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Plant cell walls (PCWs) are intricate structures with complex polysaccharides

delivered by distinct trafficking routes. Unravelling the intricate trafficking pathways

of polysaccharides and proteins involved in PCW biosynthesis is a crucial first step

towards understanding the complexities of plant growth and development. This

study investigated the feasibility of employing a multi-modal approach that

combines transmission electron microscopy (TEM) with molecular-genetic tagging

and antibody labelling techniques to differentiate these pathways at the nanoscale.

The genetically encoded electron microscopy (EM) tag APEX2 was fused to

Arabidopsis thaliana cellulose synthase 6 (AtCESA6) and Nicotiana alata ARABINAN

DEFICIENT LIKE 1 (NaARADL1), and these were transiently expressed in Nicotiana

benthamiana leaves. APEX2 localization was then combined with immunolabeling

using pectin-specific antibodies (JIM5 and JIM7). Our results demonstrate distinct

trafficking patterns for AtCESA6 and NaARADL, with AtCESA6 localized primarily to

the plasma membrane and vesicles, while NaARADL1 was found in the trans-Golgi

network and cytoplasmic vesicles. Pectin epitopes were observed near the plasma

membrane, in Golgi-associated vesicles, and in secretory vesicle clusters (SVCs) with

both APEX2 constructs. Notably, JIM7 labelling was found in vesicles adjacent to

APEX2-AtCESA6 vesicles, suggesting potential co-trafficking. This integrative

approach offers a powerful tool for elucidating the dynamic interactions between

PCW components at the nanoscale level. The methodology presented here

facilitates the precise mapping of protein and polysaccharide trafficking pathways,

advancing our understanding of PCW biosynthesis and providing avenues for future

research aimed at engineering plant cell walls for various applications.
KEYWORDS

plant cell walls (PCWs), APEX2, antibodies, cellulose synthase, pectins, polysaccharides,
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SVC, secretory vesicle cluster; TEM, transmission electron microscopy.
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Introduction

Biological organisms are a complex mix of proteins, nucleic acids,

lipids and polysaccharides, each playing crucial roles in cellular

functions. Fluorescent microscopy techniques offer a wealth of

options for studying proteins in cell biology, including fluorescent-

tagged proteins and antibody labelling. The visualization of

polysaccharide biosynthesis, particularly in plant cells, presents

unique challenges due to the paucity of molecular labelling options

for polysaccharides as well as submicron vesicles that often fall below

optical resolution limits, the thick cell walls of these vesicles and the

light scattering properties of their vacuoles. To address this, we

investigated the use of a molecular-genetic tag for electron

microscopy that was co-labelled with polysaccharide antibodies to

reveal the trafficking of proteins and polysaccharides in plants at

the nanoscale.

Plant cell walls (PCWs) are indispensable for both plant life and

human society and serve diverse functions ranging from structural

support to various industrial applications. Beyond their pivotal roles

in plant biology, cell walls have found widespread utilisation in a

wide variety of areas including as dietary fibre for human nutrition,

as feed for animals, paper production, textiles in clothing and as

sustainable building materials.

The complexity of plant cell walls stems from their intricate

composition, which includes a rich assortment of polysaccharides,

proteins, and other macromolecules organized into primary and

secondary wall layers. The primary wall, positioned outside the

plasma membrane, forms the initial interface between the cell and

its environment. The primary wall is composed of cellulose

microfibrils, typically the most abundant polymer, which are laid

down first as the cells are growing. The secondary cell walls are

strengthened by phenolic polymers such as lignin (Doblin et al.,

2010; Lampugnani et al., 2018).

In the primary PCW, cellulose, a polymer of (1→4)-b-D-
glucose units, is intertwined with an array of non-cellulosic

polysaccharides (NCPs), such as xyloglucans, xylans and pectins,

each imparting specific properties to the cell wall matrix. Xylans,

with their b-(1→4)-linked xylose residues and diverse side-chain

decorations, contribute to the structural integrity and hydration

properties of the cell wall (Curry et al., 2023). Meanwhile, pectins,

rich in galacturonic acid, regulate cell wall porosity and play pivotal

roles in cell adhesion, signalling, and developmental processes (Lee

et al., 2013; Verhertbruggen et al., 2013; Mariette et al., 2021). The

interplay between these components forms the basis of cell wall

architecture and influences cell shape, growth, and response to

environmental cues, thereby impacting plant form and structure.

Plant cell wall polysaccharides are synthesized by a diverse array

of glycosyltransferase (GT) enzymes that catalyse the formation of

glycosidic bonds between sugar donors, leading to the network of

polysaccharides found in cell walls (Lairson et al., 2008). The

complexity of cell wall composition arises from the dynamic

interactions among various GTs, generating a wide range of

linkages crucial for cell wall integrity and function. For instance,

NCPs undergo processing within the Golgi Apparatus (GA) where

diverse polysaccharides are synthesised and modified by specific GT

enzymes (Pauly et al., 2013).
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Cellulose is synthesised by cellulose synthase A enzymes

(CESAs), which assemble into ring-shaped structures known as

cellulose synthase complex (CSCs). These CSCs traverse the plasma

membrane and are guided by microtubules in the cytoplasm while

they simultaneously extrude the cellulose microfilament by adding

new glucose molecules to the growing polysaccharide chain

(Gonneau et al., 2014; McFarlane et al., 2014; Nixon et al., 2016;

Turner and Kumar, 2018; Pedersen et al., 2023). The formation and

activity of CSCs are tightly regulated processes essential for cell wall

biosynthesis and architecture.

Following synthesis, CESAs undergo processing within the GA

and transit through the trans-Golgi network (TGN) before being

delivered to the plasma membrane. This trafficking process involves

specialised compartments known as small CESA compartments

(SmaCCs) (Gutierrez et al., 2009) or microtubule-associated

cellulose synthase compartments (MASCs) (Crowell et al., 2009),

which facilitate the transport of CESAs to their destination via

secretory vesicles. The precise coordination of CESA trafficking is

vital for the spatial and temporal regulation of cellulose deposition,

ensuring proper cell wall formation and functionality. Live cell,

fluorescence microscopy has enabled the visualization and

characterization of these dynamic trafficking pathways, providing

valuable insights into the mechanisms underlying cell

wall biosynthesis.

In this paper, we focus on cellulose as well as pectin, a complex

and structurally diverse NCP composed of various components

including, but not limited to, three main galacturonic acid-rich

polysaccharides: homogalacturonan (HG), rhamnogalacturonan I

(RGI) and rhamnogalacturonan II (RGII) (Ridley et al., 2001;

Willats et al., 2001; Mohnen, 2008). L-arabinose is a saccharide

found in multiple linkages in side-branches of the RGI polymer.

Arabinose residues can also be found in “free” arabinans,

contributing to the structural diversity of pectic polysaccharides.

The significance of L-arabinose extends beyond its structural role,

as highlighted by recent research elucidating its importance in plant

development and physiology (Mariette et al., 2021). Arabinose-

containing polymers, such as arabinans, play critical roles in cell

wall dynamics, influencing growth, structure, and adaptive responses

in plants. These polymers are synthesized and modified by a network

of enzymes, including ARABINAN DEFICIENT 1 (ARAD1), a

member of the GT47 family. ARAD1 functions as an arabinan a-
1,5-arabinosyltransferase and contributes to the biosynthesis of

arabinan side chains in Arabidopsis RG1 (Harholt et al., 2006) and

“free” arabinan in pollen tubes of Nicotiana alata (Lampugnani et al.,

2016). It was found to be a Type-II membrane protein localised to

Golgi vesicles (Harholt et al., 2006) and lumen (Lampugnani et al.,

2016) with arabinan-containing pectic polysaccharide components

delivered to the cell wall presumably via secretory vesicles. In

Nicotiana alata, the presumed arabinosyltranserase is called

NaARADL1 and in this study, it was used as the representative GT

in the pectic polysaccharide pathway.

Although both the CESAs and the NaARADL1 proteins have

been localised within the GA, it remains unclear whether the

trafficking routes of the CSCs, SmaCCs and MASCs identified

using fluorescence microscopy align with the secretory vesicle

pathway observed for pectic polysaccharides en route to the
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plasma membrane and cell wall. Here we aim to bridge this

knowledge gap by proposing a methodology to differentiate

between the trafficking pathways of proteins and polysaccharides

through the leveraging of transmission electron microscopy

(TEM) methods.

TEM methods have been instrumental in tagging various NCPs

using cell wall antibodies, allowing visualization within key

intracellular compartments such as the GA, trans-Golgi network

(TGN), secretory vesicles, and the cell wall itself (Barany et al., 2010;

Pattathil et al., 2010; Wilson et al., 2015; van de Meene et al., 2017;

Rydahl et al., 2018; van de Meene et al., 2021). While freeze fracture

TEM has successfully identified CSCs in vesicles of the desmid

Micrasterias denticulata (Giddings et al., 1980) and in the plasma

membrane of the Physcomitrella patens moss protonema (Nixon

et al., 2016), their detection using standard TEM cytological

methods involving fixation, embedding, and sectioning has

proven challenging.

To address this limitation, a genetically encoded EM tag,

APEX2 (Lam et al., 2015), has been used. APEX2 is an

engineered ascorbate peroxidase derived from the soybean APEX

protein (Rhee et al., 2013; Hung et al., 2014) that catalyses the

generation of short-lived, highly reactive, and membrane-

impermeant radicals in living cells (Lam et al., 2015). The tag is

suitable as both an electron microscopy tag, where it forms a

precipitate in the cell after diaminobenzidine-osmium tetroxide

oxidation, and for proteomics studies. This approach has been

successfully used to identify interactors in the humanmitochondrial

matrix and intermembrane space (Rhee et al., 2013; Hung et al.,

2014; Lam et al., 2015).

To elucidate whether CESA enzymes follow the same or distinct

secretory routes compared to enzymes associated with the synthesis

of pectic NCPs, we genetically tagged CESA6 and NaARADL1 with

the APEX2 tag and then transiently expressed these constructs

separately in Nicotiana benthamiana leaves. The excised leaf

samples were subsequently processed for APEX2 oxidation and

TEM. After sectioning, the samples were antibody labelled using

the pectin epitopes JIM5 and JIM7 (Knox et al., 1990). The results

obtained show that CESA6 is trafficked separately to the pectic

polysaccharides identified by these antibodies. The NaARADL1-

APEX2 density localised to the GA and was found in some

secretory vesicles. These findings indicate differential trafficking

pathways for CESAs and pectic NCPs, highlighting the complexity

and specificity of intracellular transport mechanisms and shedding

light on the dynamic interplay driving cell wall synthesis and

remodelling processes.
Materials and methods

Plant growth & transient expression

N. benthamiana plants were grown in soil in a growth cabinet

with continuous cool-white fluorescent lights at 20-26°C with a 16:8

hour light:dark cycle.
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Construct development and
transient expression

The APEX2 tag sequence (Supplementary 1) was synthesized

with alanine linkers on the N and C terminus to facilitate cloning of

fusions with genes of interest. The gene block was cloned into the

KpnI and BamHI sites of the binary vector pFUERTE, which contains

the CaMV35S promoter and the 3′ OCS terminator sequence

(Lampugnani et al., 2016), using New England Biolabs HiFi DNA

assembly reagents and the protocol specified by the manufacturer.

This generated the construct 35S:pcoAPEX2. To generate

translational fusions for this project, the Arabidopsis CESA6

(AtCESA6; AT5G64740) and NaARADL1 were each amplified

using the primers outlined in Supplementary Table S1.2. The

resulting PCR products and digested vectors were cleaned using a

Qiagen PCR clean-up kit and combined using New England Biolabs

HiFi DNA assembly reagents following the protocol specified by the

manufacturer to generate the following constructs: 35S:pcoAPEX2

(empty), 35S:pcoAPEX2-AtCESA6 (APEX2-AtCESA6) and 35S:

NaARADL1-pcoAPEX2 (NaARADL1-APEX2).

Transient expression in N. benthamiana leaves was carried out

as described previously (Lampugnani et al., 2016). Transformations

were carried out at least in triplicate and entire leaves were

infiltrated. Three days after infiltration a small sample (~1 cm2)

of each leaf was excised and processed for APEX2 oxidation and

electron microscopy as described below. Each infiltration was

performed on duplicate leaves and repeated three times.
APEX2-DAB oxidation and
electron microscopy

The APEX2 transformed leaf segments of the N. benthamiana

lines were processed for electron microscopy as outlined in previous

APEX2 studies (Martell et al., 2012; Hung et al., 2014; Lam et al.,

2015) with slight modifications for the plant material. Briefly, the

leaf segments were fixed with 2.5% glutaraldehyde (Electron

Microscopy Sciences) in phosphate buffered saline (PBS) at 4°C

overnight. After fixation, all processing was done on ice. The leaf

tissue was rinsed 5 x 5 min in PBS followed by quenching of the

glutaraldehyde with 20 mM glycine in PBS for 30 min. The samples

were again rinsed 5 x 5 min with PBS after which the samples were

placed in a solution of 1.4 mM 3,3’-diaminobenzidine (DAB) free

base (Sigma) dissolved in HCl and 10 mM H2O2 in cold PBS for 15

min for the APEX2-catalysed polymerisation of DAB. The samples

were then rinsed 3 x 10 mins with cold PBS and 2 x 10 mins in

double distilled H2O (ddH2O). The leaf tissue was post-fixed with

1% OsO4 for 30 mins, which stained the DAB polymers, and was

then rinsed again 5 x 10 mins in ddH2O before placing into 1%

aqueous uranyl acetate overnight. The following day, the leaf tissue

was rinsed 5 x 10 mins in ddH2O and dehydrated in an ethanol

series of 10%, 20%, 40%, 60%, 80%, and 3 x 100% for 1 hour at each

dilution except for the last change of 100% ethanol, which was left

overnight. The samples were then infiltrated with LR White resin
frontiersin.org
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(ProScitech) at 25%, 50%, 75% and 3 x 100% steps for 8-12 hours at

each percentage step. The samples were then polymerised at 52°C

for 24 hours before being cut into 70 nm sections with a Leica

Ultracut 7 ultramicrotome (Leica Microsystems) and collected on

Formvar coated gold grids. Sections were either post-stained with

1% uranyl acetate and lead citrate, or antibody labelled first and

then post-stained.
Immunogold labelling

Sections of each line were immunolabelled with cell wall

antibodies to label for pectin epitopes including JIM5 and JIM7.

All antibodies were from Plant Probes (University of Leeds). The

carbohydrate binding module 3a (CBM3a), which has traditionally

been used to bind to crystalline cellulose (Blake et al., 2006), was not

used in this study as CBM3a has also been found to bind to

xyloglucan (Hernandez-Gomez et al., 2015), which may lead to

labelling in the GA.

Briefly, the sections were incubated in the blocking buffer of 1%

bovine serum albumin (BSA) in PBS for 30 mins after which the

sections were incubated overnight at 4°C in the primary antibody at

a dilution of 1:20. The following day, the sections were washed 3 x 2

mins in PBS and 2 x 2 mins in ddH2O before being incubated with

the anti-rat 18 nm gold secondary antibody (Jackson ImmunoLabs)

with a dilution of 1:50. The negative control omitted the

primary antibody.
Imaging and image analysis

The sections were imaged on an FEI Tecnai Spirit TEM

(Thermofisher Scientific) equipped with an FEI Eagle CCD

camera. For each transformed line, three biological replicates

were imaged for each immunogold experiment (i.e., negative

control, JIM5 and JIM7 labelling). Images were randomly

acquired of cytoplasm, cell wall and the surrounding formvar.

At least 10 GA were imaged for each biological replicate, but not

all GA showed gold labelling. The percentages given indicate the

abundance of the gold particles in each cellular compartment

measured. Images were analysed using the image analysis program

FIJI (Schindelin et al., 2012).
Results

APEX2 constructs

The APEX2-AtCESA6 and NaARADL1-APEX2 constructs

were transiently transformed into N. benthamiana, and samples

were subsequently processed for oxidation using DAB. DAB

oxidation resulted in the formation of a precipitate, enhancing

contrast for electron microscopy analysis. Our observations

revealed distinct subcellular localization patterns: APEX2-

AtCESA6 were predominantly localised to the plasma membrane
Frontiers in Plant Science 04
and vesicles in the cytoplasm, while NaARADL1-APEX2 was

primarily localised to the GA, the trans-Golgi network (TGN)

and vesicles (Figure 1). In contrast, the control construct 35S:

APEX2 (Figure 1A) did not exhibit the electron dense labelling

observed in the experimental samples (Figures 1B–H). This contrast

was particularly evident when comparing regions adjacent to the

cell wall, where APEX2-AtCESA6 showed intense electron-dense

labelling (Figure 1B). Moreover, APEX2-AtCESA6 expression was

detected within vesicles that appeared to be entirely electron dense

(Figures 1C, D) and also in the outer membrane region of vesicles

where the centre was electron translucent (Figures 1D, E). No

discernible labelling of APEX2-AtCESA6 was observed in the GA in

this study.

In comparison, the NaARADL1-APEX2 construct (Figures 1F–

H) exhibited distinct localisation patterns, with labelling detected

within the trans-Golgi cisternae (Figure 1F), the TGN (Figure 1G)

and in cytoplasmic vesicles (Figure 1H). Notably, our observations

revealed heterogeneity in vesicular populations, with some vesicles

displaying electron density indicative of protein labelling, while

others lacked such density, suggesting differential labelling within

distinct vesicular populations.
Antibody labelling combined with
APEX2 localisation

To assess whether the APEX2 constructs co-localised with NCPs

as anticipated, we employed the pectin-associated antibodies JIM5

(recognising low degree of esterified homogalacturonan) (Knox et al.,

1990; Willats et al., 2000) and JIM7 (detecting esterified

homogalacturonan) (Knox et al., 1990; Willats et al., 2000). While

LM19 (Verhertbruggen et al., 2009) has emerged as the preferred

antibody for detecting unesterified pectins (Knox, 2021), the results

obtained using the JIM5 antibody were consistent with those of

LM19, hence JIM5 was employed in this study. Cell wall labelling

functioned as the internal positive control, while omission of the

primary antibody functioned as the negative control.

The colocalization analysis revealed distinct patterns of

association between the JIM5 antibody and APEX2-AtCESA6

(Figures 2A, C, E). Specifically, the JIM5 antibody labelling was

observed in close proximity to the plasma membrane and closely

juxtaposed with the APEX2-AtCESA6 densities (Figure 2A).

Additionally, JIM5 labelling was detected in vesicles on the trans-

Golgi cisternae (Figure 2C) as well as vesicles found in secretory

vesicle clusters (SVCs) (Figure 2E). These results were obtained from

counting 1420 gold particles, 81% of which were located on the cell

wall, 5% in proximity to the APEX2-AtCESA6 plasma membrane

densities, 1% in the TGN, 2.5% in the APEX2-CESA6 positive

vesicles, 1% in the non-APEX2 positive vesicles and 2.4% in the

SVCs. The remainder of the gold particles were found in the

cytoplasm (3%) or as background on the formvar or vacuole.

While these non-specific percentages may seem high, there was far

more area imaged of the cytoplasm, vacuoles and the background

Formvar than the areas of the GA and vesicles suggesting a higher

overall density on the GA and vesicles than background labelling.
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Conversely, the JIM7 antibody labelling (Figures 2B, D, F) exhibited

a slightly greater overlap with the APEX2-AtCESA6 densities at the

plasma membrane compared to the JIM5 antibody (Figure 2B). Similar

to JIM5, JIM7 labelling was observed within vesicles associated with

the trans-Golgi cisternal vesicles (Figure 2D). Interestingly, the JIM7
Frontiers in Plant Science 05
immunogold labelling was also located in electron-lucent vesicles

adjacent to vesicles containing APEX2-AtCESA6 electron density

(Figures 2D, F). These results were obtained from counting 794 gold

particles. Again 80% of the gold labelling was quantified on the cell

wall, but 9% was observed in proximity to the APEX2-AtCESA6
FIGURE 1

Subcellular localisation of APEX2-AtCESA6 and NaARADL1-APEX2 constructs using TEM. (A) The control construct 35S:APEX2 with no electron
dense labelling adjacent to the cell wall (cw). (B) The APEX2-AtCESA6 sample with electron dense labelling at a comparative region (white arrows).
(C–E) Further labelling of the APEX2-AtCESA6 construct in vesicles (v), adjacent to the cell wall (white arrows), and vesicles with what appears to be
a translucent centre with electron dense labelling around the outside (blue arrows). (F–H) The NaARADL1-APEX2 labelling showed electron dense
labelling in the trans-Golgi, the TGN and in vesicles in the cytoplasm (red arrows). Multiple, non-labelled vesicles (black arrows) were observed in the
same region as NaARADL1-APEX2 positive vesicles in a possible SVC. cw, Cell wall; c, cytoplasm; vac, vacuole; v, vesicle; g, Golgi Apparatus; tgn,
trans-Golgi network; svc, secretory vesicle cluster. Scale bars = 100 nm.
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densities at the plasma membrane, 1% on the GA, 1% on the APEX2-

AtCESA6 positive vesicles, 3% on non-APEX2 postive vesicles and

1.5% in SVCs. The remainder of the gold particles were observed in

the cytoplasm, vacuoles or on the background formvar.

In the NaARADL1-APEX2 samples, both the JIM5 and JIM7

antibodies consistently labelled the cell walls (Figures 3A, B).
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Additionally, labelling was observed near the plasma membrane

and within the cytoplasm (Figures 3A–D) as well as in Golgi

associated vesicles (Figures 3C, D) and secretory vesicle clusters

(Figures 3E, F) where NaARADL1-APEX2 densities were also

observed. These results were obtained from 519 JIM5- and 463

JIM7-associated immunogold labels respectively. For the JIM5
FIGURE 2

Subcellular localisation of APEX2-AtCESA6 and pectin antibodies using TEM. (A, B) Both the JIM5 (A) and JIM7 (B) antibodies immunogold labelled
the cell wall (orange arrows) and the APEX2 densities adjacent to the plasma membrane (this immunogold shown with white arrows) in the APEX2-
AtCESA6 line. (C, D) The GA were found to have both JIM5 (C) and JIM7 (D) antibody labelling in the trans-Golgi cisternae (red arrows).
(E, F) Immunogold labelling was also observed in secretory vesicles clusters (E) and in vesicles (green arrows) adjacent to APEX2-positive vesicles
(blue arrows) (D, F). cw, Cell wall; c, cytoplasm; v, vesicle; g, Golgi Apparatus. Scale bars = 100 nm.
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and JIM7 labelling, 81% of the gold particles were clearly on the

cell wall and 9% were near the plasma membrane, 5% of the

labels were found in vesicles or SVCs for JIM5 and 3% for JIM7

labelling. The remainder were in the cytoplasm, the vacuole or

on the background Formvar grid.
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Discussion

The aim of this study was to explore a multi-pronged approach

to investigate the trafficking pathways of PCW polysaccharides at

the nanoscale in plants. By analysing the trafficking pathways of
FIGURE 3

Subcellular localisation of NaARADL1-APEX2 and pectin antibodies using TEM. (A, B) In the APEX2-NaARADL1, both the JIM5 (A) and JIM7
(B) antibodies labelled the cell wall (orange arrows). Some immunogold labelling was observed near the plasma membrane and in the cytoplasm
(white arrows). (C, D) The GA were closely associated with labelling for both JIM5 (C) and JIM7 (D) antibodies in vesicles associated with the trans-
Golgi cisternae (red arrows). (E, F) Immunogold labelling for both JIM5 and JIM7 was also observed in secretory vesicles clusters (E, F). Possible
NaARADL1-APEX2 dense vesicles (asterisks) were found in the SVCs (F). cw, Cell wall; c, cytoplasm; vac, vacuole; g, Golgi Apparatus. Scale bars =
100 nm.
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PCW synthases using the EM-tag APEX2 (Lam et al., 2015) in the

plant transient transformation system of N. benthamiana, in

conjunction with PCW antibodies, we sought to elucidate

whether the trafficking pathway of non-cellulosic polysaccharides

is different and independent of the cellulose trafficking pathway.

Specifically, we focused on the localization of cellulose synthase

(AtCESA6) and arabinan transferase (NaARADL1) in plant cells,

combined with polysaccharide localisations using PCW antibodies

to determine the associations of these components. Here, we discuss

the implications of our findings and their significance in the context

of PCW biosynthesis and trafficking, as well as the methodology

employed and its potential applications.

Our results, summarised in Figure 4, revealed distinct localization

patterns for AtCESA6 and NaARADL1 within plant cells. APEX2-
Frontiers in Plant Science 08
AtCESA6 was predominantly localized to the plasma membrane,

consistent with its role in cellulose synthesis. Interestingly, we also

observed APEX2-AtCESA6 densities in vesicles within the cytoplasm,

suggestive of trafficking intermediates possibly corresponding to

SmaCCs (Gutierrez et al., 2009) and/or MASCs (Crowell et al.,

2009). This class of vesicles has been identified using fluorescence

microscopy and is involved in the cycling of CSCs by both exo- and

endo-cytosis (Zhu and McFarlane, 2022). We did not detect APEX2-

AtCESA6 densities at the GA, but this may be due to low abundance in

the observed GA that did not include the APEX2-AtCESA6 densities.

In comparison,NaARADL1-APEX2 exhibited localisation in the trans-

Golgi cisternae, the TGN and cytoplasmic vesicles, some of which

resemble SVCs, which is consistent with previous studies (Harholt

et al., 2006; Lampugnani et al., 2016). These findings suggest distinct
FIGURE 4

Model of trafficking of CESA6, NaARADL1 and polysaccharides in N. benthamiana.
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trafficking routes for cellulose synthases and arabinan transferases,

highlighting the complexity of PCW biosynthesis and organization.

In conjunction with protein localization, we investigated the

distribution of pectic polysaccharides using JIM5 and JIM7

antibodies. Both pectic antibodies were localised to the GA,

specifically in this study the trans-Golgi cisternae, but previous

studies have observed JIM5 labelling in the cis- and medial-Golgi

cisternae as well (Zhang and Staehelin, 1992; Sinclair et al., 2018).

Interestingly, JIM7 labelling exhibited a closer association with

APEX2-AtCESA6 densities at the plasma membrane compared to

JIM5, suggesting potential co-trafficking of cellulose synthases and

pectic polysaccharides. Furthermore, colocalization of pectic

antibodies with NaARADL1-APEX2 densities in secretory vesicle

clusters (SVCs) suggests coordinated trafficking of arabinan

transferases and pectic polysaccharides. Another possibility is that

these vesicles may also serve as hubs for the recycling of ARADL1

proteins, facilitating the retrieval of ARADL1 proteins back to the

Golgi apparatus or other cellular compartments involved in pectin

metabolism. These observations align with previous studies

demonstrating the co-trafficking of multiple polysaccharides in

plant cells. For instance, Staehelin and colleagues showed that

pectins and xyloglucans can be trafficked together (Lynch and

Staehelin, 1992; Zhang and Staehelin, 1992). Additionally, as

observed by Leucci et al. (2007), the distinct pathways followed

by polysaccharides and secretory proteins further emphasize the

intricate nature of PCW biosynthesis and secretion. While our

study focused on protein and polysaccharide localization, previous

research has identified key proteins like Syntaxin of Plants 61

(SYP61) involved in PCW trafficking (Drakakaki et al., 2012).

The coordinated action of such proteins likely plays a crucial role

in ensuring efficient PCW component delivery. Overall, our

findings deepen our understanding of PCW dynamics and

highlight the need for further research into the molecular

interactions underlying PCW biosynthesis and secretion.

The application of this methodology can provide results that

throw light on polysaccharide sorting in the trafficking pathways

and can lead to the fine tuning of our understanding of

polysaccharide and synthase pathways as they develop the PCW.

Our methodology offers several advantages for studying PCW

biosynthesis and trafficking at the nanoscale. By genetically encoding

protein tagging with APEX2 and combining it with polysaccharide

localisation we achieved high-resolution visualization of PCW

components. This approach provides powerful insights into the

dynamics of PCW biosynthesis and trafficking, facilitating the

elucidation of complex cellular processes. Additionally, APEX2

tagging circumvents the need for and complications arising from

the use of additional antibodies, streamlining sample preparation and

reducing the potential for artifacts associated with labelling of

multiple antibodies on a section. For example, GFP is a commonly

used translation tag, but labelling both GFP and multiple

polysaccharides on a single sample would be challenging. APEX2

facilitates the simultaneous visualisation of multiple proteins and

polysaccharides and enables comprehensive analyses of PCW

dynamics at the TEM level, shedding light on intricate trafficking

pathways and interactions between different components.
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While there are many advantages to the use of APEX2 in plants,

it is important to acknowledge the limitations of this methodology.

The reliance on chemical fixation for APEX2 labelling may

introduce artifacts, necessitating careful optimisation of fixation

protocols to minimize potential distortions. Furthermore, the

processing required to obtain electron densities using DAB

staining may affect sample integrity and introduce variability in

labelling efficiency. Future studies would benefit from the

development of stable transformant lines, particularly in model

plant species like Arabidopsis, to enable more consistent and

reproducible analyses. Additionally, improved fixation techniques

and complementary imaging modalities could enhance the accuracy

and reliability of our observations, providing a more comprehensive

understanding of PCW dynamics.

This study demonstrates the feasibility of employing a

multi-pronged approach that combines protein tagging with

APEX2 and polysaccharide localization to investigate PCW

trafficking pathways at the nanoscale. Elucidation of the spatial

organisation of PCW components within plant cells would advance

our understanding of PCW biosynthesis and secretion processes.

Moving forward, further refinement of this methodology and

integration with complementary techniques will continue to

enhance our ability to unravel the intricacies of PCW dynamics,

paving the way for future discoveries in plant cell biology.
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