can maximize the effectiveness of subsurface drainage. Therefore,

improving the construction of drainage canals and enhancing water

and fertilizer management (Wang et al., 2024b) can not only reduce the

impact of soil salinization on cotton fields but also ameliorate soil

salinization issues, improve soil quality and land productivity, and

achieve scientific sustainable development.
4.4 Research limitations and future
research directions

This study collected a total of 97 field samples; however, there is

still a lack of soil salinization information validation in areas that

are difficult to reach due to limited manpower (such as uninhabited
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areas or the interior of deserts). Additionally, due to the limited

explanatory power of the model, these uninhabited areas still

present some uncertainty. Furthermore, the model was

constructed using primarily summer remote sensing imagery

data, rendering it more suitable for mapping the spatial

distribution of soil salinity for the same season across different

years. Since the soil salt data we used were sampled in summer,

further research will be conducted in different periods of the same

year, and more measured samples will be collected to establish soil

salinization inversion models respectively, and explore the spatial

distribution characteristics of soil salt in different seasons of the

year. Additionally, due to the limitations of the study period,

higher-resolution satellite imagery, such as the 10-meter

resolution Sentinel-1 and Sentinel-2 satellites and the 3-meter

resolution Planet satellite, could not be utilized for soil salinity

prediction and cotton field classification. Future research could

consider the integration of multiple remote sensing images to

enhance the accuracy of soil salinity prediction models and

cotton field classification. To clarify the factors influencing cotton

field yield, future research will consider the spatial heterogeneity of

various influencing factors, including soil moisture content,

precipitation, temperature, and groundwater level. Data-driven

and inductive machine learning can capture information and

extract patterns from the ever-growing geospatial data streams,

demonstrating strong data adaptability; however, it lacks theoretical

support and has weak interpretability. Future research could

explore how to combine remote sensing physical process

modeling with flexible data-driven modeling, aiming to develop a

dual-driven quantitative remote sensing model that couples

physical mechanisms with machine learning models, which may

help solve the challenges of quantitative analysis of remote

sensing data.
5 Conclusions

Based on the measured sample data and remote sensing image

data, various deep learning and machine learning inversion models

were constructed to map soil salinity in the Wei-Ku oasis, and the

changes in soil EC values and spatial responses were investigated in

relation to the expansion of cotton fields. The main results obtained

are as follows:
Fron
(1) The CNN model showed higher accuracy as well as

applicability, with an R2 of 0.84 for the training set and

0.73 for the test set. it can better mine the spatially localized

information of soil salinity compared with other models.

(2) The expansion of cotton fields also significantly improved

the soil salinity problem in the study area. The area of new

cotton fields with heavy salinity and saline soils decreased

from 177.91km2 and 381.46km2 to 19.49km2 and 1.12km2

from 2013 to 2022.The saline soil in the arid zone can be

fully utilized by planting salt-tolerant crops.

(3) In 2013, the low yielding cotton fields were mainly located

in the western part of the Wei-Ku oasis. In 2022, the low
tiers in Plant Science 14
yielding areas of the cotton fields appeared in the southern

and northeastern part of the newly reclaimed cotton fields

in addition to the western part of the study area.

(4) The areas of cotton fields that are more sensitive to salinity

alteration were explored by the MGWR model. The highly

negatively correlated areas are located in the western and

northeastern newly reclaimed areas of the study area, which

provides a more scientific theoretical basis for the zonal

management of salinization and promotes the sustainable

development of oasis ecology and agriculture.
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