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1College of Horticulture and Forestry, Tarim University, Alar, China, 2Xinjiang Production and
Construction Corps Key Laboratory of Facility Agriculture, Alar, China, 3College of Engineering, Anhui
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UAV-based plant protection represents an efficient, energy-saving agricultural

technology with significant potential to enhance tea production. However, the

complex terrain of hilly and mountainous tea fields, coupled with the limited

endurance of UAVs, presents substantial challenges for efficient route planning. This

study introduces a novel methodological framework for UAV-based precision plant

protectionacrossmultiple teafields, addressing thedifficulties inplanning theshortest

routes and optimal flights for UAVs constrained by their endurance. The framework

employs a hyperbolic genetic annealing algorithm (ACHAGA) to optimize UAV plant

protection routes with the objectives of minimizing flight distance, reducing the

number of turns, and enhancing route stability. The method involves two primary

steps: cluster partitioning and sortie allocation for multiple tea fields based on UAV

range capabilities, followed by refining the UAV’s flight path using a combination of

hyperbolic genetic and simulated annealing algorithmswith an adaptive temperature

control mechanism. Simulation experiments and UAV route validation tests confirm

the effectiveness of ACHAGA. The algorithm consistently identified optimal solutions

within anaverageof40 iterations, demonstrating robustglobal searchcapabilities and

stability. It achieved an average reductionof 45.75 iterations and 1811.93meters in the

optimal route, with lower variation coefficients and extreme deviations across

repeated simulations. ACHAGA significantly outperforms these algorithms, GA, GA-

ACO, AFSA and BSO, which are also heuristic search strategies, in the multi-tea field

route scheduling problem, reducing the optimal routes by 4904.82 m, 926.07 m,

3803.96 m and 800.11 m, respectively. Field tests revealed that ACHAGA reduced

actual flight routes by 791.9 meters and 359.6 meters compared to manual and

brainstorming-based planning methods, respectively. Additionally, the algorithm

reduced flight scheduling distance and the number of turns by 11 compared to

manual planning. This study provides a theoretical and technical foundation for

managing large-scale tea plantations in challenging landscapes and serves as a

reference for UAV precision operation planning in complex environments.
KEYWORDS

UAV-based plant protection, multi-tea field plant protection, unmanned aerial vehicle,
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1 Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have

emerged as a crucial tool in modern agriculture, offering efficient

and eco-friendly solutions tailored to specific needs. The tea

industry, with its intricate field layouts, diverse topography, and

varied cultivation patterns, exemplifies the unique challenges of

plant protection that UAV technology can address (Zhang and Zhu,

2023; Paraforos et al., 2022). Historically, agriculture has witnessed

a gradual but significant shift towards automation and technological

integration. UAVs, once a novelty, are now at the forefront of this

evolution, playing a pivotal role in crop monitoring, pest control,

and resource management (Bao et al., 2023; Verma et al., 2023).

Their ability to navigate difficult terrains and distribute treatments

with unprecedented precision has not only enhanced crop yield and

quality but also reduced environmental impact.

Despite the clear advantages, scheduling and routing UAVs in

the tea industry remain complex tasks. Traditional methods, heavily

reliant on human experience and subjective judgment, fall short in

addressing the non-linear and dynamic nature of tea field layouts.

The existing literature on UAV route optimization in complex

terrains highlights several approaches, such as the A* algorithm,

Rapidly-exploring Random Trees (RRT), and various meta-

heuristic algorithms (Ait Saadi et al., 2022; He et al., 2024).

However, these methods often struggle with the high

computational demands and adaptability required for real-time

operations in uneven and unpredictable environments.

Additionally, the limited battery life of UAVs imposes stringent

constraints on flight distance and operational time. This

necessitates highly efficient and adaptive route optimization to

ensure UAVs can complete their tasks within a single charge. The

non-linear and dynamic nature of tea field layouts further

complicates the planning process, as routes must continuously

adapt to the intricate and changing topography to ensure

comprehensive coverage and efficient resource use.

This paper explores the UAV multi-tea field resupply and

dispatch route planning challenge, encompassing both site

selection and route optimization. Extensive research has been

conducted globally on UAV dispatch center location planning.

For instance, Bian et al. (Bian et al., 2022). introduced a UAV

base station positioning approach utilizing the spiral algorithm,

which formulates an air-to-ground propagation model reflecting

the actual geographic environment to identify optimal UAV base

station sites in complex settings. However, this approach primarily

targets communication optimization rather than the logistical

challenges specific to agricultural operations. Famili et al. (Famili

and Stavrou, 2022) acknowledged the constraints of UAV battery

life, proposing an optimization framework based on an

approximation algorithm to ascertain the minimal number of

charging stations needed for sustained flight capability. This

study, while addressing the critical issue of battery life, does not

fully tackle the complexities of dynamic route planning in varied

terrains. Saavedrai et al. (Saavedra et al., 2021) developed an

adaptive and comprehensive capacity-constrained localization-

routing (CLRP) model for UAV identification in post-disaster
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relief, effectively pinpointing ideal locations and routes for UAV

hubs in preparation for disasters. Although this model is robust for

emergency scenarios, it does not account for the continuous and

repetitive nature of agricultural UAV operations. Li et al. (Li et al.,

2019) enhanced the firefly algorithm for logistics distribution center

siting focuses on maximizing benefits based on the performance

characteristics and limitations of logistics UAVs. This approach is

effective for static distribution centers but lacks the adaptability

required for real-time agricultural resupply and dispatch. While

these studies above primarily focused on identifying optimal

locations for specific purposes such as communication, charging,

and rescue, the current paper addresses the distinct challenge of

planning dynamic multi-tea field supply and dispatch routes.

This entails UAV route optimization for efficient resupply and

dispatch across tea fields, ensuring effective operations and

comprehensive coverage—a novel and complex aspect of aerial

plant protection planning.

The scheduling of UAV route tasks is a significant research area,

involving the development of optimal flight schemes for UAVs

across various application scenarios. Researchers worldwide have

devised numerous route planning algorithms for this domain,

engaging in comprehensive discussions centered on diverse

optimization goals. For instance, Li et al. (Li et al., 2022c)

redefined the challenge of optimal task distribution among

multiple UAVs as a combinatorial optimization problem and

developed a sequence-independent enumeration algorithm,

significantly reducing flight frequency. However, this method

does not integrate resupply point planning, which is crucial for

large-scale agricultural settings. Xu et al. (Xu et al., 2020) addressed

the assignment and sequencing of UAV operational tasks by

formulating a bi-objective model, prioritizing non-operational

flight distance and total operational time, and introduced an

enhanced MOSFLA algorithm. This model is effective for

minimizing travel distances, but it does not consider the dynamic

nature of resupply in multi-field environments. Sun et al. (Sun et al.,

2020) presented a dragonfly-inspired scheduling method for

agricultural UAVs, focusing on plant protection and charging

operations, which efficiently identifies near-optimal schedules.

Despite its efficiency, it lacks a comprehensive approach to

resupply point selection. Li et al. (Li et al., 2022b) proposed a

novel approach for route planning and task allocation during UAV

fly-over operations, optimizing task distribution through a particle

swarm algorithm with flight control time as the objective,

constrained by UAV battery life and payload capacity. This

approach, while innovative, does not address the specific

requirements of multi-field agricultural resupply. Fesenko et al.

(Fesenko et al., 2020) responded to the nascent state of UAV

monitoring technology for nuclear power plants by proposing an

algorithm for automated battery exchange at aerial deployment

sites, facilitating the development of UAV flight schedules and

automatic replacement systems. This algorithm is tailored for fixed

installation sites and does not accommodate the fluid resupply

needs of agricultural UAVs. While these aforementioned

algorithms achieve cost-effective and concise scheduling solutions

for their respective problems, they diverge from the multi-tea field
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route scheduling problem based on supply partitioning addressed in

this paper. Primarily, the problem models employed by the

aforementioned methods differ from the one in this study.

Moreover, previous methods have not considered UAV resupply

point planning and selection, focusing instead on route

optimization for small-scale operations with predetermined fixed

resupply points. In contrast, this study’s multi-tea field scheduling

route planning problem also encompasses the UAV multi-tea field

resupply challenges including resupply location selection and multi-

task allocation planning. This research area has seen limited

exploration, thus this study contributes to bridging a notable gap

in the field.

Despite its efficiency, it lacks a comprehensive approach to

resupply point selection. To overcome these limitations, this paper

introduces a novel scheduling and routing methodology for UAVs

in multi-tea field operations. By analyzing the operational area’s

characteristics and requirements, we have developed a model that

not only identifies optimal supply points but also provides a

comprehensive route plan for multi-field plant protection. The

non-linear and dynamic nature of tea field layouts, combined

with the limited battery life of UAVs, poses significant challenges

in ensuring efficient and continuous operations. This study

redefines the UAV multi-field tea plantation resupply and routing

challenge as a multiple traveling salesman problem (mTSP),

offering a tailored solution to the unique distribution and routing

complexities of tea fields. Through this innovative approach, we aim

to facilitate swift, effective, and consistent plant protection

operations, setting a new benchmark for precision agriculture in

the tea industry.
2 Details of optimization techniques

2.1 Environmental projection of tea fields

This study aims to facilitate the scheduling and route planning

of UAV operations across multiple tea fields, necessitating

environmental modeling of the tea plantation to acquire
Frontiers in Plant Science 03
geographic coordinates of individual tea field. As depicted in

Figures 1A, B, the orthophoto map of the tea plantation is

derived using a remote sensing dataset, which processes and

translates the geographic coordinates into planar coordinates via

the Mercator projection method:

The Mercator projection is a way to represent the curved surface

of the Earth on a flat plane. It preserves the right angles between

latitude and longitude lines, making it useful for navigation.

However, it can cause distortions, especially near the poles. In

this method, points on the Earth’s surface with coordinates (0, l0)
are transformed to planar coordinates (x, y), where x represents

horizontal distances and y is determined by the following Equations

1 and 2:

x = R(l�l0) cos (j0) (1)

y = R ln½tan ( p
4
+

j
2 sec (j0)

� (2)

Given known planar coordinates, conversion back to

geographic coordinates is achievable through Equations 3 and 4.

j = 2 tan−1 (ey) −
1
2
p (3)

l = x + l0 (4)

Where x is the projected horizontal coordinate; y is the

projected vertical coordinate; R is the Earth’s radius; l0 is the

central meridian’s longitude; j0 is the central meridian’s latitude.

UAV route planning for plant protection can be categorized

into two approaches: single-area planning and multi-field planning.

Single-area planning focuses solely on operational width to

determine the shortest coverage route, while multi-field planning

involves projecting regional boundaries and establishing a planar

coordinate system. This study, using a hilly mountainous region as a

reference, selects several polygonal fields at random for the

operational area. These fields reside within the eastern

longitudinal and northern latitudinal zones. Employing the two

fields with the minimal latitude and longitude as the reference
FIGURE 1

Schematic diagram of projected coordinate system of tea plantation. (A) Mercator Projection Method. (B) 3d Schematic Diagram of Tea Plantation.
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point, all operational area boundaries fall within the first quadrant,

leading to the establishment of a multi-tea field environmental

coordinate system, depicted in Figure 2.

Previous research results indicate that by employing a

coordinate system—where the boundaries of an operational area

define the x-axis origins—we can calculate and compare to ascertain

the most efficient full-coverage routes within a single operational

area (Liu et al., 2022). These routes minimize the journey length,

reduce excess coverage, and ensure that there is exactly one optimal

full-coverage route per operational area, characterized by unique

starting and ending points. For multi-area scheduling, the voyage

encompasses the distance from the endpoint of one field to the

starting point of the next, as depicted in Figure 3. This paper

introduces the midpoint V3, between the start point V1 and the
Frontiers in Plant Science 04
endpoint V2 of a single area, as the defining vertex representing the

area. By extracting these characteristic vertices from multiple fields,

we generate a discrete point distribution graph, thereby

transforming the multi-tea field scheduling problem into a

multiple traveling salesman problem model.

This study investigates the UAV planting operation planning in

hilly, mountainous tea fields, a variant of the multiple traveling

salesman problem with unmanned aerial vehicle (MTSPU) (Zhang

et al., 2023; Yan et al., 2024). It accounts for the dynamic distances

between the supply center and each plant protection operational

areas. To address this intricate issue, we propose a hybrid

optimization approach combining the K-means clustering and

heuristic optimization algorithms. The methodology unfolds in

two phases: initially, the K-means algorithm partitions the tea

fields, and then supplemental locations and UAV schedules are

determined based on workload. Subsequently, the heuristic

algorithm orders the operational sequences within each sector,

formulating the UAVs’ planned routes.
2.2 Efficient hierarchical clustering
assignment algorithms

2.2.1 Partitioning of operational areas using
clustering algorithms

The division clustering method primarily computes distances

between sample data to facilitate uniform partitioning of dispersed

field vertices based on proximity (Das et al., 2023; Kuo et al., 2016).

This study employs the K-means clustering algorithm to segment

tea fields into sub-areas and strategize the replenishment locations

according to workload. Silhouette coefficient, as defined in

Equations 5 and 6, are calculated to ascertain the optimal number

of clusters, thereby enhancing UAV operational efficiency and

partitioning quality.

S(i) =
b(i) − a(i)

max(a(i), b(i))
(5)
FIGURE 2

Constructing the coordinate system of multi-tea field
operation area.
FIGURE 3

Extract field feature vertices.
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a(i) =
a1 + a2 + a3 … an

nx
,    b(i) =

b1 + b2 + b3 … bn
ny

(6)

Where a(i) is the denseness of clusters; b(i) is the dispersion

between clusters; S(i) is the silhouette coefficient; nx is the count of

vertices within the data of a specific cluster; ny is the count of

vertices within the nearest neighboring cluster.

2.2.2 Resupply location planning algorithm
For selecting supply points post-clustering for each plant

protection partition, it is essential to consider the return points

optimally. As delineated in Equations 7 and 8, the planning of

supply points is conceptualized as an optimization problem. The

objective is to minimize the aggregate distance from the target point

coordinates c to the surrounding point coordinates ci, thereby

identifying the most proximal points. The algorithm’s pseudo-

code flow is detailed in Appendix A.

f = mino
n

i=1
Dcic (7)

Dcic =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − x)2 + (yi − y)2

q
(8)

Where Dcic is the distance from random point coordinates to

the target point, m; ci is the position of the discrete point; c is the

target position; xi, yi are the coordinates of the discrete point; x, y

are the coordinates of the target point.

2.2.3 Allocation of unmanned aerial vehicle
operational sorties

Prior assessment of pest severity or crop fertilizer requirements

allows for the pre-setting of the UAV’s spraying flow rate per

hectare F, operating speed v, and width d. The operational area

formula is presented in Equation 9, while the UAV payload formula

is detailed in Equation 10.

R =o
n

1
R1 + R2 +…Rn

S = Rd

8><
>: (9)

Lj =
Sn − Sn−1

dv
F (10)

Prior assessment of pest severity or crop fertilizer requirements

allows for the pre-setting of the UAV’s spraying flow rate per

hectare F, operating speed v, and width d. The operational area

formula is presented in Equation 9, while the UAV payload formula

is detailed in Equation 10.

Where, R is the total range of plant protection operations on

fields, m; n is the number of UAV sorties, sorties; S is the total area

of UAV operations, hm2; Sn is the area covered in the nth sortie,

hm2; Sn−1 is the area covered in the (n − 1)th sortie, hm2; Lj is the

payload of the jth sortie kg; F is the flow rate of spraying L/min.

Utilizing the optimal route from the coverage algorithm, the

workload for each plant protection area and the requisite load per

sortie are computed, with quantitative loading guided by Equation 10.
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Given that the operational area may not be an exact multiple of a

single sortie’s area, pre-allocation of the load and strategic

arrangement of racks and payload are essential to conserve energy

and minimize sorties. Equation 11 outlines two methods for rack

allocation.

j =
1, Sm < Sd

int ( SmSd ) + 1, SmSd ∉ Z, Sm ≥ Sd

(
(11)

Where Sd is the maximum area covered in a single UAV sortie

in hectares, hm2; Sm is the cumulative area of plant protection

operations within the operational area, hm2; Z is a positive integer.

As stipulated in Equation 11, there are two scenarios for UAV

sortie allocation:
1. If the operational area is less than the maximum coverage

of a single sortie, the UAV does not require recharging.

2. If the operational area exceeds the maximum coverage,

the UAV must recharge at least once. The number of

flights is the quotient of the operational area and the

maximum single sortie area, rounded to the nearest

whole number. Typically, the number of flights ranges

from 1 < j < int ( SmSd ) + 1.

3. The algorithm’s pseudo-code flow is provided in

Appendix B.
2.3 Design of route planning algorithm for
multi-tea field scheduling

2.3.1 Optimization of genetic algorithms
To effectively encode the characteristic points of tea fields, this

study utilizes integer coding (Asim and Abd El-Latif, 2023; Yan

et al., 2024). Within genetic algorithms, the fitness function gauges

an individual’s environmental adaptability, with higher values

denoting superior individuals, that is, shorter routes. Here, we

consider a coded chromosome represented by | k1 | k2 |… | ki |…

| kn |, with its fitness function defined in Equation 12.

fn =
1

o
n

i=1
Dkikj

(12)

Where the Dkikj is the distance from operational field i to

operational field j, m; fn is the reciprocal of the distance to the

start vertex after completing the circuit.

To enhance the genetic algorithm’s search efficiency across

various evolutionary stages, this study introduces the Hyperbolic

Tangent Mapping Crossover and Fitness-Inverse Adjusted

Mutation, predicated on fitness values, as delineated in Equations

13 and 14:

P0
c =

1
2 (1 + tanh ( 2f

0−fmin−fmax
fmax−fmin

)), f 0 ⩾favg
1, f 0 <favg

8<
: (13)
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Pm =

k2(f � fmin)
fmax � favg

,   f ≥ favg

k3
f ,          f<favg

8<
: (14)

Where f 0 is the mean fitness value of the individuals

undergoing crossover; fmin, fmax are the minimum and maximum

fitness value respectively; k1 is a constant set to 0.5; f is the variant

individual’s fitness; k2, k3 are constants; k2∈[0,0.001]; k3=0.2.
In the early stages of the algorithm, exploration of new solution

regions yields more varied results. To enhance optimization efficiency

during this phase, we directly apply the crossover operation (P0
c = 1)

to less adapted routes. Additionally, we set a fixed variance

probability (k3=0.2) inversely related to fitness. This encourages less

adapted individuals to explore new solutions aggressively, preventing

premature convergence to local optima. Furthermore, we prevent

computationally expensive over-exploration by highly fit individuals

within better candidate solutions.

As the algorithm progresses, the adaptability of route results

improves in later stages. Our study aims to strike a balance between

diversity (highly adapted individuals) and retention (better-adapted

individuals). To achieve this, we introduce a hyperbolic tangent

function with Steeper Gradient and Smoothness properties during

the mid- and late algorithm stages. This function controls the

transition from high to low crossover probability. Additionally,

we dynamically adjust the difference between an individual’s

maximum fitness and average fitness, fine-tuning it to the

mutation probability using a small interval (k2 ∈ [0, 0.001]). Our

designed crossover and mutation operators adapt the population’s

fitness distribution across different periods, promoting efficient

convergence to the optimal solution.

2.3.2 Optimization of simulated
annealing algorithms

In the standard simulated annealing approach, a new solution is

accepted if it results in a decrease in system energy; otherwise, its

acceptance is determined by a predefined probability (Li et al.,

2022a; Sajid et al., 2022). This acceptance criterion dictates the

transition probability between the current and new solutions,

impacting the algorithm’s optimization performance and

convergence velocity. Accordingly, this paper proposes an

optimized Metropolis criterion, formulated in Equations 15 and 16.

P =
1, Et+1 < Et

p = e�
Et+1 � Et

TmT , Et+1 ≥ Et

(
(15)

Tm = e�
S(xmax)� S(xmin)

T0 (16)

Where Et+1, Et are the new and preceding solutions,

respectively; Tm is the temperature adjustment coefficient; T is the

current temperature; S(xmax), S(xmin) are the maximum and

minimum values of the objective function corresponding to the N

feasible solutions randomly selected from the top 20% of the pre-

algorithmic solution set, respectively; T0 is the initial temperature.

If the solution set derived from the genetic algorithm serves as

the initial solution for the simulated annealing algorithm, the

discrepancy between Et+1 and Et may not correspond to the
Frontiers in Plant Science 06
current temperature T, potentially leading to an impractical

selection probability under the Metropolis criterion. This

discrepancy can influence the algorithm’s optimization efficacy

and computational duration. The dynamic genetic algorithm

introduced in this study adjusts the Metropolis criterion with Tm

by equating the extreme difference S(xmax)� S(xmin) of the feasible

solutions within the top 20% of the solution set to T0, enabling the

Metropolis criterion to adapt to solution space fluctuations and

maintain the stability of probability P.

In the adaptive Metropolis mechanism, the cooling rate must be

modulated based on the proportion DN of suboptimal solutions

accepted in the inner loop. Equation 17 demonstrates that DN
assesses the appropriateness of the cooling rate; a value approaching

0 implies excessive rapidity necessitating a decrease, whereas a value

nearing 1 suggests insufficient speed, requiring an increase to

enhance algorithmic efficiency.

DN =
N2

N1
(17)

Where DN is the cooling rate; N2 is the count of inferior

solutions accepted within N1 iterations; N1 is the total number of

instances where Et+1 ≥ Et at temperature T.

Given the complexity of the UAV plant protection scheduling

problem with multiple traveling salesman problem studied in this

paper, an efficient parallel algorithm is needed to solve the traveling

salesman problem in each partition. Thus, this paper introduces an

adaptive cooling function that amalgamates logarithmic and

exponential functions to define the temperature function, as

depicted in Equations 18 and 19.

Tk =
Ts

log (k)
, k ≤ m (18)

Tk =
Ts

∗ 0:99k, k > m,DN ∈ (0:75, 1)
Ts

log (k) , k > m,DN ∈ (0, 0:25)

(
(19)

Where m is a predetermined constant; Ts is the set initial

temperature; k is the current number of iterations.

As shown in Figure 4, the intersection of the logarithmic and

exponential functions determines m, with the derivation of the

logarithmic function yielding m = 161.8473. Initially, the algorithm

employs the logarithmic function for swift cooling to approximate

the optimal solution’s vicinity. Subsequently, the cooling magnitude

is dynamically adjusted based on the acceptance rate of suboptimal

solutions DN, with real-time modulation of the cooling pace

achieved through alternating use of the exponential and

logarithmic functions.
2.4 Design of the algorithmic
fusion approach

Figure 5 illustrates the optimization search processes of the

genetic algorithm (GA) and the simulated annealing algorithm

(SA), likened to a mountain climbing strategy. In GA, an

individual’s position, indicated by a solid arrow, often converges
frontiersin.org
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prematurely to a local optimum. This paper integrates the concept

of simulated annealing into GA, as depicted by dashed arrows,

which promotes the pursuit of the global optimum by

probabilistically pushing GA beyond the local minima through

the jump mutation property of adaptive annealing itself (Marjit

et al., 2023; Ozkan, 2021).

Upon examining the optimization trajectories of GA and SA, it

becomes evident that they offer complementary advantages in

exploring the solution space’s breadth and depth. This synergy

suggests the potential for a hybrid approach, leveraging GA’s

prowess in global search and SA’s finesse in local refinement

(Santé et al., 2016). The dynamic crossover and mutation

mechanisms in GA promote robust, undirected population

evolution, while SA’s targeted filtering fine-tunes the search

direction. This study proposes amalgamating this enhanced

algorithmic framework with clustering techniques and supply

point strategies to devise a proficient planning method tailored to

the multiple traveling salesman problem with unmanned aerial
Frontiers in Plant Science 07
vehicle (MTSPU) in multi-tea field scenarios. The workflow of the

ACHAGA fusion algorithm is presented in Figure 6.
2.5 Design of the experiment

In this experiment, the DJI T20p plant protection UAV served

as a model to simulate and evaluate its operational efficiency within

a tea cultivation region in Dadugang Township, Jinghong City,

Xishuangbanna Prefecture, Yunnan Province, China. As depicted in

Figure 7A, the selected tea cultivation area spans from 100°43’ to

101°12’ east longitude and 22°30’ north latitude, encompassing 200

tea fields with a cumulative area of 28.2 hectares (hm²), averaging

0.3 hm² per field. The T20p’s operational efficiency, as per official

specifications, is 1.67 hm² per flight. For this analysis, the tea

regions were digitally rendered using OWI 3D mapping software

(Version 9.1.6 X64), illustrated in Figure 7B, where the blue bold

line demarcates the tea field boundaries, and the green shaded

regions represent the fields themselves.
2.5.1 Adaptive clustering hyperbolic annealing
genetic algorithm for multi-field plant protection
operation scheduling route
simulation experiments

1. This study aims to evaluate the enhancements made to the

Hyperbolic Genetic Algorithm (HGA) and the Adaptive Simulated

Annealing (ASA), and to assess the performance of the newly

developed Adaptive Clustering Hyperbolic Annealing Genetic

Algorithm (ACHAGA). To achieve this, we conducted a

comparative evaluation via computer simulation, analyzing the

search accuracy and optimization capabilities of each algorithm

iteration. The simulations were performed on a test PC with an Intel

(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 8 GB RAM, running

on a Windows 10 platform using Matlab-2018a, focusing on the

multi-tea field problem model. The selected hardware and software

specifications ensure a balance between computational efficiency

and accessibility, providing a realistic benchmark for practical
FIGURE 4

Optimized cooling curve intervals for the simulated
annealing algorithm.
FIGURE 5

Schematic representation of the solution space for Genetic Algorithm (GA) and Simulated Annealing (SA).
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applications. For consistency, the maximum number of iterations

was set at 200 and the population size at 50. These parameters were

chosen based on preliminary tests that indicated they provide a

good balance between computational time and optimization

performance. A higher number of iterations allows the algorithm

to explore the solution space more thoroughly, increasing the

likelihood of finding a global optimum. Meanwhile, a population

size of 50 ensures sufficient genetic diversity without overwhelming

computational resources. Additional algorithm parameters are

detailed in Table 1, which includes specifics on mutation rates,
Frontiers in Plant Science 08
crossover probabilities, and the cooling coefficient for the ASA

component. These parameters were fine-tuned through a series of

preliminary experiments to ensure optimal performance of

ACHAGA in solving the multi-tea field problem. The software

specifications are listed in Table 2.

2. To evaluate the optimization efficacy of the proposed

ACHAGA on the multi-tea field problem model, it was

benchmarked against established swarm intelligence algorithms,

namely the Brainstorming Algorithm (BSO) and the Artificial Fish

Swarm Algorithm (AFSA) (Qiu et al., 2015; Neshat et al., 2014).
FIGURE 6

Search flowchart of Adaptive Clustering Hyperbolic Annealing Genetic Algorithm (ACHAGA).
FIGURE 7

Schematic of the model distribution for the multi-tea field problem. (A) Modeled Distribution of Multi-Tea Fields. (B) Aerial Diagram of Multi-Tea
Field Distribution.
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Each algorithm underwent 20 trials, maintaining identical iteration

and population constraints as specified in Table 1, with the mean

outcome representing the final result. As illustrated in Figures 8A,

B, two distinct test scenarios were selected: a self-constructed 200-

tea field problem model and the eil51 problem from the TSPLIB

standard database, featuring uniformly distributed nodes. The eil51

nodes were presumed to be ideal tea field vertices, averaging 0.3

hectares (hm²) per vertex, totaling 15.3 hm².

To optimize the preprocessing clustering division scheme for

simulation trials of the multi-tea field problem model and the eil51

problem, it is necessary to determine the optimal silhouette

coefficient distributions across various UAV sortie ranges,

depicted in Figures 9A, B. The UAV sortie range is calculable

from Equation 11, considering the UAV’s working efficiency (Sd)

and the working area (Sm) for each problem, as detailed in Section

2.5. The silhouette coefficient distributions for the refined multi-tea

field problem model and the eil51 problem fall within the ranges of

(1, 17] and (1, 10], respectively.
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Analysis of Figures 9A, B indicates that the silhouette coefficient

for both problem types peak at k = 5 and k = 3. Consequently, the k-

means algorithm was utilized to segment the two problem types

into 5 and 3 plant protection work areas, respectively, as shown in

Figures 10A, B. In these figures, dots represent vertices within the

tea fields, colors denote work zones, and stars symbolize

supply points.

3. To evaluate the effectiveness of the ACHAGA algorithm on

the multi-tea field problem model and the eil51 problem, a

Wilcoxon rank-sum test was conducted to perform a non-

parametric statistical comparison with four other related

algorithms (Kochengin et al., 2019). A significance level of a= 5%

was established; a p-value less than 5% signifies a statistically

significant difference, while a value greater than or equal to this

threshold indicates no significant difference. To provide a more

rigorous statistical analysis, confidence intervals were calculated to

estimate the precision of the observed effect sizes. The effect sizes

were also reported to quantify the magnitude of the differences

between the ACHAGA algorithm and the other algorithms.

2.5.2 Multi-tea field plant protection site test
based on adaptive clustering hyperbolic
annealing genetic algorithm

This study introduces an algorithm designed for path planning

across multi-tea field in hilly, mountainous terrains. To validate its

feasibility and accuracy, the algorithm was evaluated based on four

criteria: operational voyage, coverage, excess coverage, and dispatch

path length. Additionally, a field trial was conducted to compare the

actual operating conditions with simulation results and to assess the

experimental design’s soundness. Drawing on the methodologies of

scholars both domestic and international (Tian et al., 2023; Li et al.,

2022c), the study utilized a DJI Phantom 4 Pro UAV, boasting a top

horizontal velocity of 72 km/h and a maximum endurance of

approximately 30 minutes. It is equipped with a 42° tilt capability

and a satellite positioning system supporting GPS/GLONASS dual-

mode for superior navigational precision. The route planning was

facilitated by the RockyCapture flight control system, which offers

features such as free planning, one-key control, and real-time

tracking, as illustrated in Figures 11A, B.

2.5.2.1 Trial Site Conditions

The trial was conducted from February 16 to 21, 2023, at the

Dashanmiao Tea Farm in Shitang Town, Feidong County, Hefei

City, Anhui Province, China, featuring a tea plantation with an

approximate 7° slope. The weather conditions during the test period

included sunny skies, an average temperature of 17°C, relative

humidity of 38%, and wind speeds ranging from 1 to 2 on the

Beaufort scale. Given the UAV’s operational range limitations, the

selected test area comprised 15 fields with an average area of 0.12

hectares (hm²), detailed in Figure 12, with the geographical

coordinates provided in Table 3.

2.5.2.2 Field trial program

The test flowchart, depicted in Figure 13, outlines the specific

test procedures:
TABLE 1 Various algorithm parameters.

Algorithm Parameters

AFSA Population size: n=100, Maximum number of iterations:
Max_gen=200, Maximum number of attempts:
trynumber=500, Perception distance: Visual=16, Crowding
factor: deta=0.8

BSO Population size: n=100, Number of clusters: cluster_num=x,
Maximum number of iterations: Max_gen=200, Probability of
selecting one cluster: p_one=0.5, Probability of selecting two
clusters: p_two=1-p_one

GA-ACO Population size: n=100, Maximum number of iterations:
Max_gen=200, Crossover probability: Pc=0.8, Mutation
probability: Pm=0.2, Importance of pheromone: Alpha=1,
Importance of heuristic factor: Beta=5, Pheromone
enhancement coefficient: Rho=0.1, Pheromone enhancement
coefficient: Q=100

ACHAGA Population size: n=100, Crossover probability: as in Equation
13, Mutation probability: as in Equation 14, Maximum number
of iterations: Max_gen=200, Initial temperature: T0 = 100,
Final temperature: Tend=1e-8, Selection probability: as in
Equation 15, Cooling coefficient: alpha as in Equations 18, 19

GA Population size: n=100, Crossover probability: Pc=0.8,
Mutation probability: Pm=0.2, Maximum number of
iterations: Max_gen=200
TABLE 2 Test platform and software version.

Test platforms Platform configuration parameters

CPU Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz,
2.59 GHz

GPU GTX 1060 6GB

RAM 8GB

Operating
system version

Windows-10

Software version Matlab-2018(a)
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Step 1: Utilizing OWI Interactive Map Software (Version 9.1.6

X64), the test area’s coordinates, boundaries, and elevation data were

acquired to establish a planar right-angle coordinate system.

Subsequently, the k-means algorithm and Mercator inverse formula

were applied to determine and label the test site’s supply points on the

map. Each algorithm was then used to devise a corresponding route

scheme, culminating in the export of a KML file of the planned route.

Step 2: The ground station flight control platform was accessed

to import the route by selecting the import function, locating the

recently exported KML file, and integrating it into the platform. The

route’s accuracy was verified, parameters and settings were

adjusted, and preparations were made for UAV flight control.

Step 3: The flight control platform was employed for testing: the

UAV was connected to the ground station flight control platform,

initiated, and navigated according to the imported route. The

UAV’s status and data were monitored throughout the flight,

with test outcomes and issues being meticulously recorded.

2.5.2.3 Pre-Treatment Clustering Division of the Trial Area

To enhance the clustering partitioning effect, the study

introduced a contour coefficient calculation method prior to

partitioning. This yielded a contour coefficient comparison chart
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for varying cluster numbers k, as illustrated in Figures 14A, B.

The analysis of Figure 14A reveals that the contour coefficient is

maximized when k=2. Consequently, the study opted to segment

the multi-tea field into two task areas, achieving the results

displayed in Figure 14B through clustering division.

2.5.2.4 Trial Methods and Data Calculation

To assess the algorithm’s performance and feasibility, site

experiments were conducted for both the test group (BSO) and the

control group (ACHAGA). The test group employed manual

empirical planning and the brainstorming algorithm, while the

control group utilized the clustering division planning algorithm

proposed in this study for site operation scheduling route planning.

Table 1 presents the theoretical parameters of the algorithms.

Accounting for navigation errors and wind speed effects, five field

trials were executed for each algorithm, selecting the optimal voyages

and routes for comparative analysis. Subsequently, the optimal route

data were derived and subjected to computational analysis.

For evaluating the accuracy of full-coverage routes, the index of

excess coverage was employed. The excess coverage rate is calculated

using Equation 20, where the product of the total operating range L and

the operating width B constitutes the operating area. In full-coverage
FIGURE 8

Problem objects of the optimization performance test. (A) Vertex Distribution of Multi-tea Field Problem Model. (B) Vertex Distribution of the Eil51
Problem Model.
FIGURE 9

Comparative histogram of silhouette coefficient for each problem. (A) Distribution of Silhouette Coefficient for the Multi-tea Field Problem Model.
(B) Distribution of Silhouette Coefficient for the Eil51 Problem.
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operations, a smaller operating area correlates with a lower excess

coverage rate, indicating greater accuracy of the coverage area.

h = (
LB
S0

− 1

����
����)� 100% (20)

Where h is excess coverage; L is the total operational range, m.
3 Results

3.1 Multi-tea field plant protection site
trials using adaptive clustering hyperbolic
annealing genetic algorithm

The field trial outcomes are presented in Tables 4 and 5. The

black line in the planning route column (left side of the table)

represents the full-coverage operation route at 2.5-meter intervals,

with an operational width set at 5 meters. The pink line indicates the

dispatch route, and the ‘H’ point marks the return to the supply

point. In the optimal flight path column (left side of the table), the

red line signifies the full-coverage operation route, the yellow line

the scheduling route, and the coordinates for the two supply points

in the south and north are determined using the inverse Mercator

projection formula as (117°39′49.31″, 31°51′2.66″) and (117°39′
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51.31″, 31°51′6.70″), corresponding to the circular charge markers

in the north and south, respectively.
4 Discussion

4.1 Convergence curve performance test
of hyperbolic annealing genetic algorithm
for adaptive clustering

4.1.1 Robustness and optimization capability
analysis of the proposed algorithm’s
iterative curve

The analysis of iteration curves in Figures 15A, B demonstrates

that both the Hyperbolic Annealing Genetic Algorithm (HGA) and

the Genetic Algorithm (GA) exhibit superior optimization

efficiency in the initial phase. HGA presents smoother iteration

curves and achieves a more refined global optimal solution. This

suggests that early direct crossover operations and optimization

strategies, such as hyperbolic tangent mapping crossover and

fitness-inverse adjusted mutation, expedite the removal of low-fit

individuals, curtail ineffective searches, and enhance HGA’s

efficiency and stability, thereby broadening its optimization search

space. The Adaptive Simulated Annealing (ASA) and Simulated

Annealing (SA) algorithms display greater overall optimization
FIGURE 10

Clustering Distributions for Multi-tea Field Problem Model and Eil51 Problem. (A) Clustering Distributions for Multi-tea Field Problem Model.
(B) Clustering Distributions for the Eil51 Problem.
FIGURE 11

Field validation tests. (A) Test site. (B) Rockycapture Ground Station Platform for Flight Control.
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capability with minimal fluctuations in the optimal solution. The

iteration curves for ACHAGA and GASA are characterized by

smoothness and stability, with an observable “discontinuity” in the

early stages and a transition from rapid to gradual convergence

within the first thirty iterations. This indicates that the ACHAGA

algorithm, which integrates HGA and ASA, significantly improves

robustness, stability, and optimization efficiency. Furthermore, the

intersection of dark blue and green iteration curves in Figures 15A,

B reveals overlapping segments during the iterative process,
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particularly between HGA and ASA post-improvement (15-165

iterations). This overlap effectively balances the performance of

both algorithms, mitigating the impact of individual algorithm

performance and substantiating the efficacy of incorporating

hyperbolic genetic algorithm concepts into adaptive annealing,

thereby leveraging the strengths of both approaches.

4.1.2 Optimization accuracy and stability analysis
of the proposed algorithm

The analysis of iteration curves for each partition, as shown in

Tables 6 and 7, reveals that while all five algorithms successfully

generate flight routes covering all fields, they exhibit significant

variance in search accuracy, convergence speed, and iteration

performance. The algorithm introduced in this paper demonstrates

a pronounced ability to converge to the optimal solution within an

average of 40 iterations for the multi-tea field problemmodel. Notably,

the ACHAGA algorithm’s average number of iterations and optimal

route lengths are reduced by 113.32 iterations and 1811.93 meters,

respectively, compared to other biomimetic algorithms. This efficiency

indicates that ACHAGA can achieve superior solutions with fewer

iterations. Further examination of Table 8 indicates that the mean

optimal solution lengths for ACHAGA are 9693.27 meters for the

multi-tea field problem model and 461.26 meters for the standard

eil51 problem. These results are significantly lower than those

achieved by the other four biomimetic algorithms. For the multi-tea

field problem model, ACHAGA’s results show substantial reductions

of 4904.82, 926.07, 3803.96, and 800.11 meters compared to the

optimal solutions of GA, Genetic ACO Fusion Algorithm, AFSA,

and BSO, underscoring ACHAGA’s considerable advantage in model

optimization accuracy. Additionally, ACHAGA exhibits the smallest

polar deviation and coefficient of variation in data for both the multi-

tea field problemmodel and the standard eil51 problem, with values of

56.29 and 4.56, and coefficients of variation of 0.00406241 and

0.00326200, respectively. These metrics suggest a low dispersion in

test results, affirming that the outcomes are not due to random chance

and that the data’s reliability is robust. The narrowest confidence

interval for ACHAGA not only suggests more reliable results

compared to other algorithms but also confirms its stability in

delivering consistent outcomes.

4.1.3 Disparities in algorithmic optimization
performance across various
problem complexities

Analysis of Table 8 indicates minor discrepancies in the

simulation outcomes for the standard eil51 problem across all

algorithms. However, when addressing the multi-tea field problem

model with expanded solution spaces, AFSA and GA, which typically

yield superior results, exhibit a marked decline in performance.

Conversely, other algorithms demonstrate less variability in solution

quality across different problems but still show significant divergence

from ACHAGA’s outcomes. This variation is likely attributable to the

distinct mechanisms and coding methodologies of each algorithm,

which may limit their ability to derive reasonable results within a finite

number of iterations. The p-values in Table 9, being under 5%,

substantiate the enhanced performance resulting from the

optimization research conducted in this study. ACHAGA has
FIGURE 12

Diagram of the test site.
TABLE 3 Longitudinal and latitudinal coordinates of field plots in the
test area.

Field Field apex
coordinates

Area (m2) Projected
perimeter (m)

A 117°39′47.56″; 31°51′5.65″ 1400 161.21

B 117°39′47.50″; 31°51′4.51″ 1500 164.29

C 117°39′47.27″; 31°51′3.17″ 1600 167.63

D 117°39′47.50″; 31°51′2.06″ 1200 155.06

E 117°39′50.75″; 31°51′7.57″ 900 152.08

F 117°39′50.22″, 31°51′5.77″ 800 134.76

G 117°39′49.73″; 31°51′4.75″ 1800 181.25

H 117°39′49.00″; 31°51′3.32″ 1000 136.84

I 117°39′48.69″; 31°51′1.54″ 900 140.34

J 117°39′51.66″; 31°51′7.61″ 800 128.29

K 117°39′51.42″, 31°51′5.62″ 1300 157.69

L 117°39′50.20″; 31°51′3.22″ 1400 157.75

M 117°39′50.04″; 31°51′1.83″ 900 127.84

N 117°39′52.56″; 31°51′7.11″ 1600 179.24

O 117°39′53.18″; 31°51′5.63″ 1000 133.38
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proven its efficacy in identifying optimal solutions for the problem

models within 200 iterations, showcasing robust adaptability suitable

for more intricate scenarios. The Pearson correlation coefficients in

Table 9 provide insight into the relationship between the performance

metrics of ACHAGA and the other algorithms. For the multi-tea field

problem and eil51, the coefficients are generally low, with both

positive and negative values, indicating weak correlations. This

suggests that the performance patterns of ACHAGA are somewhat

independent of those of the other algorithms. For eil51, the coefficient

variance is relatively greater. The negative correlations with GA and

GA-ACO suggest that as ACHAGA’s performance improves, the

performance of these algorithms tends to worsen, and vice versa. The
Frontiers in Plant Science 13
results demonstrate that ACHAGA significantly outperforms the

other algorithms across both problem instances. The statistical

significance of the p-values confirms the robustness of ACHAGA’s

performance improvements. The Pearson correlation coefficients

further illustrate the nature of these performance differences,

highlighting the unique strengths of ACHAGA in addressing the

complexities of both the multi-tea field problem and eil51.

4.1.4 Comparative analysis of the proposed
algorithm with other algorithms

The performance analysis of ACHAGA indicates that it surpasses

traditional heuristic algorithms in several key performance indicators.
FIGURE 13

Importing the planned route KML file into the ground station operation process.
FIGURE 14

Clustering of the trial area. (A) Distribution of Silhouette Coefficient in the Test Area. (B) Partitioning Results based on Optimal Silhouette Coefficient.
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To understand why, we examine the principles and characteristics of

various algorithms. GA, which relies on random mutations and

crossover, often faces issues with slow convergence and premature

convergence. ACHAGA addresses these issues with its hybrid GA-

Simulated Annealing (SA) approach, combining GA’s global search

capabilities with SA’s local precision for faster convergence. The

Genetic ACO Fusion Algorithm, while enhancing exploration by

integrating GA and Ant Colony Optimization (ACO), suffers from

higher iteration counts and complex parameter control. ACHAGA’s

adaptive crossover and mutation rates dynamically adjust based on

fitness, ensuring efficient convergence with fewer iterations. AFSA’s

performance is hindered by sensitivity to parameter settings and

slower convergence in complex spaces. ACHAGA’s adaptive

Metropolis criterion, which incorporates temperature and solution

space fluctuations, balances exploration and exploitation effectively,

preventing premature convergence. BSO, which mimics
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brainstorming, generates diverse solutions but shows higher

variance and slower convergence. ACHAGA’s efficient cooling

strategy, using logarithmic and exponential functions, enhances

convergence speed and accuracy, avoiding local minima and

ensuring robust optimization. These optimization features enable

ACHAGA to achieve superior performance with shorter optimal

solution lengths, fewer iterations, and higher stability, making it an

efficient solution for complex optimization problems in a multi-tea

field environment.
4.2 Field trial results analysis

Table 4 delineates the full-coverage and scheduling routes

devised by three methodologies. The algorithm from this study

yields more evenly distributed routes with reduced crossover,
TABLE 4 Comparison of various route planning methods and actual flight routes.

Methodology Planning the optimal route range (m) Actual flight range (m)

ACHAGA

3861.2 4385.2

BSO

4275.9 4744.8

AE

4358.3 5177.1
frontiersin.org

https://doi.org/10.3389/fpls.2024.1440234
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1440234
mitigating potential UAV interference. A comparison between the

theoretical and actual flight paths reveals deviations due to factors

such as wind speed, terrain gradient, and positioning stability, with

the actual flight distance exceeding theoretical estimates. Table 5

enumerates the total real flight, operational, and dispatch ranges

planned by the three methods, highlighting the superiority of this

study’s algorithm in these metrics and its ability to effectively

minimize operational and dispatch distances. Specifically,

compared to manual empirical and brainstorming methods, this

algorithm decreases the actual flight’s operational distance by 791.9
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meters and 359.6 meters, respectively, and reduces the non-

operational time share by 4.2% and 6.7%. Notably, the scheduling

distance is nearly halved on average, suggesting that the clustering

fusion planning algorithm substantially curtails UAVs’ non-

operational flights. Moreover, full-coverage planning utilizing

heuristic algorithms reduces the operational distance by an

average of 11.4% and the number of turns by 11, compared to

manual empirical planning. This demonstrates its superior

applicability for multi-terrain field route scheduling in the hilly,

mountainous environment examined in this study.
FIGURE 15

Comparison of convergence curves for each algorithm pre and post optimization Fusion. (A) Iteration Curves for GA, SA, GASA. (B) Iteration Curves
for HGA, ASA, ACHAGA.
TABLE 5 Comparison of optimal results from five planning routes by different methods.

Planning methodology ACHAGA AE BSO

Export Route Planned Routes Flight routes Planned Routes Flight routes Planned Routes Flight routes

Minimum dispatch range (m) 277.1 322.7 501.9 592.2 591.8 689.1

Number of U-turns (times) 83 94 83

Percentage of non-
operational time

– 8.40% – 12.60% – 15.10%

Rate of coverage – 9.48% – 13.85% – 9.36%
TABLE 6 Optimal routes and convergence curves comparison for clustering partitioning.

Algorithm Optimal route range (m) Average number of iterations

AFSA

12480.2 137.6

(Continued)
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TABLE 6 Continued

Algorithm Optimal route range (m) Average number of iterations

BSO

10035.9 66.2

GA-ACO

10256.2 185.6

ACHAGA

9659.7 31.8

GA

13114.2 191.1
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TABLE 7 Optimal routes and convergence curves comparison for various algorithms’ clustering partitions.

Algorithm Optimal route range (m) Average number of iterations

AFSA

557.6
141.7

BSO

541.6
46.7

GA-ACO

507.3
133.4

ACHAGA

460.5
11.7

(Continued)
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4.3 Research limitations

Despite the considerable advancements of the ACHAGA

framework in UAV-based precision plant protection, several

limitations warrant attention. Firstly, potential biases inherent in

simulation studies may undermine the applicability of the findings

to real-world scenarios, as the simulations did not account for

unforeseen weather changes, equipment malfunctions, or human
Frontiers in Plant Science 18
interventions. Secondly, the scope of field tests was geographically

constrained and specific to certain types of tea fields, potentially

limiting the generalizability of the results to other terrains and crop

types. To address these limitations, we need to expand field tests to

encompass a broader range of geographic regions and crop varieties

to enhance the robustness of the algorithm’s performance.

Additionally, developing methods for dynamic resupply point

management based on real-time data could further optimize UAV
TABLE 7 Continued

Algorithm Optimal route range (m) Average number of iterations

GA

533.7
177.3
TABLE 8 Simulation outcomes for different multi-objective problems.

Problem Algorithm Average
Value(m)

Range(m) CV Confidence
Interval

Multi-tea Field
Problem Model

GA 14598.09 1819.64 0.02797023 [14390.09, 14806.09]

GA-ACO 10619.34 777.67 0.01629405 [10534.79,10703.89]

AFSA 13497.23 585.71 0.01340668 [13430.37,13564.086]

BSO 10493.38 358.70 0.00930587 [10444.34, 10542.42]

ACHAGA 9693.27 56.29 0.00406241 [9677.34, 9709.20]

Eil51 GA 563.66 32.62 0.01904130 [560.17, 567.15]

GA-ACO 512.34 11.07 0.00754431 [510.40, 514.28]

AFSA 577.61 29.86 0.01807257 [572.86, 582.36]

BSO 550.43 15.53 0.01157147 [546.52, 554.34]

ACHAGA 462.26 4.56 0.00326200 [461.67, 462.85]
TABLE 9 Comparison of significance level results between ACHAGA and each algorithm.

Comparison of algorithms p-Value PCCs

Multi-tea Field Problem Eil51 Multi-tea Field Problem Eil51

ACHAGA vs.GA 2.24E-37 1.47E-14 -0.015273 -0.513957

ACHAGA vs.GA-ACO 3.94E-24 1.67E-12 0.374056 -0.150358

ACHAGA vs.BSO 4.77E-15 3.26E-14 -0.275725 0.057610

ACHAGA vs.AFSA 3.09E-46 8.49E-17 -0.118178 0.386316
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operations. Integrating advanced sensing technologies, such as

LiDAR and multispectral imaging, could significantly improve

terrain mapping and environmental monitoring, thereby refining

route planning precision. Addressing these limitations through

rigorous real-world testing and technological enhancements will

be crucial for the broader adoption and efficacy of the ACHAGA

framework in diverse agricultural contexts.
5 Conclusion

This study introduces the Adaptive Clustering Hyperbolic

Annealing Genetic Algorithm (ACHAGA), a hybrid optimization

algorithm that integrates the principles of hyperbolic genetic

algorithms and simulated annealing. The primary objective is to

enhance the precision of UAV-based plant protection scheduling in

complex multi-terrain environments. The algorithm leverages

efficient crossover and mutation operations inherent to hyperbolic

genetic algorithms to achieve rapid convergence and maintain spatial

diversity. High-quality solutions derived from this process serve as

initial inputs for the simulated annealing algorithm, which, through

its jump mutation properties and innovative temperature control

mechanism, further refines solution quality and robustness. By

employing cluster analysis, multi-tea field regions are segmented,

and operational supply centers and flight schedules are meticulously

designed to ensure UAVs adhere to the shortest feasible routes within

their endurance limits in designated plant protection areas.

ACHAGA demonstrates superior performance in both standard

traveler’s problem scenarios and multi-tea field applications, swiftly

identifying optimal solutions and exhibiting robust global search

capabilities and high stability. Future research should prioritize

incorporating real-time environmental data, such as weather

conditions, soil moisture levels, and pest distribution patterns, to

refine route planning further. Evaluating the algorithm’s scalability

and adaptability across robustness crop types and terrains, and

developing strategies to optimize UAV battery usage and recharge

cycles for more sustainable operations, is also crucial. These research

directions aim to build on the current study’s foundation, advancing

the capabilities of UAV-based precision agriculture. This work

establishes a theoretical and technical foundation for the efficient

management and operation of extensive tea plantations in hilly and

mountainous regions, offering new perspectives on precision

planning and management of UAV plant protection operations in

complex settings. Beyond the immediate scope of this study, the

findings have broader implications for the field of agricultural

technology. The integration of real-time environmental data into

UAV route planning could lead to more responsive and adaptive

agricultural management systems, capable of adjusting to changing

conditions such as sudden weather changes or pest outbreaks. This

adaptability is crucial for improving crop yields and reducing losses,

thereby supporting food security initiatives. The scalability of the

ACHAGA algorithm also suggests its potential use in larger andmore

diverse agricultural settings.
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