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Backgroud: Scrophularia L., a genus of the Scrophulariaceae, is a group of

important medicinal plants used for eliminating heat and detoxifying. East Asia

has an abundance of potentially medicinal Scrophularia species, and it serves as a

secondary diversity center of the genus. However, the genomic resources

available for germplasm identification and pharmaceutical exploration of East

Asian Scrophularia are insufficient, hindering its commercial and industrial

development. Additionally, the interspecific relationships of most East Asian

Scrophularia species remain unclear.

Methods: In this study, we sequenced the leaves of 25 East Asian species of the

genus Scrophularia, assembled and annotated the complete chloroplast

genomes, and subsequently performed comparative and phylogenetic analyses

on these genomes.

Results and discussion: The conserved plastome length of these 25 species ranged

from 151,582 bp to 153,239 bp, containing a total of 132 coding genes, including 18

duplicated genes and 114 unique genes. Through genome alignment of these 25

species, 38-53 repeated sequences and 7 shared SSRs were identified, along with

regions with high nucleotide polymorphism (Pi), which could potentially serve as

molecular markers for species identification. The genome structure, gene content,

and arrangement showed conservation, while variations were observed in the IR

boundary regions and IGS. Phylogenetic inferences based onwhole plastomes or on

coding sequences (CDS) only yielded congruent results. We categorized the 25 East

Asian Scrophularia species into six distinct clades and further explored their

interspecies relationships using morphological characteristics, such as flower

color, the relative position of stamens and corolla, and plant height. This could lay

a genetic basis for future resource development of Scrophularia in East Asia.
KEYWORDS
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1 Introduction

Scrophularia L., a species-rich and complicated genus of

Scrophulariaceae, comprises nearly 300 species across the Northern

temperate zone (Hong et al., 1998; Wang, 2015). Southern Europe

and the Mediterranean are the main center of Scrophularia diversity

(Hong, 1983), while East Asia is the secondary center with a total of

42 documented species, 36 of which are recorded in China (Li et al.,

1999; Wang, 2015). Many species of this genus possess high

therapeutic properties and are extensively employed as herbal

medications to treat fever, constipation, rheumatism, and

inflammatory affections (Huang, 2018; Lee et al., 2021; Cui, 2023).

It is notable that Scrophularia plants possess bioactive iridoids, such

as harpagide and harpagoside, which are found in most species of this

genus (Li et al., 1999; de Santos Galıńdez et al., 2002; Pasdaran and

Hamedi, 2017). Scrophularia ningpoensis Hemsl., which has a wider

distribution in China and was officially listed in the Chinese

Pharmacopoeia as the sole medicinal source of Scrophulariae Radix

(SR, also called “Xuan Shen”), has been used over two thousand years

(Chinese Pharmacopoeia Commission, 2020; Lee et al., 2021). While

the remaining species in China tend to exhibit distinct regional

characteristics (Supplementary Table 1) and are usually utilized as

local folk remedies or ethnic medicines, such as S. spicata Franch., S.

fargesii Franch., S. henryi Hemsl. and S. moellendorffii Maxim (Li

et al., 1999). S. incisa Weinm. is a traditional Mongolian medicine,

and its entire plant is used for treating measles and rash diseases

(Editorial Board of the Chinese Materia Medica, 2003). S. dentata

Royle ex Benth. is employed as an ethnic medicine known as “Alpine

Tibetan herb” for the treatment of exanthema and fever (Zhang et al.,

2013; Ni et al., 2016). S. buergerianaMiq., S. kakudensis Franch. and

S. yoshimurae T. Yamaz., as the common substitution and adulterants

of SR, have been employed in Korea and in Taiwan Province for over

20 years (Sagare et al., 2001; Nam et al., 2020; Manivannan et al.,

2021; Guo et al., 2023b). However, due to restricted wild distribution

and indiscriminate harvesting and exploitation, wild strains of S.

ningpoensis are facing a diminishing genetic diversity (Wang and

Wang, 2007; Zhao, 2008; Chen, 2014). Furthermore, S. ningpoensis is

well-known as one of the “Zhe Ba Wei” (eight traditional Chinese

medicines from Zhejiang Province), and it is grown in many other

provinces across China by introduction breeding (Chen, 2011). Due

to the decreasing cultivation area of authentic S.ningpoensis in

Zhejiang (He et al., 2020), extensive cultivation in other provinces

has intensified market competition (Zhang et al., 2022a). The

intensification of market competition has led to an increase in

artificial cultivation. However, owing to intensive artificial selection

(Chen, 2011) and the unsustainable practices adopted by farmers, like

long-term asexual reproduction, the genetic diversity of cultivated

varieties and the quality of medicinal materials continue to decline

(Yang, 2011). Therefore, it is crucial to clarify the species relationship

of Scrophularia in East Asia and develop its medicinal resources

reasonably. Efficient universal molecular markers are also essential to

promote contemporary breeding projects in order to explore and

conserve the germplasm of this medicinally and economically

significant genus.

Despite the considerable medicinal worth of Scrophularia

rhizomes, differentiating among species presents a challenge because
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of their analogous therapeutic properties and physical characteristics

(Guo et al., 2023b). To understand species’ genetic background, since

the 1990s, a multitude of approaches have been applied to explore the

origin, genetic diversity and evolutionary relationships of Scrophularia

(Ortega Olivencia and Devesa Alcaraz, 1993), including pollination

system (Navarro-Pérez et al., 2013), plastid DNA datasets (e.g. trnL-

trnF, psbA-trnH, trnQ-rps16 and trnS-trnG), and nuclear ribosomal

DNA sequences (nuclear ITS) (Attar et al., 2011; Scheunert and Heubl,

2011; Navarro-Pérez et al., 2013; Scheunert and Heubl, 2014; 2017).

Among these efforts, the most extensive sampling of phylogenetic

relationships within the Scrophularia genus to date has been

constructed using sequences from the nuclear ITS region and two

plastid DNA regions, encompassing 147 species worldwide, but only

13 East Asian species included (Scheunert and Heubl, 2017). In

addition, several subclades and infrageneric relationships had weak

support, especially within the East-Asian lineage of S. sect.

Scrophularia. Considering this, further investigation of East Asian

Scrophularia using more comprehensive genomic information,

including the plastome, would be of great interest and significance

for advancing our understanding in this field.

East Asia is a natural plant floristic region and one of the most

diverse and complex regions in terms of plant biodiversity worldwide

(Boufford and Ōba, 1998; Li et al., 2015). Once a vital ice age refuge, it’s

now seen as a hub for angiosperm diversification and possesses one of

the world’s oldest andmost complete series of plant diversity evolution

(Li, 2008). East Asiatic Floristic Kingdom reflects the evolutionary

history and interrelationships of species, revealing the impact of

environmental and ecological interactions (Deng, 2015), from the

uplift of Qinghai-Tibetan Plateau (An and Harrison, 2000; Liu

et al., 2006) to monsoonal climates (Azani et al., 2019). Therefore,

East Asia is a critical region for the origin and evolution of

angiosperms worldwide, as well as an important area and natural

laboratory for studying distribution processes. Most of China is part of

the East Asiatic Floristic Kingdom (Chen et al., 2022b), a young biome

from the Early Miocene (Tang and Li, 1996; Milne and Abbott, 2002;

Yang et al., 2023), rich in both relict plants (Milne and Abbott, 2002)

and young species. Investigating the inter-species relationships within

East Asian Scrophularia could provide theoretical support for

applications such as molecular plant breeding and the analysis of

medicinal components, while also offering a useful perspective on the

evolution of East Asian Scrophularia species.

Genomic data provide us with a convenient tool to explore

inter-specific phylogeny and mechanisms of intra-specific

differentiation (Lin, 2020; Chen et al., 2021; Zhang et al., 2022b).

Despite some limitations, such as challenges in addressing

incomplete lineage sorting (ILS) and hybridization, plastids with

their conserved structure and low recombination are still valuable

for sequencing and phylogenetic analysis in angiosperms (Daniell

et al., 2016; Feng et al., 2022; Xiang et al., 2024). Overall, plastome

sequences have been commonly utilized to build phylogenies for

plants (Raubeson et al., 2007; Gao et al., 2010; Lin, 2020).

In this study, we compared and characterized the complete

plastomes of 25 species of East Asian Scrophularia, with respect to

checking the contraction and expansion of the IR regions,

identifying rapidly evolving regions of plastid DNA (i.e. SSRs and

differentiation hotspots such as repeat sequence) and calculating the
frontiersin.org

https://doi.org/10.3389/fpls.2024.1439206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1439206
protein-coding genes selective pressure. Another goal was to build a

strongly supported phylogenetic trees of 44 plastomes, elucidating

their evolutionary relationships. These research efforts are expected

to be helpful for future research on medicinal resource

development, cultivation and breeding, species identification,

systematics and conservation of Scrophularia.
2 Material and methods

2.1 Plant sampling, DNA extraction,
sequencing, assembly and annotation

Leaves of 25 East Asian Scrophularia species were collected for

sequencing (Supplementary Table 2). Voucher specimens were

preserved in the Zhejiang University Herbarium (HZU). The

CTAB method with modifications was employed to extract DNA

from silica gel-dried leaves (Zhou et al., 2021). The lysis reagent

Plant DNAzol (Invitrogen Corp. CTAB lysis solution) was used to

extract the total genomic DNA from the leaf material of

Scrophularia species. The MGIEasy Universal DNA Library Prep

Set (96 RXN, Item No.: 1000006986) was used for the preparation of

total libraries, which were then sequenced on the DNBSeq platform

using the PE100 strategy at China National GenBank (CNGB) in

Shenzhen, China. After obtaining the raw sequencing data, low-

quality reads and adapters were filtered out using Trimmomatic

v0.39 (Bolger et al., 2014). Through read mapping and gap-filling

steps, GetOrganelle software was utilized iteratively de novo to

assemble the complete plastome. Geneious software (Geneious

Biologics 2023 (https://www.geneious.com/biopharma/, accessed

on 10 May 2023)) was used to annotate the assembled plastomes

and the annotations of rps12 gene and ycf1 gene was inspected with

CPGview (Liu et al., 2023). Eventually, the complete plastomes of 25

East Asian Scrophularia species were all uploaded to NCBI

Genbank database.
2.2 Repeat sequences, SSRs and codon
usage bias analysis

We used the online tool REPuter (https://bibiserv.cebitec.uni-

bielefeld.de/reputer/) to annotate repeat sequences in the plastomes

of the 25 Scrophularia species (Kurtz and Schleiermacher, 1999).

This analysis included four types of repeats: forward repeats, reverse

repeats, palindromic repeats, and complementary repeats. The

parameter settings were as follows: a Hamming distance of 3, a

minimum repeat size of 30 bp, and a maximum repeat count of 80.

For the analysis of simple sequence repeats (SSRs) in the

Scrophularia plastomes, we employed MISA (https://pgrc.ipk-

gatersleben.de/misa/) with the following parameter settings for

the minimum repeat unit sizes: mononucleotide repeats of

10, dinucleotide repeats of 6, trinucleotide repeats of 4,

tetranucleotide repeats of 3, pentanucleotide repeats of 3, and

hexanucleotide repeats of 3 (Beier et al., 2017).
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An analysis of relative synonymous codon usage (RSCU) and

effective number of codon (ENC) was conducted using CodonW

V1.4.2 (https://codonw.sourceforge.net/). RSCU was employed to

assess variations in the usage patterns of synonymous codons across

the entire genome. It reflects the ratio of the observed frequency of a

particular synonymous codon in the actual gene sample to its

expected average frequency based on theoretical calculations

(Sharp and Li, 1987; Chen et al., 2022a). The cusp program from

the EMBOSS (https://emboss.toulouse.inra.fr/) website was used to

compute the GC content associated with the three positions of

codons (first, second, and third) in the entire plastome and within

25 plastomes (Rice et al., 2000).
2.3 Comparative plastome analysis and
contraction or expansion of
inverted repeats

To elucidate the intergenic and intra-species variations and gene

structural composition in 25 species of East Asian Scrophularia, with

S. alaschanica as the reference sequence, we employed mVISTA

(https://genome.lbl.gov/vista/mvista/submit.shtml/) for genome-

wide multiple sequence alignment. We utilized the shuffle-

LAGAN mode, which enables global alignment and is the only

mode capable of identifying gene rearrangements and inversions

(Brudno et al., 2003; Frazer et al., 2004). Additionally, we conducted

collinearity analysis using Mauve for multi-genome alignment of

the Scrophularia species, aiming to detect rearrangements and

inversions (Darling et al., 2004).

Variation in the size of the molecule is typically due to the

expansion or contraction of the inverted repeat (IR) into or out of

adjacent single-copy regions, as well as changes in sequence complexity

caused by insertions or deletions of unique sequences (Plunkett and

Downie, 2000). CPJSdraw online software (https://cloud.genepioneer.

com:9929/#/tool/alltool/detail/335) was used to compare IR border

expansion or contraction of the twenty-five sequences by directly

uploading their gb format files (Li et al., 2023a).
2.4 Selective pressure analysis and
nucleotide diversity analysis

We used a Perl script to extract protein-coding genes from each

Scrophularia plastome. These sequences were then visualized and

examined for divisibility by three using Geneious software. Using S.

takesimensis (KP718628) as the reference sequence, we calculated the

Ka/Ks values for each CDS using TBtools V1.113 (Chen et al., 2020).

CDS and intergenic spacers (IGS) were extracted with a Perl script

(https://github.com/quxiaojian/Bioinformatic_Scripts/tree/master/

extract_sequences_from_gb_files) and organized using Geneious

software. The CDS and IGS were separately aligned using

MAFFT v7.0 to construct matrices (Katoh and Standley, 2013).

Using S. takesimensis (KP718628) as the reference sequence,

nucleotide diversity analysis was performed in DnaSP v6.0 to
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determine the total number of mutations (Eta) and nucleotide

diversity (Pi) in the 25 Scrophularia plastomes (Rozas et al., 2017).
2.5 Phylogenetic analysis

A set of 44 plastomes from six genera in Scrophulariaceae,

which included 34 individuals in Scrophularia, 2 in Verbascum, 2 in

Buddleja, 2 in Eremophila, 2 in Myoporum, and 1 in Leucophyllum,

as well as one in Plantaginaceae, were used. Aside from the

Scrophularia species, the remaining 10 species are outgroups, with

Digitalis lanata used as the root of the phylogenetic tree

(Supplementary Table 3). These were chosen to construct two

phylogenetic trees inferred from whole plastome data and from

CDS data only, respectively. MAFFT V7 was used to align 44

plastome sequences under default parameters. IQ-TREE V1.6.8 was

used to construct phylogenetic trees using the maximum likelihood

method (Nguyen et al., 2015; Yang et al., 2022a). When running IQ-

TREE, it will be executed twice: the first run is to select the best

model, and the second run is to construct the tree using the best

model. The preferred model for the whole genome was TVM+F

+R2, while UNREST+FO+R2 was the optimal model for

constructing phylogenetic trees using CDS. Based on Bayesian

Information Criterion (BIC), the best models for both whole

genome and CDS trees were confirmed as TVM+I+G substitution

models using jModelTest v2.1.10 (Darriba et al., 2012). MrBayes

V3.2.7 was employed for Bayesian inference phylogenetic tree

construction (Ronquist and Huelsenbeck, 2003). The analyses

were conducted with 2 million generations using the Markov

Chain Monte Carlo (MCMC) algorithm. Trees were sampled

every 100 iterations. The first 1/4 of the calculated trees were

discarded as burn-in, and a consensus tree was constructed from

the remaining trees to compute posterior probabilities (PPs).
3 Results

3.1 Sequencing, plastome structure
and characteristics

The quality metrics of raw reads (Q20 and Q30) and clean reads

(reads after quality trimming, reads assembled and coverage of

assemblies) indicated good sequencing quality and high depth

coverage, demonstrating that the sequencing depth was sufficient

to support the assembly of the plastid genome (Supplementary

Table 4). After assembly and annotation, we obtained the following

structural information of the plastid genome. In the 25 East Asian

Scrophularia species, plastomes had a total length ranging from

151,582bp to 153,239 bp. It consisted of a large single-copy region

(LSC) spanning from 82,790 bp to 84,386 bp, a small single-copy

region (SSC) ranging from 17,321 bp to 17,942 bp, and two IR

regions with lengths between 25,392 bp and 25,570 bp. The

Scrophularia plastomes encoded a total of 132 genes, comprising

18 duplicated genes and 114 unique genes, with 80 protein-coding

genes, 4 ribosomal RNA (rRNA) genes and 30 transfer RNA

(tRNA) genes. Among 114 unique genes, 10 protein-coding genes
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(petB, petD, atpE, ndhB (x2), rpl16, rpl2 (x2), rps16, rpoC1) and 5

tRNA genes (trnA-UGC, trnG-GCC, trnI-GAU, trnL-UAA, trnV-

UAC) contained a single intron, while 3 genes (clpP, rps12, and ycf3)

had 2 introns (Figure 1; Supplementary Table 5). These

characteristics align with previous findings in Scrophularia

plastomes (Wang et al., 2022; Guo et al., 2023b). The overall GC

content ranged from 37.87% to 38.09%. The GC content in the LSC

ranged from 35.93% to 36.20%, while in the SSC it ranged from

32.04% to 32.35%. The IR regions exhibited a GC content ranging

from 43.08% to 43.22%, which was higher than that of both the LSC

and SSC regions (Table 1).
3.2 Repeat sequence, SSRs and codon
usage bias analysis

A total of 1084 repeats were detected, consisting of 523 forward

repeats, 536 palindromic repeats, 15 reverse repeats, and 10

complementary repeats (Supplementary Table 6). The lengths of

the repeat sequences in the 25 Scrophularia plastomes varied from

38 (S. yunnanensis) to 53 (S. mapienensis). Among them, only 12

exhibited reverse repeats, while 9 had complementary repeats. S.

buergeriana displayed the highest number of reverse repeats (3) and

complementary repeats (2) (Figure 2). Regarding the base size, the

majority of the dispersed repeat sequences were 30-39 bp in length,

accounting for 79.61% of the total. A minority of repeats were 50 bp

or longer (1.75%), with S. lijiangensis, S. spicata, and S.

mandarinorum having the highest number (4) of dispersed

repeats longer than 50 bp (Supplementary Table 6).

We observed a range of SSRs quantities in the plastomes of 25

East Asian Scrophularia species, with counts varying from 38 (S.

musashiensis & S. fargesii) to 61 (S. yunnanensis). Among these

SSRs, 1040 (93.86%) were comprised of A/T bp, the frequency of C

and G nucleotides was low (0.45%). Besides single nucleotide

repeats, we identified 10 different types of SSRs shared among the

25 Scrophularia plastomes, namely AT/TA, ATA, CAT, TTA,

AAGA, AATA, ATCA, GAAA, and GTCT (Figure 3A,

Supplementary Table 7). It is worth noting that the SSRs

exhibited nucleotide variations, with each type of repeat (di-, tri-,

tetra-, penta-, and hexanucleotide) corresponding to 7.9%, 2.8%,

7.6%, 0.7% and 0.2%, respectively (Supplementary Table 7). The

SSRs were unevenly distributed in the plastome, with 79.9% located

in the LSC region, 9.5% in the SSC region, and 10.6% in the IRb and

IRa regions, indicating increased polymorphic variation in LSC

region (Figure 3B).

We conducted a statistical analysis of relative synonymous

codon usage (RSCU) in 25 East Asian Scrophularia species, and

the results were consistent across different species. The most and

least frequently used amino acids were Leucine (Leu) (126,428) and

Tryptophan (Trp) (17,404), respectively. Among the 30 codons

analyzed, the RSCU values for each Scrophularia individual were

greater than 1, indicating a preference for these codons. Among

these preferential codons, the codon for Arginine (AGA) exhibited

the highest preference, with an average RSCU value of 1.95. The

codons UGG and AUG did not show any preference (RSCU = 1)

(Figure 4; Supplementary Table 8). The effective number of codons
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(ENC) value typically ranges from 20 to 61, with lower values

indicating stronger bias in codon usage away from random selection

(Wu et al., 2007; Li et al., 2023b). Our research results revealed an

ENC range of 55.36 (S. elatior) to 56.19 (S. hypsophila) across the 25

Scrophularia plastomes, with an average of 55.78.
3.3 Comparative plastome analysis and
contraction or expansion of
inverted repeats

Through the whole-genome alignment, we found minimal

differences between the intra-genic and intergenic regions across

the global view (Supplementary Figure 1). To analyze this further,

we used Mauve for collinearity analysis, where homologous regions

were shown in the same color. The plastome sequences of the 25

Scrophularia species displayed normal and single blocks. The
Frontiers in Plant Science 05
homologous blocks were aligned in a linear manner, indicating a

lack of rearrangements and inversions, resulting in good collinearity

(Supplementary Figure 2).

Comparison of 25 plastomes of East Asian Scrophularia species

revealed minor variations in the expansion and contraction of the

IR regions. The IRa/SSC and IRb/LSC boundaries extended into the

ycf1 and rps19 genes, leading to the generation of pseudogenes. In

IRa, the length of the pseudogene ycf1 ranged from 209 to 978 bp,

with the majority being around 870 bp. Specifically, S. chasmophila

had a pseudogene ycf1 length of 978 bp, S. delavayi had 900 bp, and

S. kakudensis had 231 bp. While the ycf1 gene, in those species, had

a length ranging from 4,386 to 4,493 bp in the SSC region. Except

for S. kakudensis, S. buergeriana, and S. ningpoensis, the pseudogene

rps19 genes in the IRa region were at a distance of 0 bp from the

LSC/IRa junction (JLA). The rps19 gene located at the JLB extended

into the LSC region with a length of 238-252 bp (252 bp in S. wattii).

In S. moellendorffii, the rpl2 gene completely situated in the IRb
FIGURE 1

Circular gene map of Scrophularia plastomes. The map illustrates the characteristic quadruple structure of the plastome, where the blue regions
represent the IR regions, and the gray regions represent the LSC and SSC regions. The transcription directions for the inner and outer genes are
clockwise and anticlockwise, respectively. The black, uneven circle in the middle represents the GC content along the genome. The functional
classification of the genes is shown in the left bottom corner.
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region experienced a slight contraction. It had a length of 1,483 bp,

distinguishing it from the 1,492 bp length found in other species.

Notably, in S. chasmophila, the ndhF gene expanded from the SSC

region into the IRb region with an expansion length of 28 bp, while

its length in the SSC region was 2,210 bp. In contrast, in the

remaining species, the ndhF genes were entirely within the SSC

region, with lengths mostly around 2,232 bp (Figure 5).
3.4 Selective pressure analysis and
nucleotide diversity analysis

A selection pressure analysis was performed on the protein-

coding genes of 25 East Asian Scrophularia plastomes. Among the

80 analyzed protein-coding genes, the average Ka/Ks ratio was

found to be 0.1172. The most conserved genes showed an average

Ka/Ks value of 0 (excluding NA, where NA indicates Ks = 0,
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meaning no synonymous mutations), indicating strong purifying

selection pressure. These genes include petB, petG, petN, psaC, psbA,

psbD, psbE, psbI, psbJ, psbL, psbM, psbN, psbT, psbZ, and rps7. The

top three Ka/Ks values were 2.6677 for ndhF gene in S. chasmophila,

2.5567 for ycf2 gene in S. fargesii, and 2.3657 for ndhF gene in S.

musashiensis (Figure 6; Supplementary Table 9).

Using a Perl script, we extracted 80 CDS and 101 IGS from the

plastomes of 25 East Asian Scrophularia species. Subsequently,

nucleotide diversity (Pi) analysis was conducted using DnaSP.

The Pi values ranged from 0 to 0.00694 in CDS and from 0 to

0.005691 in IGS. The IGS exhibited higher levels of polymorphism

compared to the CDS. Higher Pi values were observed in CDS such

as ycf1 (0.00694), matK (0.00645), rpl32 (0.00643), ndhF (0.00638),

psbK (0.00592), and rps8 (0.00569) (Figure 7A; Supplementary

Table 10). Similarly, IGS including trnH-GUG-psbA (0.05691),

ndhD-psaC (0.03392), psbT-psbN (0.02508), ndhK-ndhC

(0.01976), rpl32-trnL-UAG (0.01798), psbB-psbT (0.01778), petD-
TABLE 1 Basic features of East Asian Scrophularia plastomes.

Species
GenBank
Acc. No.

Total plastome
size (bp)

LSC
length

SSC
length

IR
length

Total GC
content (%)

LSC SSC IR

S. alaschanica OR393409 151,997 83,190 17,913 25,447 38.04 36.19 32.08 43.17

S. amgunensis OR393399 153,173 84,331 17,890 25,476 37.95 36.04 32.14 43.16

S. buergeriana OQ633013 153,148 84,259 17,925 25,482 37.98 36.07 32.17 43.18

S. chasmophila OR393407 152,335 83,874 17,321 25,570 38.01 36.09 32.27 43.11

S. delavayi OR393414 153,050 84,171 17,877 25,501 37.98 36.07 32.16 43.16

S. elatior OR393401 153,239 84,386 17,905 25,474 37.96 36.04 32.21 43.16

S. fargesii OR393413 152,429 83,577 17,900 25,476 38.07 36.18 32.26 43.21

S. henryi OR393406 153,028 84,144 17,942 25,471 38.00 36.10 32.19 43.18

S. heucheriiflora OR393400 152,536 83,660 17,888 25,494 37.97 36.11 32.13 43.08

S. hypsophila OR393420 152,080 83,626 17,466 25,494 38.00 36.09 32.08 43.15

S. jinii OR393405 152,313 83,469 17,892 25,476 38.09 36.20 32.35 43.19

S. kakudensis OQ633012 153,032 84,138 17,922 25,486 37.98 36.08 32.15 43.17

S. lijiangensis OR393402 152,668 83,965 17,919 25,392 38.01 36.11 32.17 43.22

S. mandarinorum OR393419 152,879 84,151 17,918 25,405 37.98 36.07 32.18 43.19

S. mapienensis OR393411 153,153 84,239 17,926 25,494 37.98 36.07 32.16 43.17

S. modesta OR393403 152,997 84,134 17,903 25,480 38.00 36.09 32.16 43.18

S. moellendorffii OR393418 151,582 82,790 17,906 25,443 38.03 36.16 32.06 43.18

S. musashiensis OR393404 152,401 83,551 17,904 25,473 38.03 36.13 32.23 43.17

S. ningpoensis OQ633009 153,173 84,255 17,938 25,490 37.99 36.08 32.18 43.19

S. spicata OR393415 152,887 84,160 17,919 25,404 37.98 36.07 32.14 43.19

S. stylosa OR393416 152,944 84,089 17,893 25,481 37.98 36.07 32.18 43.18

S.
taihangshanensis

OR393412 153,221 84,373 17,936 25,456 37.87 35.93 32.04 43.13

S. wattii OR393408 152,495 84,096 17,471 25,464 37.97 36.04 32.17 43.14

S. yoshimurae OR393417 153,173 84,274 17,925 25,487 37.98 36.07 32.18 43.18

S. yunnanensis OR393410 152,711 83,871 17,862 25,489 37.96 36.06 32.11 43.13
fr
ontiersin.org

https://doi.org/10.3389/fpls.2024.1439206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1439206
rpoA (0.01726), and rps18-rpl20 (0.01709) exhibited higher Pi

values (Figure 7B; Supplementary Table 10).
3.5 Phylogenetic analysis

Based on the analysis of complete plastome sequences and CDS

data from 44 species, we constructed four phylogenetic trees using

Bayesian inference (BI) and maximum likelihood (ML) methods.

The topologies of these trees were so similar that we decided to

show the tree inferred from the Maximum Likelihood method

(Figure 8; Supplementary Figure 3). The majority of nodes

received strong support (BI-PP/ML-BS = 1/100). Scrophulariaceae

species throughout the tree could be categorized into three distinct

monophyletic groups, including tribe Scrophularieae, tribe

Buddlejeae, and tribes Myoporeae + Leucophylleae. The genus

Scrophularia could be further divided into two sections:

Scrophularia sect. Caninae and S. sect. Scrophularia; the 25 newly

studied species belong to the latter section. The phylogenetic tree

robustly supported that the 25 species fell into six monophyletic

clades (A-F). Clade F was sister group to clades A-E. Within the

core of the phylogenetic tree, the other clades formed a topology of

[clade C + (clade A + B)].
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4 Discussion

The plastome structure is generally conserved. This conservation

indicates the presence of widespread evolutionary selective pressures

associated with photosynthesis, which is the primary function of

chloroplasts (Bungard, 2004). The majority of nonsynonymous

substitutions are under purifying selection, implying that in most

cases, natural selection eliminates harmful mutations and maintains

amino acids unchanged (Hughes et al., 2008). In our study, the Ka/Ks

values of most of genes were less than 1 (98.45%) in these

Scrophularia species, while a few genes were greater than 1 (1.55%).

It suggests that the majority of genes in the Scrophularia plastome are

under purifying selection, with a few under significant positive

selection, such as ycf2 gene (S. modesta, S. chasmophila, S.

alaschanica, S. stylosa, S. yoshimurae, S. moellendorffii, S.

hypsophila, S. buergeriana, S. ningpoensis) and ndhF gene

(S. elatior, S. musashiensis, S. chasmophila, S. fargesii, S. delavayi, S.

stylosa, S. yoshimurae, S. buergeriana, S. ningpoensis) (Figure 6).

Repetitive plastome sequences are crucial for genome

rearrangement and genetic variation (Qi et al., 2017; Wei et al., 2020;

Yang et al., 2022b). Within our study, a total of 1,084 repeat sequences

were detected, the loci containing these repetitive sequences are critical

hotspots for genomic reconfiguration. They provide information for
FIGURE 2

Quantitative analysis of four types of repeats in 25 East Asian Scrophularia plastomes.
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understanding the evolutionary history and sequence divergence of

plant species (Zong et al., 2019; Sun et al., 2020; Chong et al., 2022).

Furthermore, they may provide abundant information for population

studies and phylogenetic analysis (Gao et al., 2009; Nie et al., 2012;

Zong et al., 2019). Of SSRs, 1040 (93.86%) consisted of A/T bp, with a

notably low frequency of C and G nucleotides (0.45%), a pattern also

observed in other medicinal plants such as Gentiana (Ni et al., 2017),

Alpinia (Li et al., 2020), and Aconitum (Niu et al., 2023). SSRs in the

plastome are frequently used as genetic markers in population genetics

and evolutionary studies (Yang et al., 2016; Guo et al., 2020; Chen et al.,
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2023). Among the 25 samples of Scrophularia, a total of 7 common

SSRs loci were identified. Analyzing similar SSRs in comparable genetic

regions could be a potential approach for marking East Asian

Scrophularia species for future population genetics studies,

germplasm evaluation and resource conservation.

DNA sequence data from diverse organisms clearly show that

synonymous codons for any given amino acid are not used with equal

frequency, even though the choices among codons should be

equivalent in terms of protein structure (Ikemura, 1985). The

genomic GC content emerged as the strongest single determinant
FIGURE 3

(A) Type and number of SSRs in 25 East Asian Scrophularia plastomes. (B) SSRs locus distribution (including LSC, SSC, IRa and IRb) of East Asian
Scrophularia plastomes.
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of codon usage variation across species (Plotkin and Kudla, 2011).

The average GC content of the first, second, and third codon

positions in the plastomes was 37.93%, 37.89%, and 38.15%,

respectively. The overall GC3 content ranged from 37.87% (S.

taihangshanensis) to 38.09% (S. jinii), all below 50%. There are a

total of 28 codons with RSCU values greater than 1, of which 25 end

with A/U, indicating a preference for codons ending in A/U in the

plastomes of the 25 East Asian Scrophularia species. (Supplementary

Table 8). The result is consistent with our previous research on the

plastomes of Scrophularia (Wang et al., 2022; Guo et al., 2023b).

Although the number and order of genes in the plastome are

generally conserved, the IR regions expansion and contraction, a

phenomenon known as “ebb and flow in plastomes”, is the main

mechanism responsible for the variation in the plastome length of

higher plant (Goulding et al., 1996; Kim and Lee, 2004; Zhu et al.,

2016; Yin et al., 2018). Similar to many medicinal plants, the high GC

content in the IR region may be caused by the elevated GC content of

rRNA and tRNA in this region (Deng et al., 2021; Lu et al., 2022), as

observed in various species such as Salvia (Liang et al., 2019),

Polygonum (Guo et al., 2022), and Atractylodes (Xu et al., 2023).

Additionally, the GC content in the IR regions is higher than in the

LSC and SSC regions. Moreover, among 14 regions with higher Pi

values, the majority were located in the LSC (64.28%), while a smaller

portion was found in the SSC (35.72%). Notably, none of them were

found in the IR regions. Overall, the IR displayed a lower level of

polymorphism. This is consistent with previous reports, indicating

that the IR regions are more conserved compared to the LSC and SSC

regions (Wang et al., 2022; Guo et al., 2023b).

Comparative genomic analysis can contribute to gaining a

comprehensive understanding of a genus (Sivashankari and

Shanmughavel, 2007; Tonti-Filippini et al., 2017). Compared to

protein-coding regions, the non-coding regions exhibited higher

diversity and variability. The regions with overall significant
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differences, which are trnH-GUG-psbA, rps16-trnQ-UUG, and

trnT-UGU-trnL-UAA, are in good agreement with the Pi

calculation results. Research has shown that polymorphic indels

and nucleotides of trnH-psbA could be used to authenticate most

Kaempferia species (Techaprasan et al., 2010). The trnH-GUG-psbA

has been supported by studies as a DNA barcode sequence for

distinguishing the medicinal plant Datura metel and its adulterants

(Bi et al., 2022). Therefore, the divergent hotspot regions could

serve as candidate markers for future identification analyses within

the Scrophularia genus. Developing universal primers targeting

these hotspot regions would be of importance in revealing the

molecular phylogenetics and conservation genetics of other

Scrophularia species (Jia et al., 2017; Kong et al., 2017; Liu

et al., 2021).

According to phylogenetic tree, tribe Scrophularieae was sister to

tribe Buddlejeae, and together they formed a sister group to tribes

Myoporeae + Leucophylleae. The interspecies relationships among

these tribes were reasonably resolved and have also been confirmed in

previous literature (Wang, 2015; Gao, 2021). We subdivided

Scrophularia sect. Scrophularia into six clades (A-F) and discussed

them based on morphological characteristics in the following.

Subclades A1 and A2 formed a clade. In subclade A1, the stamens

of S. mapienensis are about the same length as the lower lip of the

corolla, which is yellow-white or purple (Figure 8b). The stamens of

the other two species are half the length of the lower lip, and their bell-

shaped or spherical corollas are yellow-green or yellow (Figure 8a). In

subclade A2, S. spicata and S. mandarinorum, as sister taxa, can grow

to over 1 meter in height, and the corolla color of species within

subclade A2 is green or yellow-green (Figures 8c, d). Subclades A3 (S.

chasmophila, S. wattii, and S. hypsophila) and A4 (S. alaschanica and

S. moellendorffii) were sister groups and together they formed a sister

relationship with S. modesta, which has green or yellowish-green

corolla (Figure 8h). With the exception of S. chasmophila, which
FIGURE 4

Heatmap of Relative Synonymous Codon Usage (RSCU) values for 25 East Asian Scrophularia plastomes.
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features a yellow-green corolla, the species belonging to subclades A3

and A4 are characterized by their bright yellow corollas (Figures 8e-g).

The species of Scrophularia within subclade A3 are all perennial small

herbaceous plants, especially S. wattii with scalelike and rosette leaves
Frontiers in Plant Science 10
appressed to ground (Figure 8e). Clade B included S. taihangshanensis

and S. amgunensis, both of which have yellow-green corollas

(Figures 8i, j). S. stylosa with light yellow corolla and obcordate

staminodes (Figure 8k) was sister to S. yunnanensis with green
FIGURE 5

The contraction and expansion diagram of the IR region in the plastomes. The positions of LSC, IR, and SSC junctions were compared among 25
Scrophularia species. JLB stands for the junction between the long single copy and reverse repeat (LSC/IRb), JSB stands for the junction between
reverse repeat and short single copy (IRb/SSC), JSA stands for the junction between short single copy and forward repeat (SSC/IRa), and JLA stands
for the junction between forward repeat and long single copy (IRa/LSC).
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corolla, the two species constituting clade C. S. ningpoensis and its

common medicinal substitutes or adulterants of S. buergeriana, S.

kakudensis, and S. yoshimurae formed a monophyletic clade D. The

corolla of S. buergeriana is green and S. kakudensis has outside green

and inside purplish brown corolla, while the corollas of the other two

species are purple (Figures 8l-o). Clade E included S. elatior and S.
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heucheriiflora, with their stamens extending beyond the green corolla

(Figure 8p). The endemic Chinese species S. fargesii and S. jinii are

sister taxa (subclade F1), while the Japanese endemics S. musashiensis

and Korean endemics S. takesimensis clustered as subclade F2. These

two subclades shared a common ancestor, with purple-red corollas

and slender flower stalks (Figures 8q-s). The cyme inflorescence of S.
FIGURE 6

Ka/Ks Analysis of 80 CDS in 25 East Asian Scrophularia Species.
FIGURE 7

Comparison of nucleotide diversity (Pi) values. (A) among 80 CDS of 25 East Asian Scrophularia species. (B) among 101 IGS of 25 East Asian
Scrophularia species.
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fargesii consists of 1-3 or 5 flowers, while that of S. jinii comprises 1-7

flowers. As for leaf margin, S. jinii is deeply double serrate but S.

fargesii is unequally double serrate (Wang et al., 2018).

However, there were also branches with relatively low support

rate and short length in the phylogenetic trees, such as the

relationships between Clade C and Clade (A+B), as well as

between Clade B and Clade A. We speculate that there may have

been a rapid radiation. Given the potential for minimal genetic

disparities among species during rapid differentiation, the swift

evolutionary radiation of species in a condensed timeframe may

contribute to diminished support rates within the phylogenetic tree

(Guo et al., 2023a; Liu et al., 2024). Consequently, these branches

with low supports may stem from the accumulation of multiple

lineages over a short period. To validate this phenomenon,

additional studies will be needed increasing the number of

individuals and delving into the population genomics of the East

Asian Scrophularia. By examining variation information, we can
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discuss the genetic structure, gene flow, speciation mechanisms, and

evolutionary dynamics of East Asian Scrophularia populations.

It is also important to consider that, while plastid genomes are

helpful for constructing phylogenetic trees, they still have certain

limitations. For example, they do not adequately address issues such

as ILS, hybridization, and whole genome duplication (McLay et al.,

2023; Brown et al., 2024; Session, 2024; Wang et al., 2024). As we

know, introgression and ILS are common mechanisms that lead to

cytonuclear discordance. Although cytonuclear discordance is

widespread and often considered an obstacle in phylogenetic and

taxonomic studies, it can also provide valuable information (Duan

et al., 2023). Currently, S. ningpoensis is the primary species

cultivated on a large scale. Through genomic research on the East

Asian Scrophularia, we anticipate gaining insights into the genus,

which will aid in molecular breeding and unlock the medicinal

potential of a broader range of Scrophularia species. It will

contribute to the rational exploration, full utilization, and
FIGURE 8

A phylogenetic tree of 30 Scrophularia species inferred from maximum likelihood based on the plastome sequence dataset. Support values above
the branches, assessed by two methods (ML, BI), are listed as the order PP (posterior probability)/BS (bootstrap support). Genbank accession
numbers of all species are given within the parentheses. Rectangular blocks of red, blue, green, and yellow represent the tribes Scrophularieae,
Buddlejeae, Myoporeae and Leucophylleae, respectively. The four tribes all belong to the Scrophulariaceae, while Digitalis lanata belongs to the
Plantaginaceae. The red branches represent Scrophularia, with the remaining species being outgroups. Within the red block, red font indicates
Scrophularia sect. Scrophularia, while black font indicates Scrophularia sect. Caninae. The capital letters A-F represent different clades within S. sect.
Scrophularia studied. Lower case letters a-s correspond to images of some species given on the left.
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sustainable cultivation and harvesting of medicinal plant resources,

ensur ing their conservat ion and susta inable use for

future generations.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

XW: Formal analysis, Methodology, Software, Writing – original

draft, Writing – review & editing. LG: Formal analysis, Methodology,

Software, Writing – original draft, Writing – review & editing. LD:

Formal analysis, Visualization, Writing – review & editing. LM:

Data curation, Resources, Writing – review & editing. RW:

Conceptualization, Funding acquisition, Supervision, Writing –

review & editing. PL: Conceptualization, Investigation, Resources,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was financially supported by the Zhejiang Province Basic Public
Frontiers in Plant Science 13
Welfare Research Program Project (LGN22H280005), Key

Research and Development Program of Zhejiang Province (grant

no. 2023C02017), the Fundamental Research Funds of Zhejiang Sci-

Tech University (24042128-Y), General Scientific Research Projects

of the Department of Education of Zhejiang Province

(No. Y202353132).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1439206/

full#supplementary-material
References
An, Y., and Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan
orogen. Annu. Rev. Earth lanetary Sc i . 28, 211–280. doi : 10.1146/
annurev.earth.28.1.211

Attar, F., Riahi, M., Daemi, F., and Aghabeigi, F. (2011). Preliminary molecular
phylogeny of Eurasian Scrophularia (Scrophulariaceae) based on DNA sequence data
from trnS-trnG and ITS regions. Plant Biosyst. - Plant Biosyst. 145, 1–9. doi: 10.1080/
11263504.2011.590826

Azani, N., Bruneau, A., Wojciechowski, M. F., and Zarre, S. (2019). Miocene climate
change as a driving force for multiple origins of annual species in Astragalus (Fabaceae,
Papilionoideae). Mol. Phylogenet Evol. 137, 210–221. doi: 10.1016/j.ympev.2019.05.008

Beier, S., Thiel, T., Münch, T., Scholz, U., and Mascher, M. (2017). MISA-web: a web
server for microsatellite prediction. Bioinformatics 33, 2583–2585. doi: 10.1093/
bioinformatics/btx198

Bi, G., Ding, Y., Wang, L., Hu, S., Li, H., Lei, M., et al. (2022). Characterization and
phylogenetic analysis of complete chloroplast genome of Datura metel and Brugmansia
arborea. Chin. Traditional Herbal Drugs 53, 7191–7200. doi: 10.7501/j.issn.0253-
2670.2022.22.023

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/
btu170
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