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Arbuscular mycorrhizal fungi
communities and promoting the
growth of alfalfa in saline
ecosystems of northern China
Wen Xu, Qianning Liu, Baiji Wang, Na Zhang, Rui Qiu,
Yuying Yuan, Mei Yang, Fengdan Wang, Linlin Mei*

and Guowen Cui*

College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
Arbuscular mycorrhizal fungi (AMF) are universally distributed in soils, including

saline soils, and can form mycorrhizal symbiosis with the vast majority of higher

plants. This symbiosis can reduce soil salinity and influence plant growth and

development by improving nutrient uptake, increasing plant antioxidant enzyme

activity, and regulating hormone levels. In this study, rhizosphere soil from eight

plants in the Songnen saline–alkaline grassland was used to isolate, characterize,

and screen the indigenous advantageous AMF. The promoting effect of AMF on

alfalfa (Medicago sativa L.) under salt treatment was also investigated. The

findings showed that 40 species of AMF in six genera were identified by high-

throughput sequencing. Glomus mosseae (G.m) and Glomus etunicatum (G.e)

are the dominant species in saline ecosystems of northern China. Alfalfa

inoculated with Glomus mosseae and Glomus etunicatum under different salt

concentrations could be infested and form a symbiotic system. The mycorrhizal

colonization rate and mycorrhizal dependence of G.m inoculation were

significantly higher than those of G.e inoculation. With increasing salt

concentration, inoculation increased alfalfa plant height, fresh weight,

chlorophyll content, proline (Pro), soluble sugar (SS), soluble protein (SP),

peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity

while decreasing the malondialdehyde (MDA) content and superoxide anion

production rate. The results highlight that inoculation with G.m and G.e

effectively alleviated salinity stress, with G.m inoculation having a significant

influence on salt resistance in alfalfa. AMF might play a key role in alfalfa growth

and survival under harsh salt conditions.
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1 Introduction
Soil salinization, resulting from poor irrigation management

and drought, is one of the most destructive environmental stresses

causing significant declines in arable land area, crop productivity,

and quality globally (Shahbaz and Ashraf, 2013). The Songnen

Plain, one of the three main grasslands in northeastern China, has

approximately 15.24% of its area covered with saline soil. Factors

such as natural changes (climate and soil-forming parent material)

and human activities (extensive land clearing and imperfect water

conservancy facilities) have contributed to the continuous

deterioration of environmental conditions in the Songnen

grassland (Wang et al., 2009). Serious soil compaction,

destruction of the granular structure, high soil pH, and nutrient

depletion (Gong et al., 2021) not only limit plant growth and reduce

the yields and quality of most crops but also affect the

physicochemical properties of soils and the ecological balance

(Shrivastava and Kumar, 2015). Methods such as physical

improvement , chemical improvement , and hydraul ic

improvement have been adopted to address these problems (Zhao

et al., 2023). However, these methods are time-consuming and

labor-intensive, which, to some extent, hinder the restoration of

saline–alkaline soils. Rhizosphere biotrophic bacteria such as plant

beneficial bacteria (PBB) and arbuscular mycorrhizal fungi (AMF)

can assist plants in surviving and growing under adverse conditions

and increase their resistance to salinity, extreme temperature, and

heavy metal stress, thereby increasing plant yield (Garg and

Chandel, 2011). Among them, AMF have become a research

focus in recent years due to their ability to increase plant salinity

tolerance and promote plant nutrient uptake.

Alfalfa (Medicago sativa L.) is a high-quality leguminous fodder

with excellent palatability and a developed root system (Ferreira

et al., 2015). It is widely cultivated worldwide and holds significant

economic value and ecological importance (Mei et al., 2022a). The

growth of alfalfa is severely restricted in agricultural areas with high

salinity, particularly during the early stages of seed germination and

growth. High salinity inhibits or delays germination and the

elongation of branches and roots due to osmotic stress (Li et al.,

2010). Research indicates that elevated soil salinity levels decrease

the content of trace elements (Fe2+, Mn2+, Cu2+, and Zn2+) in the

roots, stems, and leaves of alfalfa, disrupting ion transport ratios

and cation transport selectivity ratios (Bhattarai et al., 2021). Salt

stress also hinders alfalfa growth by reducing plant growth rate and

water absorption while increasing proline (Pro) content and

membrane peroxidation (Choi et al., 2018). Additionally, salt

stress indirectly impacts alfalfa growth by influencing plant

metabolism, such as the symbiotic nitrogen fixation ability of

rhizobia (Farooq et al., 2017). As salt concentration rises, the

nitrogenase activity of alfalfa nodules decreases. Combined salt

stress can destroy the nitrogenase component structure in root

nodules, reducing the nitrogen fixation capability and ultimately

decreasing the total nitrogen content.

AMF are endophytic fungi widely distributed in soil, capable of

forming mycorrhizal symbiosis with most terrestrial plants (Zhang

et al., 2024a). It is recognized as a biotechnological tool to increase
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plant resistance and restore ecosystems (Cao et al., 2020). Research

has shown that AMF symbionts improve plant resistance by

strengthening the water absorption capacity, promoting nutrient

assimilation, sustaining ion balance, and increasing photosynthesis

and the plant hormone levels (Han et al., 2024; Wang et al., 2024b).

Under stress conditions, AMF’s extensive mycelial network extends

the rhizosphere absorption area, increasing the plant’s absorption

capacity (Liu et al., 2016; Kakouridis et al., 2022). AMF application

reduced the negative effects of salt stress by increasing the

absorption of microelements, regulating the absorption of Na and

K in wheat (Huang et al., 2023). Plants inoculated with AMF exhibit

higher transpiration rates and leaf water potential under salt

conditions, significantly improving relative leaf water content and

survival ability (Akhzari et al., 2016). Mycorrhizal seedling leaves

display significantly higher activities of superoxide dismutase

(SOD), catalase (CAT), and ascorbate peroxidase (APX)

compared to non-mycorrhizal seedlings, helping Elaeagnus

angustifolia seedlings to cope with salinity (Chang et al., 2018).

Furthermore, the levels of proline (Pro), soluble protein (SP), and

antioxidant enzymes activity are higher in AMF-inoculated plants

under high salt stress, indicating that the beneficial effects of

mycorrhizal symbiosis are crucial for managing severe salt

toxicity (Zong et al., 2023). Additionally, AMF-inoculated plants

show stronger net photosynthetic rates, stomatal conductance, and

chlorophyll content under salt stress (Chandrasekaran et al., 2019).

AMF inoculation promotes the accumulation of alfalfa biomass

under salt stress and increases the stomatal constraints of alfalfa

leaves, increasing CO2 fixation capacity (Shi-Chu et al., 2019).

Soil salinization markedly inhibits plant growth and severely

limits agricultural productivity. Therefore, the restoration of saline-

alkali land has become an urgent problem to solve. The Songnen

saline-alkali grassland, characterized by specific habitats and rich

microbial resources, primarily comprises the dominant groups

Ascomycota, Basidiomycota, and Mortierellomycota (Cui et al.,

2023), making it a vital strategic resource for microbial strains.

The unique environment of this grassland may lead to regional

specificity in AMF. Alfalfa, an important forage, was selected as the

experimental material due to its high yield, rich nutritional value,

and strong stress resistance. However, its growth and development

are severely limited in saline-alkali soils (Guo et al., 2024). AMF

have been shown to significantly alleviate plant salinity stress

(Evelin et al., 2009; Qin et al., 2021), and the role of AMF in

enhancing salt stress tolerance in alfalfa has received increasing

attention. Previous studies have outlined various mechanisms and

strategies by which AMF alleviate salinity stress in alfalfa (Moradi,

2016; Laouane et al., 2019; Shi-Chu et al., 2019). However, the

effects of the native AMF species in Songnen grassland to alfalfa

salinity stress are still uncertain. Most of the strains used in prior

studies were sourced commercially (Li et al., 2020; Zong et al., 2023;

Jia et al., 2024). In our experiment, local strains from the Songnen

grassland were cultured and propagated, and alfalfa was inoculated

to cope with salt stress, aiming to overcome the poor adaptability of

exogenous sourced strains to Northeast China’s conditions.

Accordingly, AMF was isolated, screened, and identified from the

rhizosphere of eight dominant saline-tolerant plants in the Songnen

saline-alkali grassland, and the growth-promoting effects of two
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native dominant AMF inoculations on alfalfa were evaluated for the

first time through a pot experiment. The aims were (1) to identify

the diversity characteristics and dominant species of AMF in the

rhizosphere of plants of Songnen saline-alkali grassland in salinized

areas and (2) to analyze the efficiency of dominant AMF species

isolated from the rhizosphere of plants in Songnen saline-alkali

grassland to alleviate salt stress in alfalfa.
2 Materials and methods

2.1 Study site

This study site is located in Songnen grassland (Zhaodong City,

Heilongjiang Province, China; 139–140 masl; 46°2′45″–46°3′12″ N,
125°53′51″–125°54′1″ E; Supplementary Figure S1). The region

experiences hot and rainy summers and cold and dry winters,

with a mean annual precipitation of 569.1 mm. The soil pH is 8.2.

The predominant plant community consists of Leymus chinensis

(Trin.) and Puccinellia tenuiflora (Griseb.), along with other

companion species. Species diversity has decreased due to salinity

stress and grazing.
2.2 Sample collection and sequencing

All soil samples used in the experiment were collected in

September 2019 in Zhaodong, China, from the rhizosphere soil of

eight salinity-tolerant plant species (Table 1). In the saline plot,

three plants of each species were randomly selected, and impurities

such as litter and stones were removed from the soil surface. Soil

from the plant rhizosphere at a depth of 5–20 cm was dug up. The

roots in the soil were shaken to separate loose soil, which was then

mixed into one sample, sealed in a plastic bag, and returned to the

laboratory on ice. All the rhizosphere soil samples were divided into

two parts. One part was naturally air-dried and sieved (2 mm) for

soil analysis, and the rest was stored at -80°C for sequencing.

DNA from rhizosphere soil samples of eight plants was

extracted using the Power Soil DNA Isolation Kit (Mo Bio
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Laboratories, Inc., USA) according to the manufacturer’s

instructions. Three repetitions were set, and quality and purity

were checked using 1% agarose gel electrophoresis. Two pairs of

primers (AML1F-AML2R and AMV4-5NF_AMDGR) were

selected to amplify partial 16s rRNA gene fragments of AMF by

nested polymerase chain reaction (PCR). Amplicon libraries were

prepared and identified using the Illumina MiSeq sequencing

method at Meijorbio Go. (Shanghai, China). Clean sequences

were clustered into operational taxonomic units (OTUs) based on

97% similarity, and the most abundant sequences were selected as

representative sequences. Annotation through the Silva and Unite

databases was used to categorize soil microbial species. AMF alpha

diversity indices including Chao, Sobs, Shannon, and Simpson

index were calculated using QIIME (http://qiime.org/scripts/

assign_taxonomy.html). Significant differences in alpha diversity

were assessed with a non-parametric test in QIIME.
2.3 Experimental design and treatments

AMF spores were isolated using wet sieving and sucrose

centrifugation (McKenney and Lindsey, 1987). The screened

substances were stored in a petri dish at 4°C, and each soil

sample was processed three times. Individual spores were placed

under a light microscope with a pipette to observe their color, shape,

and other superficial characteristics. Spore species were determined

based on the Arbuscular Mycorrhizal Fungal Resources and

Germplasm Resources of China, the International Arbuscular

Mycorrhizal Fungi Conservation Center (INVAM), and species

descriptions and pictures from published articles. Two dominant

AMF species spores, Glomus mosseae and Glomus etunicatum,

selected from the Songnen grassland rhizosphere soil were

propagated. The propagation method involved sterilizing seedling

trays with 75% alcohol, filling them to the top with sterilized quartz

sand culture substrate (sterilized for 120 min at 121°C and 103 kPa),

and digging a 6- to 7-cm-deep hole with a sterilized glass rod. Under

a stereoscopic microscope, fresh, bright, full spores were collected

and placed on the roots of Trifolium repens L. seedlings. The

seedlings were then immediately transferred into pre-dug holes

and compacted with glass rods. The setup was left in the dark for

24 h before being transferred to a greenhouse for 3 months (16-h

light/8-h dark photoperiod, 23–26°C). Root colonization was

checked after 15–20 days. After 3 months of cultivation, the roots

and rhizosphere soil were collected.

Five salt concentration gradients (0, 50, 100, 150, and 200

mmol/L NaCl) were set up (Tani et al., 2018; Shi-Chu et al.,

2019), with three replicates for each concentration. Three

treatments were applied for each salt concentration: control (non-

inoculation), inoculation with Glomus mosseae (G.m), and

inoculation with Glomus etunicatum (G.e). The pot experiment

was conducted in a greenhouse using the alfalfa variety “Dongnong

No. 1” from Northeast Agricultural University. All the seeds were

washed three times in distilled water, surface-disinfected with 75%

alcohol, and germinated on wet paper in an incubator (16-h light/8-

h dark photoperiod, 23–26°C). Every 10 seedlings were transplanted

into a pot (12 cm in diameter; 15 cm in depth) and placed in the
TABLE 1 Distribution locations of eight sampled plants in
Songneng grassland.

Hosting plants Number
East

longitude
North
latitude

Arundinella anomala Steud. A 46°2′46″ 125°53′51″

Leymus chinensis B 46°2′46″ 125°53′53″

Taraxacum mongolicum C 46°3′10″ 125°53′59″

Puccinellia tenuiflora D 46°3′9″ 125°53′58″

Artemisia mongolica E 46°3′12″ 125°54′1″

Artemisia anethifolia F 46°3′12″ 125°54′0″

Clematis hexapetala G 46°2′54″ 125°53′51″

Vicia amoena H 46°3′8″ 125°54′0″
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greenhouse for cultivation under a 16-h light/8-h dark photoperiod

at approximately 23–26°C. The potting substrate consisted of

sterilized soil (120 min, 121°C, 103 kPa) and vermiculite (3:1, V:

V) to ensure drainage. Additionally, each pot was inoculated with

25 g of AMF mycorrhiza. An equal amount of sterilized soil was

added to the non-inoculated treatment. Regular watering and

seedling management were performed, and after 30 days of

cultivation, the plants were watered with 100 mL of the

corresponding NaCl concentration every 2 days. At 10 days later,

the above-ground parts were sampled.
2.4 Experimental measurement methods

The mycorrhizal colonization rate of alfalfa roots after 40 days

of growth was examined using the alkali dissociation-Trypan blue

staining method (Jakobsen et al., 1992). Specifically, alfalfa roots

were washed with distilled water, cut into segments of

approximately 1.0 cm, then treated with 10% KOH, and boiled in

a water bath at 90°C. After cooling, the roots were rinsed with

distilled water, stained with Trypan blue dye in 90°C water bath,

and then decolorized with lactate glycerin solution. The roots were

randomly selected and placed on slides, and the mycorrhizal

colonization rate was observed under a microscope. Five intact

alfalfa plants with good growth were selected as a group to calculate

mycorrhizal dependency using the formula (Hu et al., 2020).

The effects of AMF inoculation on alfalfa under salt treatment

were determined by measuring various parameters. Fresh alfalfa

height was measured from the root neck to the top of the plants, and

fresh weight was recorded for the above-ground parts (Hu et al.,

2020). Chlorophyll content was determined by acetone extraction,

and the optical density (OD) of chlorophyll a (Chla) and

chlorophyll b (Chlb) was measured at 663 and 645 nm,

respectively. Total chlorophyll, Chla, and Chlb concentrations

were calculated using the formula (Helaoui et al., 2020). The

concentration of O2·
- was measured according to a previously

described method (Liu et al., 2020). Malondialdehyde (MDA)

content was estimated using the thiobarbituric acid (TBA)

reaction (Ortega-Villasante et al., 2005), and pro content was

determined using the methodology described by Bates et al.

(1973). Physiological traits, including peroxidase (POD), SOD,

and CAT activities, as well as soluble sugar (SS) and SP content,

were measured using reagent kits (Suzhou Keming, Suzhou, China).

Specific test procedures followed the manufacturer’s instructions for

the reagent kits. Three technical replicates were performed for all

index determinations.
2.5 Statistical analysis

Diversity and taxonomic analyses of microorganisms were

performed using the I-Sanger cloud platform of Shanghai Meiji

Biomedical Technology Co. Excel 2019 was used to summarize and

organize the data, and all data were tested for normality and

homogeneity of variance. Two-way ANOVA was used to analyze
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One-way ANOVA was performed to analyze the effects of the same

salt concentration on indicators in the control group, G.m group,

and G.e group, and Duncan multiple comparison (P < 0.05) was

used to test their differences. IBM SPSS Statistics 27 was used for

statistical analysis, and Origin 2021 was used for graphing.
3 Results

3.1 AMF identification

The effective sequences obtained by high-throughput

sequencing were clustered into 156 OTUs. AMF species

annotation was carried out by comparison with the MaarjAM

database (https://www.maarjam.botany.ut.ee), and 40 species of

six genera were identified (34 in Glomus, two in Archaeospora,

one in Diversispora, one in Gigaspora, and two in Paraglomus), but

no species of Acaulospora was detected (Supplementary Table S1).

At the genus level, Glomus was the dominant genus in the

rhizosphere soils of plants, accounting for 89.33%, while

unclassified accounted for 10.16% and was the second most

abundant genus (Figure 1A). At the species level, Glomus Wirsel

OTU6 VTX00202 had the highest relative abundance, accounting

for 29.27%, making it the dominant species. This was followed by

unclassified_g_Glomus_f_ Glomeraceae, for which no specific

bacterial species was detected, and Glomus sp VTX00304 had the

least relative abundance, accounting for only 0.05% (Figure 1B).
3.2 AMF diversity

The distribution of rhizosphere AMF varies among different

plants. Among the eight soil samples, the most abundant AMF

species were isolated from Leymus chinensis, Tragopogon

mongolicum, and Puccinellia tenuiflora, with 12, 13, and 15 AMF

species isolated, respectively. At least seven species of AMF were

isolated from Clematis hexapetala. Glomus mosseae and Glomus

etunicatum were the two most widely distributed AMF, being

isolated from all soil samples (Supplementary Table S2).

The AMF community species richness and diversity indices

varied significantly in the rhizosphere soils of different plants. The

Sobs index indicated that species richness was highest in the

Arundinella anomala samples (55.0 ± 22.0a), followed by

Taraxacum mongolicum and Puccinellia tenuiflora, and lowest in

the Clematis hexapetala samples (3.0 ± 2.0b). The Chao index

showed that species richness was highest in the Puccinellia

tenuiflora samples (45.33 ± 7.50a), followed by Taraxacum

mongolicum and Arundinella anomala, and lowest in Clematis

hexapetala (3.0 ± 2.0b). The Shannon and Simpson indices

indicated similar results, showing a relatively high diversity in

Taraxacum mongolicum and Puccinellia tenuiflora samples, while

the lowest diversity was observed in the Artemisia mongolica

sample (Table 2).
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3.3 Mycorrhizal colonization of alfalfa

The native dominant AMF (G.m and G.e) inoculated with

alfalfa under salt stress can infect and form a symbiotic system.
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Mycorrhizal colonization and dependence were higher in plants

inoculated with G.m compared to those inoculated with G.e.

Mycorrhizal colonization rates ranged from 33.3% to 76.6% for

G.m and from 26.7% to 76.6% for G.e, while non-inoculated plants

showed no colonization (Figure 2C). The colonization rate tended

to decrease with increasing salt concentration. At 150 and 200 mM,

inoculation with G.m resulted in significantly higher colonization

rates than inoculation with G.e (p < 0.05, Figure 2A). Mycorrhizal

dependence increased and then decreased with rising salt

concentration, reaching a maximum at 100 mM (Figure 2B).
3.4 Interactive effect of AMF and salt
concentration on indicators

Salt concentration had a highly significant impact on all

indicators (P < 0.01, Table 3). Inoculation with G.m significantly

affected all indicators except Chl b (P < 0.01). Inoculation with G.e

did not affect Chl b, but it significantly impacted MDA (P < 0.05,

Table 3). The interaction between inoculation with G.m,

inoculation with G.e, and salt concentration had a highly

significant impact on Chl b, Chl, Pro content, and O2·
-

production rate (P < 0.01, Table 3) but no significant impact on

plant height, fresh weight, SS, SP, and POD.
TABLE 2 Comparison of AMF community diversity index in the
rhizosphere soil of different plants.

Number Chao Shannon Simpson Sobs

A 42.12 ± 7.47a 0.99 ± 0.57b 0.96 ± 0.07a 55.0 ± 22.0a

B 5.0 ± 2.0b 0.75 ± 0.06b 0.60 ± 0.18b 5.0 ± 2.0b

C 44.67 ± 3.79a 2.85 ± 0.20a 0.098 ± 0.007c 43.67 ± 2.08a

D 45.33 ± 7.50a 2.62 ± 0.14a 0.11 ± 0.01c 43.33 ± 4.04a

E 8.0 ± 4.0b 0.03 ± 0.008c 0.99 ± 0.01a 6.0 ± 2.65b

F 9.33 ± 3.21b 0.98 ± 0.12b 0.49 ± 0.11b 9.3 ± 3.21b

G 3.0 ± 2.0b 0.18 ± 0.03c 0.99 ± 0.003a 3.0 ± 2.0b

H 6.0 ± 0.58b 0.95 ± 0.09b 0.48 ± 0.01b 6.33 ± 0.58b
The values in the table are presented as mean ± standard deviation. Different lowercase letters
indicate significant differences in diversity among different plant root systems and soil samples
(p<0.05). Sobs is the actual observed value of species richness. The Chao index estimates the
number of OTUs contained in a sample. The Shannon index estimates microbial diversity
within a sample, while the Simpson index reflects community diversity, with larger values
indicating lower community diversity.
FIGURE 1

(A) Species composition of rhizosphere AMF of different plants at the genus level (B) Species composition of rhizosphere AMF of different plants at
the species level.
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3.5 Effects on alfalfa growth indicators

The plant height and fresh weight of alfalfa decreased with

increasing salt concentration. AMF-inoculated plants at
Frontiers in Plant Science 06
corresponding salinity levels were significantly taller and had

higher fresh weight than control plants (P < 0.05). The plant

height and fresh weight of AMF-inoculated plants were

significantly different from control plants at 150 and 200 mM (P
FIGURE 2

(A) Infestation rate of alfalfa under different treatments. (B) Dependence of alfalfa under different treatments. (C) Microstructure of AMF mycorrhiza
of alfalfa. Bar groups with different lowercase letters indicate significant differences (P < 0.05) between treatments under the same
salt concentration.
TABLE 3 Two-way ANOVA of the effects of G.m, G.e, and salt concentration on indicators.

Indicators G.m
Salt

concentration
G.m * salt

concentration
G.e

Salt
concentration

G.e * salt
concentration

P H 55.711** 49.681** 1.102 47.779** 67.853** 1.971

FW 31.642** 39.389** 1.475 14.433** 54.655** 1.385

Chla 21.905** 223.856** 4.341* 23.398** 292.579** 3.931*

Chlb 3.924 246.898** 14.538** 0.815 336.614** 11.002**

Chl 28.724** 573.82** 17.453** 17.825** 1159.289** 16.579**

MDA 40.082** 77.036** 4.598** 7.753* 77.621** 1.235

Pro 298.497** 180.912** 52.574** 180.149** 165.831** 37.395**

SP 142.61** 170.118** 0.534 85.788** 426.143** 1.547

SS 24.725** 18.926** 1.763 15.239** 15.249** 0.279

O2·
- 230.825** 226.896** 22.259** 78.219** 217.43** 5.616**

SOD 124.855** 38.398** 3.28* 87.396** 43.431** 2.468

POD 539.642** 185.224** 0.932 555.219** 254.48** 1.654

CAT 106.515** 148.549** 4.01* 89.514** 160.855** 1.749
The figures denote F-values. * denotes significant difference at p<0.05. ** denotes significant difference at p<0.01. P H indicates plant height in the table.
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< 0.05, Figures 3A, B). Plant height increased by 56.67% and 33.33%

and by 86.36% and 63.63%, while fresh weight increased by 14.16%

and 9.7% and by 41.61% and 27.95%, respectively, with increasing

salt concentration. There was no significant difference between G.m

and G.e.
3.6 Effects on physiological indicators
of alfalfa

Chl a, Chl b, and total chlorophyll content decreased with

increasing salt concentration. Chl a content in alfalfa inoculated

with G.m and G.e was significantly higher compared to non-

inoculated plants at 100 mM (P < 0.05, Figure 3C). The trends

for Chl b and total chlorophyll content were similar, with AMF

inoculation showing higher levels than non-inoculated plants

without salt stress. The Chl b and total chlorophyll contents in

G.m- and G.e-inoculated plants were dramatically higher than in

control plants at 100 and 150 mM (P < 0.05, Figures 3D, E). The
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chlorophyll content in G.m-inoculated plants was significantly

higher than in non-inoculated plants at 200 mM. MDA content

increased with increasing salt concentrations. AMF inoculation

resulted in lower MDA content compared to control plants at the

same salt concentration, reaching a maximum at 200 mM, which

was significantly different from control plants (P < 0.05, Figure 3F).
3.7 Effects on osmoregulatory substances
of alfalfa

The trends for Pro and SP content were similar, increasing with

rising salt concentrations. AMF-inoculated plants at the same salt

concentrations had significantly higher levels than control plants (P

< 0.05). The Pro content in alfalfa inoculated with both G.m and G.e

reached the highest levels at 200 mM, with G.m showing the most

significant increase from 43.13 to 111.12 mg/g (P < 0.05, Figure 3G).

The SP content in plants inoculated with G.m and G.e was

significantly higher at 50, 100, and 150 mM (P < 0.05), but the
FIGURE 3

(A) Alfalfa plant height under different treatments. (B) Fresh weight of alfalfa under different treatments. (C) Chl a content of alfalfa under different
treatments. (D) Chl b content of alfalfa under different treatments. (E) Chlorophyll content of alfalfa under different treatments. (F) MDA content in
alfalfa under different treatments. (G) Pro content of alfalfa under different treatments. (H) SP content of alfalfa under different treatments. (I) SS
content of alfalfa under different treatments. Bar groups with different lowercase letters indicate significant differences (P < 0.05) between
treatments under the same salt concentration. Data are means ± standard error.
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difference disappeared at 200 mM (P < 0.05, Figure 3H). SS content

in alfalfa increased and then decreased with rising salt

concentrations, peaking at 100 mM, where the difference between

AMF-inoculated and control plants was significant (P < 0.05). No

significant difference was observed at 200 mM (Figure 3I).
3.8 Effects on antioxidant enzyme activities
of alfalfa

The O2·
- production rate in alfalfa under salinity stress

increased with NaCl concentration. There was no difference

between AMF-inoculated and non-inoculated plants without salt

stress. However, AMF-inoculated plants showed significantly lower

O2·
- production rates than non-inoculated plants with increasing

salt concentration (P < 0.05, Figure 4A). Salt stress and AMF

inoculation significantly impacted antioxidant enzyme activity.

SOD, POD, and CAT activities showed similar trends, increasing

with rising salt concentrations. The activity levels in AMF-

inoculated plants were significantly higher compared to control

plants (P < 0.05), with the maximum observed at 200 mM. SOD

activity in plants inoculated with G.m and G.e increased by 131.69%

and 113.10%, respectively, compared to the control at 50 mM (P <

0.05, Figure 4B). POD and CAT activities in plants inoculated with

G.m were significantly higher than in those inoculated with G.e at

high concentrations (P < 0.05, Figures 4C, D).
Frontiers in Plant Science 08
3.9 Correlation coefficients between
physiological indicators of alfalfa

Pearson correlation analysis of 12 physiological indicators of

alfalfa inoculated with AMF under salt stress revealed several

significant relationships. The Pro content was significantly

positively correlated with plant height and MDA content. The SS

content was highly obviously positively correlated with the Chl b

content and significantly positively correlated with the Chl content.

The SP content showed a significant positive correlation with SOD

and POD activities. CAT activity was negatively correlated with Chl

content, while SS content had a positive correlation with POD

activity (Table 4).
4 Discussion

4.1 AMF diversity of salinity-tolerant plants
of Songnen grassland

AMF, as a type of “biofertilizer,” not only promotes the

absorption of mineral elements and water in plants but also

improves resistance to diseases and adverse conditions, which is

crucial for agroforestry production (Marro et al., 2022). We analyzed

the distribution and diversity of rhizosphere AMF in the Songnen

saline-alkali grassland ecosystem in China. Different host plants have
FIGURE 4

(A) O2·- production rate of alfalfa under different treatments. (B) SOD activity of alfalfa under different treatments. (C) POD activity of alfalfa under
different treatments. (D) CAT activity of alfalfa under different treatments. Bar groups with different lowercase letters indicate significant differences
(P < 0.05) between treatments under the same salt concentration. Data are means ± standard error.
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specific functions, physiological metabolisms, and root exudates,

leading to varied AMF community diversity among different

vegetation types (Kokkoris et al., 2020). AMF community also

vary with soil conditions, nutritional status, and microbial group

dynamics (Frew, 2019; Blažková et al., 2021), as different AMF have

distinct nutrient acquisition capabilities (Zhang et al., 2021). A

previous study showed that the soil nutrient levels on the eastern

slope of the HelanMountains first increased and then decreased with

increasing altitude, and the diversity of soil AMF communities

followed the same trend (Shao et al., 2024). Geographical distance

and climatic conditions can also have indirect effects (Li et al.,

2023b). In our study, 40 AMF species from six genera were identified

from the rhizosphere soil using high-throughput sequencing, with

Glomus detected as the dominant genus. Our results align with the

dominant genera of rhizosphere AMF in Inula japonica and Iris

lactea in the Songnen saline-alkali grassland. Among them, G.

mosseae and G. etunicatum were isolated from all soil samples and

were the most widely distributed AMF, indicating optimal affinity

with the experimental plants. Furthermore, Glomus has been

identified as a dominant genus in many studies on Songnen

saline-alkali grasslands and in various ecosystems (Shao et al.,

2024; Guo et al., 2022; Zheng et al., 2022). This phenomenon

could be related to the spore formation pattern of Glomus and the

suitable concentration of organic matter and N and P elements in the

soil, improving its competitiveness (Avio et al., 2006). Different

rhizosphere AMF species were observed in the rhizospheres of

different plants, showing that different host plants affect the AMF

distribution (Sýkorová et al., 2007).

The diversity and structure of soil microbial communities are

crucial for soil function and the ecological environment (Lin et al.,

2022). Research has shown that the diversity indices of rhizosphere

AMF in different plant soils, such as Sobs, Chao, Shannon, and

Simpson, vary significantly. Consistent with previous studies, plant

communities greatly affect the AMF community diversity (Brigido

et al., 2017). AMF and host plants exhibit a certain preference when
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forming symbiotic systems, and their affinity and mutual selectivity

determine the survival and development of AMF to a significant

extent (Croll et al., 2008; Wang et al., 2024a). This might be

associated with the different nutritional requirements and types of

root cells in various plants. Studies have found that differences in

longitude, latitude, or altitude create varying water, light,

temperature, and soil gradients, affecting the AMF diversity (Zhao

et al., 2020). Furthermore, abiotic factors such as insect herbivores,

climate change, N and P addition, and human interference

influence AMF diversity (Mei et al., 2022b; Li et al., 2023b). A

variety of rhizosphere AMF symbionts are distributed in the

Songnen saline land, allowing for the selection and utilization of

the optimal AMF. This provides a crucial theoretical basis for

restoring saline-alkali land.
4.2 Effect of dominant AMF on alfalfa
colonization rate

AMF can form mutualistic symbioses with plant roots, acting as

a symbiotic rhizosphere barrier to decrease the harmful impact of

salinity stress (Malik et al., 2022). The higher the mycorrhizal

colonization rate, the stronger the symbiotic ability between

plants and AMF. In this study, AMF inoculation on alfalfa

resulted in a decrease in mycorrhizal colonization rate with

increasing NaCl concentration. This indicates that factors

affecting AMF colonization status are not only related to the

affinity between plants and AMF but also to environmental

factors, especially soil conditions that affect plant root growth

(Rúa et al., 2016; Liu et al., 2023b). Research suggests that salt

stress impacts mycorrhizal colonization by inhibiting spore

germination and mycelial growth (Zhang et al., 2024b). There is a

degree of mutual selectivity between AMF and host plants, and the

AMF selected by plants may vary in different environments. The

study showed that inoculation with G. mosseae resulted in a higher
TABLE 4 Correlation coefficient of the physiological indicators of AMF-inoculated alfalfa under salt stress.

Indicator PH FW Chl a Chl b Chl SS SP Pro MDA SOD POD CAT

PH 1

FW -0.353 1

Chl a 0.132 0.217 1

Chl b 0.414 0.213 0.390 1

Chl 0.364 0.230 0.797** 0.863** 1

SS 0.010 0.449 0.322 0.792** 0.701* 1

SP -0.333 0.354 -0.552 -0.317 -0.499 -0.055 1

Pro 0.882** -0.382 0.256 0.400 0.418 0.037 -0.282 1

MDA -0.596 -0.031 0.061 -0.213 -0.104 0.047 -0.308 -0.756* 1

SOD -0.010 0.487 -0.300 0.287 0.052 0.566 0.664* -0.131 -0.162 1

POD -0.539 0.259 -0.557 -0.717 -0.799** -0.564 0.638* -0.495 -0.070 0.002 1

CAT -0.240 0.139 -0.324 -0.786 -0.709* -0.713* 0.490 -0.144 -0.300 -0.173 0.847** 1
fron
* denotes significant difference at p<0.05. ** denotes significant difference at p<0.01.
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colonization rate than G. etunicatum under different NaCl stress

levels. Plant AMF mycorrhizal dependence is an indicator of the

symbiotic relationship between plants and AMF. In this

experiment, mycorrhizal dependence showed an increasing and

then decreasing trend with rising salt concentration, similar to the

findings in maize (Ahmed et al., 2023). This may be because alfalfa

can tolerate low salt concentrations, and AMF gradually plays a role

as the salt concentration increases to 100 mmol/L. However, at 150

mmol/L, the growth of alfalfa is disrupted, inhibiting the elongation

of AMF mycelium and reducing alfalfa’s mycorrhizal dependence.

Additionally, reduced mycorrhizal dependence may also be due to

the inhibition of AMF development and structure by salinity stress

(Hashem et al., 2019).
4.3 Effects of dominant AMF on alfalfa

Plant growth and development are severely restricted by salinity

stress (Guo et al., 2024). Salt stress is closely related to water status,

increasing ion content and reducing the water absorption capacity

of plants, leading to a rapid decrease in biomass (Li et al., 2019). Our

study showed that the above-ground height and fresh weight of

alfalfa decreased with increasing salt concentration. However,

inoculation with AMF effectively improved plant height and fresh

weight under certain salt stress conditions. This demonstrates that

AMF inoculation can effectively promote the growth and

development of alfalfa. AMF colonization can protect the host

plant from the harmful impacts of salt stress (Santander et al.,

2019). Our results agree with the findings that AMF colonization in

wheat increased shoot length and fresh weight and that AMF

inoculation increased the shoot biomass of tomato under salt

treatment (Huang et al., 2023; Liu et al., 2023a). Inoculation with

AMF under salt stress may expand the root absorption area, making

it easier for plants to absorb water and nutrients, thus promoting

growth (Wang et al., 2022).

Changes in chlorophyll content can reflect the impact of salinity

stress on plant photosynthesis. In this study, increasing salt

concentration had a significant negative impact on chlorophyll

content in alfalfa leaves, consistent with previous studies (Hashem

et al., 2018; Huang et al., 2023). The likely reason is that high salt

concentrations affect the role of Mg in the plant, slowing down the

chlorophyll synthesis rate. Chl a, Chl b, and total chlorophyll

content in alfalfa inoculated with AMF at higher NaCl

concentrations (100 and 150 mM) showed significant differences

from control plants. Similar results have been observed in studies on

tomato (Kong et al., 2020), indica rice (Tisarum et al., 2020), and

Citrus aurantium (Hadian-Deljou et al., 2020). Notably, the

differences reduced at 200 mM, with inoculation with G. mosseae

being more effective than G. etunicatum. The findings indicated that

the presence of AMF promoted chlorophyll synthesis within a

certain range. This promotion may be due to AMF’s contribution

to maintaining the intact ultrastructure of chloroplast thylakoids

and mitochondria (Liu et al., 2023c) and upregulating the

expression and activity of enzymes related to chlorophyll

synthesis (Li et al., 2023a). Additionally, the increase in

chlorophyll content in mycorrhizal plants may be due to the
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release of cytokinin-like substances by the fungus, promoting

chloroplast development (Navarro et al., 2014).

Plants subjected to salt stress mobilize osmoregulatory

mechanisms, produce osmoregulatory substances, and balance cell

membrane permeability to resist injury (Xu et al., 2023). Our study

found that SS, SP, and Pro content increased with rising salt

concentrations and were significantly higher in AMF-inoculated

plants compared to non-inoculated ones. This suggests that plants

resist salinity stress by accumulating SS, SP, and Pro and that AMF

can effectively alleviate the harmful effects of NaCl stress on the

osmotic metabolic system. Similar results were observed in studies

on poplar seedlings and Xanthoceras sorbifolium Bunge (Zong et al.,

2023; Han et al., 2024). This indicates that AMF inoculation may

increase the secretion of osmoregulatory substances under salinity

stress, reduce osmotic potential, maintain normal cell metabolism,

and improve plant salt resistance (Zong et al., 2023). Notably, there

was no significant difference in SS content between AMF-inoculated

and uninoculated plants at 200 mM, suggesting that excessively

high salt concentrations may impair plant metabolic activity,

reducing SS synthesis and accelerating decomposition.

As salt concentration increases, the plant’s antioxidant system

fails to clear all reactive oxygen species (ROS), leading to membrane

lipid peroxidation and increased production of MDA (Latef and

Chaoxing, 2011; Ali et al., 2019). In this study, the MDA content in

alfalfa increased with higher salt concentrations and was

significantly reduced by AMF inoculation. This is consistent with

the research of Wang et al., which showed that AMF inoculation in

maize under salt stress reduced the MDA content (Wang et al.,

2020). Increased MDA may be associated with the increase in

antioxidant enzyme activities caused by oxidative damage (Wang

et al., 2023). Salinity and other stressors can induce the formation of

ROS, with O2·
- being a particularly toxic type that is highly reactive

and harmful, causing damage to proteins and lipids (Chen et al.,

2020). AMF inoculation significantly reduced the O2·
- production

rate under salt stress compared to non-inoculated plants, indicating

that AMF inoculation could reduce the degree of membrane lipid

peroxidation in alfalfa.

Salt stress can cause lipid peroxidation, carbohydrate oxidation,

and enzyme activity damage in cell membranes, leading to the

production of excessive ROS that damage cells (Yan et al., 2021).

Antioxidant enzymes such as SOD, POD, and CAT are commonly

found in plants and help reduce damage to plant membrane

systems under adverse conditions. AMF contribute to the direct

or indirect clearance of ROS and increase antioxidant enzyme

activity in plants under salinity stress (Mehta and Vyas, 2023),

which is consistent with our results. We observed that SOD, POD,

and CAT activities in alfalfa increased with rising salt

concentrations and were significantly higher in AMF-inoculated

plants compared to non-inoculated ones. Research has shown that

AMF inoculation significantly increases antioxidant oxidase

activities in Gossypium hirsutum and Cucumis sativus L. under

salinity stress (Hashem et al., 2018; Zhang et al., 2024b). It can be

inferred that AMF colonization benefits the synthesis of antioxidant

enzymes and improves the defense system of antioxidant enzymes

(Evelin et al., 2019). Moreover, the higher activity of antioxidant

enzymes in AMF mycorrhizal plants could be related to the lower
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accumulation of lipid peroxidation (Latef and Chaoxing, 2011),

resulting in reduced oxidative damage.
5 Conclusion

The diversity of AMF in the rhizospheres of eight common

plants in the Songnen saline-alkali grassland and the impact of

dominant native AMF species on the salt tolerance of alfalfa are

explored for the first time. A total of 40 species of AMF from six

genera were identified from rhizosphere soil samples of different

plants in Songnen grassland. G.m and G.e were identified as

dominant AMF species. The utility of these two dominant AMF

species from the locations in alleviating salinity stress in pot-

cultured alfalfa was tested in greenhouse conditions. The

significant findings were that AMF improve the salt-alkali

tolerance of alfalfa under salt stress by increasing the plant height,

fresh weight, chlorophyll, SS, SP, Pro content, and SOD, POD, and

CAT activities while reducing the MDA content. Future research

should focus on multiple bacterial strains to improve alfalfa

resistance, especially on cultivating and propagating multiple

native bacterial strains, to provide a theoretical basis for the

improvement of saline-alkali land.
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