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Plant pest and disease
lightweight identification model
by fusing tensor features and
knowledge distillation
Xiaoli Zhang, Kun Liang* and Yiying Zhang

College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin, China
Plant pest and disease management is an important factor affecting the yield and

quality of crops, and due to the rich variety and the diagnosis process mostly

relying on experts’ experience, there are problems of low diagnosis efficiency

and accuracy. For this, we proposed a Plant pest and Disease Lightweight

identification Model by fusing Tensor features and Knowledge distillation

(PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-

ST) is constructed to enhance the perception and extraction of shallow detail

features of plant images by introducing spatial tensor. And the depth separable

convolution is used to reduce the number of model parameters to improve the

diagnosis efficiency. Secondly, a Branch Network Fusion with Graph

Convolutional features (BNF-GC) is proposed to realize image super-pixel

segmentation by using spanning tree clustering based on pixel features. And

the graph convolution neural network is utilized to extract the correlation

features to improve the diagnosis accuracy. Finally, we designed a Model

Training Strategy based on knowledge Distillation (MTS-KD) to train the pest

and disease diagnosis model by building a knowledge migration architecture,

which fully balances the accuracy and diagnosis efficiency of the model. The

experimental results show that PDLM-TK performs well in three plant pest and

disease datasets such as Plant Village, with the highest classification accuracy and

F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency

performs better compared to lightweight methods such as MobileViT, which

can quickly and accurately diagnose plant diseases.
KEYWORDS

image classification, spatial tensor, knowledge distillation, light weighting, graph
convolutional neural networks
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1 Introduction

The variety of crops grown in countries around the world is

large and intensive, and according to the world food and agriculture

statistical yearbook released by the Food and Agriculture

Organization of the United Nations (FAO) in 2023, the global

agricultural economy reached $3.7 trillion and employed a

population of approximately 873 million people, which accounts

for 27% of the global labor force (FAO, 2023). On average, more

than 40% of natural losses in agricultural production are caused by

plant pests and diseases each year, resulting in a global economic

loss of more than 220 billion dollars (FAO, 2022). Thus, once a crop

is infested with pests and diseases, it is very easy to cause widespread

infection of crops, which seriously affects crop yields and restricts

the development of agricultural productivity. However, traditional

identification of plant pests and diseases is usually done by

experienced plant pathologists or farmers to diagnose the type of

leaf pests and diseases. This not only requires a lot of time and

effort, but also the process is subjective and limited, which makes it

difficult to accurately determine the type of disease and thus leads to

the aggravation of plant pests and diseases (Sajitha et al., 2024).

Therefore, how to quickly and accurately identify the types of plant

pests and diseases is the crucial to ensure the safety and stability of

agricultural production, and its research has important theoretical

significance and application value.

With the continuous development of smart agriculture and

artificial intelligence technology, scholars combined with computer

vision related theories to carry out research on plant pest and disease

recognition methods. Especially, the research on intelligent plant

image recognition based on machine vision and deep learning has

achieved better practical results (Rimal et al., 2023). Machine vision

methods usually use traditional image processing algorithms or

manually designed feature classifiers, which mainly rely on the

distinguishing features of different pests and diseases to design the

recognition scheme, and are widely used in crop pest detection and

classification (Thakuria et al., 2023). However, plant images collected

in the natural environment are easily interfered by factors such as

light in the environment, which leads to errors in the detection results

and inaccurate classification (Zheng and Zhang, 2022). At the same

time, with the increasing variety of plant diseases, it is difficult to

construct suitable classifiers to distinguish approximate

representations by means of manual feature selection. Therefore,

traditional machine vision-based pest and disease detection methods

are difficult to achieve effective recognition results (Ali et al., 2024).

With the continuous development of deep learning in recent years,

network models represented by multilayer convolutional neural

network (CNN) and attention mechanism have achieved effective

results in plant pest and disease recognition (Math and Dharwadkar,

2022). Deep learning based plant pest and disease recognition

technique is automated to extract global and contextual features of

pest and disease images compared to traditional recognition methods

mainly using supervised learning (Roxa et al., 2023). It avoids manual

selection of features but extracts richer feature information through

autonomous learning, which can cope with diverse crop

environments (Sharma et al., 2022). And it can handle massive

image data with strong robustness and high accuracy (Shamsul
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Kamar et al., 2023). In order to further improve the accuracy and

training efficiency of the model, techniques such as KD andmigration

learning are usually combined to fine-tune the parameters of the

model to achieve knowledge migration (Khan et al., 2022). Although

the above methods can effectively promote the construction of smart

agriculture, with the increasing types of plant pests and diseases, as

well as the limitations of hardware equipment in the actual

application scenarios, there are still some problems that affect the

efficiency and accuracy of plant pests and diseases recognition

(Manavalan, 2022). 1) The complex structure and large number of

parameters of the deep neural network greatly affect the recognition

efficiency of the model. 2) The lightweight network model is difficult

to mine and fuse the key features, which leads to information loss and

thus reduces the accuracy of the model. To address the above

problems, we proposed a Plant pest and Disease Lightweight

identification Model by fusing Tensor features and Knowledge

distillation (MTS-KD) to realize accurate and efficient diagnosis of

multiple plant pests and diseases. The specific contributions are

as follows.
• Constructed Lightweight Residual Blocks based on Spatial

Tensor (LRB-ST). Enhanced the perception and extraction

of shallow detail features of plant images by introducing

spatial tensor, and reduced the number of model

parameters by using depth-separable convolution to

improve the diagnostic efficiency.

• Proposed Branch Network Fusion with Graph Convolutional

features (BNF-GC). The image super-pixel segmentation

was realized by using spanning tree clustering based on

pixel features, and the graph convolution neural network

was used to extract correlation features to improve the

diagnostic accuracy.

• Designed Model Training Strategy based on Knowledge

Distillation (MTS-KD). Train the pest and disease

diagnosed model by building a knowledge migration

architecture, fully balancing the accuracy of the model

with the diagnosis efficiency.
The sections of this paper are organized as follows, section 2

focus on introducing and analyzing the current research related to

plant pest and disease diagnosis. Section 3 focus on the method

proposed in this paper. Section 4 describes the qualitative and

quantitative analysis of this paper’s method with other image

classification methods to verify the accuracy of the method for

plant pest and disease diagnosis. Section 5 discusses the

convergence of the method and the configuration of each module

to fully justify the method in terms of model construction and

parameter selection. Finally, section 6 gives a summary and

future research.
2 Related work

In order to fully utilize computer or artificial intelligence

techniques to assist in pest control, machine learning and deep

learning based methods have been proposed for plant image
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recognition (Cetiner, 2022). While improving the accuracy of more

plant pest and disease recognition, it also focuses on lightweight

design to improve the diagnostic efficiency. It effectively solves the

problem that traditional crop pest and disease image recognition

methods rely heavily on manual feature extraction and have poor

generalization ability for image recognition in complex

backgrounds (Rustia et al., 2022).

The application of machine learning in pest recognition has

significantly enhanced the efficiency of pest control. Zhao et al.

(2022) and Johari et al. (2022) proposed a multi-step plant adversity

recognition method based on hyperspectral imaging and

continuous wavelet analysis, used k-mean clustering and support

vector machine algorithms to detect abnormal regions of tea tree

leaves, and used the random forest algorithm to construct the tea

tree discriminant model. Motie et al. (2023) extracted and analyzed

spectral vegetation features and used support vector machine

(SVM) to classify wheat diseased plants. Bhandari et al. (2023)

implemented EfficientNetB5 with a tomato leaf disease (TLD)

dataset without any segmentation, and the model achieved high

accuracy. Catalkaya et al. (2024) established a KASP (Kompetitive

Allele-Specific PCR) analysis method for plant pest identification by

designing two forward primers and one reverse primer to enhance

the identification accuracy of the algorithm. Pansy and Murali

(2023) proposed an unmanned aerial imaging remote sensor for

spatio-temporal resolution identification of mango pests and

diseases using fuzzy C-mean clustering for diseased leaves and

pests, respectively. Despite the deep mining of plant image features,

to further enhance the recognition and accuracy, Aldakheel et al.

(2024) and Subbaian et al. (2024) applied the YOLOv4 algorithm to

plant leaf disease detection. And data enhancement techniques such

as histogram equalization and level flipping were used to improve

the dataset and effectively enhance the accuracy of plant image

disease classification. Zhu et al., 2023 proposed a data evaluation

method based on martingale distance and entropy to address the

problem of lack of labeling data in intelligent pest identification.

This method can filter high value data, thus achieving effective pest

recognition performance with small data size. Chodey and Shariff

(2023) proposed a Self-Improving Tephritid Swarm Optimization

Algorithm (SITSA) to train a pest detection model by selecting the

optimal weights and designing a grey scale covariance matrix based

feature extraction method to segment the image. Nandhini and

Brindha (2024) proposed a new data enhancement technique and

feature fusion technique that fuses multi-scale features from global

feature extraction network and visual regeneration network to

improve accuracy as well as robustness. Although the efficiency of

plant pest and disease recognition has been substantially improved,

the recognition effect still needs to be improved. This is due to the

fact that traditional machine learning methods usually need to

select features manually, and their feature representation capability

is relatively limited to fully capture the complex structure and

information in the image.

Deep learning currently possesses robust feature representation

capabilities, enabling it to automatically extract essential semantic

information from plant disease and pest images. Li et al. (2024)

proposed an interactive bilinear Transformer network, which

utilizes fine-grained recognition techniques to realize the types of
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garden plant diseases. Xia et al. (2023) and Zhang et al. (2023)

proposed a pest classification method based on Convolutional

Neural Network (CNN) and improved Vision Transformer

model, which extracts the features of the objects at different scales

and fine-grains, to address the problems of low efficiency of pest

classification methods, which are not adapted to large-scale

environments. Wei et al. (2022) proposed a multi-scale feature

fusion based crop pest classification method (MFFNet), which

obtains the deep feature information of pest images through

multiple convolutional operations to accurately recognize and

classify crop pests. Liu et al. (2024) and Yu et al. (2022) proposed

a plant pest type recognition method based on YOLOv5 by

introducing modules such as hierarchical classification and

attention mechanism, respectively, which effectively avoided the

problems of time-consuming, laborious, and inaccurate manual

classification. Xiao et al. (2022), on the other hand, combined

hyperspectral imaging with deep learning, which designed a

spectral feature extraction module through one-dimensional

convolution and attention mechanism between spectral channels,

effectively utilizing spectral information to improve detection

accuracy. On this basis, Cheng et al. (2022) used to recognize the

category of tomato diseases in images by fine-tuning the pre-trained

model. Qiang et al. (2023) proposed a dual backbone network based

pest detection method for citrus leaves in response to the problem

that pests on the surface of plants are difficult to distinguish due to

their small size and camouflage, which utilizes a single-shot multi-

box detector improved by a dual backbone network to enhance the

detection accuracy. Dai et al. (2024) and Li et al. (2024) proposed

similar deep information feature fusion networks extracting and

fusing relevant features from different network layers, respectively,

while fusing contextual information at different scales using

pyramid-squeezed attention (PSA) to produce better pixel-level

attention for improved localization of plant disease areas.

Ishengoma et al. (2022) proposed a hybrid convolutional neural

network (CNN) model. It was also combined with Unmanned

Aerial Vehicle (UAV) technology to build a parallel architecture

using two separate models (i.e., VGG 16 and InceptionV3) to realize

the identification of plant diseases in large areas. Shafik et al. (2023)

proposed an enhanced Convolutional Neural Network (CNN)

along the use of Long Short Term Memory (LSTM) using

Majority Voting Integrated Classifier for plant disease and

pest recognition.

Plant pest and disease identification methods based on artificial

intelligence not only enhance the accuracy of disease type identification

but also advance agricultural automation and intelligence, helping to

mitigate losses caused by pests and diseases. Machine learning-based

methods struggle to efficiently extract potential critical features and

often require substantial manual labeling efforts. Although deep neural

network architectures improve accuracy, they significantly increase

model complexity, presenting challenges in parameter training and

practical deployment (Li et al., 2023). This complexity results in longer

training times and demands greater computational resources, limiting

recognition efficiency, particularly in real-time applications.

Additionally, the intricacies of hyperparameter tuning and the risk of

overfitting pose significant obstacles for practitioners, especially in

resource-constrained environments. Although lightweight network
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models have been proposed to address these issues, fewer parameters

often struggle to capture key features in large image datasets.

Additionally, noise and other interference present in the images are

challenging to filter effectively. These disturbances can obscure

important features that are critical for accurate identification of plant

pests and diseases. Therefore, how to balance the accuracy and

efficiency of plant pest and disease diagnosis methods remains to

be solved.
3 Methodology

3.1 Model framework

In order to improve the efficiency and accuracy of plant pest and

disease diagnosis, we constructed a classification model applied to

plant pest and disease diagnosis based on a deep learning network

architecture, combined with model compression and training

methods to achieve accurate identification of various categories of

plant pest and disease classes.

The PDLM-TK model comprises three primary components, as

shown in Figure 1. First, a Lightweight Residual Blocks based on

Spatial Tensor (LRB-ST) network is designed, which integrates

multiple spatial tensors to extract semantic information from plant

disease images progressively, from the initial to the final layers. The

input plant disease and pest images undergo initial downsampling,

followed by four sequential layers of LRB-ST, to capture advanced

semantic information about the disease. Next, the Branch Network

Fusion with Graph Convolutional features (BNF-GC) is introduced

to deeply mine and fuse different levels of residual block features

using graph convolution. BNF-GC applies a graph convolutional

neural network to the output of each LRB-ST layer, focusing on

localized pest and disease information to guide classification. Finally,

a Model Training Strategy based on Knowledge Distillation (MTS-

KD) is implemented. This strategy utilizes the plant pest and disease
Frontiers in Plant Science 04
dataset to train a teacher network, enabling knowledge transfer to the

student network. KD is performed during the student network’s

training using the target dataset.

The number of network layers and parameters of PDLM-TK are

presented in Table 1. PDLM-TK primarily consists of four LRB-STs

and BNF-GC as the main feature extraction structure, with a fully

connected multi-classification network appended at the end for pest

and disease type recognition. Among these, LRB-ST is primarily

responsible for extracting key features from pest and disease images,

while BNF-GC focuses on mining the correlation features between

image regions, thereby achieving a balance between global and local

image features. Plant pest and disease images are downsampled

through preliminary convolution and pooling layers. Subsequently,

feature maps at various levels are deeply mined by LRB-ST and

BNF-GC, respectively. It is important to note that LRB-ST utilizes

Depth-Separable Convolution (DSC), whereas BNF-GC performs

feature extraction using Graph Convolution Network (GCN). The

number of output feature map channels for each LRB-ST

corresponds to the output feature vector size of BNF-GC. MTS-

KD, in turn, is based on PDLM-TK, which serves as the student

network for knowledge distillation. The remaining sections of this

chapter provide a detailed description of each of these modules.
3.2 Lightweight residual blocks based on
spatial tensor

With the continuous stacking of network layers, the high-level

semantic features embedded in images are continuously mined and

acquired, but the shallow image semantic features are also easily

lost. These features play a crucial role in constructing more complex

representations, especially in plant pest and disease recognition,

where the texture of some leaves and the color change of damaged

areas have a great impact on the final classification results. The

residual network enhances the model’s perception of small changes
FIGURE 1

General framework diagram of PDLM-TK.
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in the input image more effectively by enhancing the underlying

semantics. Aiming at the problem that it is difficult to effectively

capture and transfer feature information of different dimensions in

residual networks, we propose LRB-ST. The principle is shown in

Figure 2. The semantic information of different dimensions in the

input feature graph is mined by defining a trainable spatial tensor.

And it is fused with the underlying data as a way to enhance the

feature mining ability of the classification model. Meanwhile, in

order to improve the classification efficiency of the model,

Depthwise Separable Convolution (DSC) is used to replace the

traditional convolution operation to reduce the number of model

parameters. The specific steps are as follows.

Firstly, the spatial tensor Pxy is defined to extract the residual

block features. For the input layer i feature block Blocki, the spatial

tensor Pxy is defined according to its input size, which is fused by

multiplying with the feature maps of each channel of Blocki on the

original residual connection. The computational procedure is

shown in Equation 1. Where DSW represents the depth separable

convolution and s represents the normalization and activation

operation on the features.

Block0i = s (DSW(Blocki)) + Pxy ∗Blocki (1)
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Secondly, depth-separable convolution is used to reduce the

number of parameters. Feature extraction is achieved by depth

convolution and pointwise convolution, and the input block

feature Blocki is stacked with the feature fusion result in

Equation 1 on an element-by-element basis to obtain the fused

feature Block0i after two depth-separable convolutions and

normalized activation. After that, the feature Blocki+1 of the

residual block is output through the same two depth-separable

convolution and used for the calculation of the next residual block.

As shown in Equation 2.

Blocki+1 = Block0i + s (DSW(Block0i)) (2)

The overall structure of the LRB-ST is depicted in Figure 2,

comprising two feature superposition processes and one

downsampling operation. This study adopts the ResNet18

architecture to facilitate the deep feature extraction of plant pest

and disease image data by superimposing four LRB-STs as the

backbone network. This approach enables the model to focus on

features across different levels while ensuring the effective

transmission of deep semantic information. Furthermore, it

effectively reduces the number of model parameters, thereby

enhancing the classification efficiency of model.
FIGURE 2

Schematic diagram of LRB-ST.
TABLE 1 Network layers and parameters of PDLM-TK.

Layer
Name

Conv_1
LRB-ST _1 LRB-ST _2 LRB-ST _3 LRB-ST _4

Conv_2
BNF-GC_1 BNF-GC _2 BNF-GC _3 BNF-GC _4

Output
Size

112*112
56*56 28*28 14*14 7*7

1*1
64 128 256 512

Structure
7*7, 64, stride 2, 3*3, maxpool,

stride 2

3*3;  64

3*3; 64

8<
:

9=
;*2

3*3;  128

3*3; 128

8<
:

9=
;*2

3*3;  256

3*3; 256

8<
:

9=
;*2

3*3;  512

3*3; 512

8<
:

9=
;*2 average, 512,

softmax

(4,25,32) (4,16,32) (4,9,32) (4,4,32)

Params[K] 9.41 31.97 90.15 225.09 1,120 494
The bolded text represents the type and the values represent the best results.
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3.3 Branch network fusion with graph
convolutional features

Since there are factors such as background and noise in the

plant image data besides the target region, and the use of deep

learning-based classification model can extract key features, but it is

still difficult to avoid interference by redundant information, which

in turn affects the results of plant pest and disease diagnosis. In

order to improve the robustness of the model and mine the

correlation features of different regions in the image, we propose

BNF-GC, the principle of which is shown in Figure 3.

BNF-GC mainly uses super-pixel segmentation to

effectively reduce image complexity and extract potential regional

features, which can effectively improve the classification

performance of the model. Meanwhile, the graph convolutional

neural network is used to mine the intrinsic correlation of different

regions, which further improves the accuracy of pest and

disease diagnosis.

Step1: Construct plant disease image spanning tree ST(v, e,w).

Map the plant image feature data into an undirected graph G and

represent it as G = (V , E). Where each pixel point represents a node

in the undirected graph and two neighboring pixel points form an

edge e(vi, vj). Where the weights w of the edges are jointly

determined by the coordinates vi(xi, yi) and pixel values pi of the

pixel points. The distance between nodes is normalized according to

the size of the image M � N and fused with the normalized pixel

value features as the weight of each node pixel. The calculation

process is shown in Equation 3.

w =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(xi − xj)

2 + (yi − yj)
2�=(M2 + N2)

q
+ pi=255 (3)

Step2: Aggregate the nodes in the region to form a super-

pixel segmented image. The nodes are aggregated to form

different segmentation regions R according to the minimum
Frontiers in Plant Science 06
spanning tree method. The maximum weight Max(wi) on the

minimum spanning tree in a segmented region indicates

the degree of intra-class variation of its internal nodes, while

the minimum weight Min(wi) between different regions

represents its inter-class variation. Therefore, the regions that

meet the condition Max(wi) ≤ Min(wi) are merged, after which

the inter and intra-class differences are re-compared until the

expected number of segmented regions is reached and then

stopped, and finally the plant pest image Seg(R1,R2,R3,⋯Rn)

containing multiple aggregated regions is obtained. The

calculation process is shown in Equation 4.

Seg(Ri) =
o
i∈R

Ri(wi) Max(wi) ≤ Min(wi)

Ri(wi) other

8<
: (4)

Step3: Calculate the feature terms of each segmentation region

of the superpixel map Seg(s1, s2, s3,⋯ sn). Since the image in each

segmentation region contains rich semantic information, this paper

selects the pixel mean value pi, the region center coordinate (cxi, cyi)

and the number of included pixel points ci in the segmentation

region as the superpixel point feature si(pi, cxi, cyi, ci) of each

segmentation region. And the feature values of each region are

normalized for subsequent feature mining respectively. The

calculation process is shown in Equations 5–7.

pi =
1
no

n
j=0pj j ∈ Ri (5)

(cxi, cyi) =
1
mo

m

i=0
ci,

1
no

n

i=0
cyi

� �
   m, n ∈ Ri (6)

ci = count(Ri) (7)

Step4: Construct graph convolutional neural network GCN to

mine local correlation information. According to the dimension of
FIGURE 3

Schematic diagram of BNF-GC.
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image features in the segmented region, construct the graph

convolution neural network GCNi corresponding to the ith

residual block, and then mine the regional correlation through

multi-layer graph convolution computation to get the feature vector

GFi. Finally, the correlation features are multiplied with the output

feature map Blocki−1 of the previous residual block to generate the

fusion Blocki, which is used for the feature computation of the next

residual block. The computation process is shown in Equations 8

and 9.

GFi = GCNi(si) (8)

Blocki = Blocki−1 ∗GFi (9)

The BNF-GC module creates a graph convolutional network

branching structure for deep mining of residual block features,

which effectively realizes regional relevance feature extraction for

plant pest and disease image data. The module enhances the

classification performance of the model by enhancing the deep

fusion of the underlying semantic information, which emphasizes

the main features of the target region and effectively avoids the

interference of the background and other information.
3.4 Model training strategy based on
knowledge distillation

Although existing publicly available datasets contain more

images of plant pests and diseases, the lightweight model

proposed in this paper contains fewer parameters, which makes it

difficult to capture the rich features of the dataset. Especially when

the dataset is limited or noisy, it is difficult for the model to learn the

implicit knowledge by using only the dataset training. In this regard,

this paper proposes MTS-KD, as shown in Figure 4. The ResNet18

network is used as the backbone network of the teacher model, and

the prediction results and soft labels of the teacher model are used to

guide the training of the student model. This approach effectively

enhances the model’s learning capacity and improves its

generalization ability, which helps mitigate the significant bias
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present in the plant dataset. As a result, the model’s training

efficiency is improved without compromising its high accuracy.

During the training process of the model through MTS-KD, the

plant pest and disease images were first categorized according to the

training set and test set. After that, they were fed into both teacher-

student models for forward computation. The Softmax

classification result produced by the teacher model under high

temperature T is used as soft label SL.

The student model produces the same prediction results after

going through the training based on KD. In this case, the Softmax

output at the same temperature T condition is Ls, while the

prediction result produced at T = 1 is Lh. Ls in MTS-KD uses

Kullback-Leibler Divergence to calculate the relative difference

between the predictions of the teacher-student models. In turn,

Lh uses the cross-entropy loss function to calculate the difference

between the results predicted by the student model and the real pest

label. Afterwards, the losses of these two components are summed

up as the total model loss for optimization and training of the

parameters. Where the loss function formulas for Ls and Lh are

shown in Equations 10 and 11.

Ls = −oN
i=0s

T
i log (t

T
i ) (10)

Lh = −oN
i=0li log (t

1
i ) (11)

Where N is the number of total categories in the dataset. tTi
refers to the value that the teacher model predicts as i after Softmax

at temperature T. t1i represents the true label prediction result of the

teacher model at temperature 1. Similarly, sTi refers to the value of T

predicted by the student model at temperature i, and li represents

the value of the ith true label in the total number of categories N.

The two calculations are shown in Equation 12.

pTi =
exp (Pi=T)

oN exp (PN=T)
(12)

pTi in Equation 12 can be used to calculate the predictions for

the teacher model and the student model, respectively. Therefore,

the total loss Lt is defined as shown in Equation 13. Loss weights are
FIGURE 4

Framework diagram of MTS-KD.
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employed to balance the influence between soft targets and hard

targets from the teacher model during the training process of the

student model. In the context of plant pest and disease

identification, it is particularly important to emphasize the

knowledge derived from the teacher model for training the

student network. Where l is the loss weight for student model

training, and (1 − l) is the loss weight for prediction

layer distillation.

Model parameter optimization is guided by the Knowledge

Distillation (KD) training strategy, which facilitates the transfer of

knowledge from the teacher model to the student model. This

innovative approach allows the student model to more effectively

replicate the feature extraction capabilities of the teacher model,

thereby enhancing its ability to grasp complex patterns and nuances

in the input images. Furthermore, this knowledge transfer not only

improves the classification and recognition performance of the

student model but also contributes to training efficiency. When

compared to training from scratch, the student model is able to

converge to optimal performance levels more quickly and requires

less time and resources. Consequently, the implementation of KD

not only enhances the capabilities of student models but also

simplifies the overall training process, establishing it as a

compelling strategy for improving the effectiveness of artificial

intelligence in plant pest and disease identification.
4 Experimental analysis

4.1 Experimental environment and dataset

For the configuration of the experimental environment, the

input plant pest and disease image data were randomly clipped into

(3, 512, 512) size inputs. The experiments are based on PyTorch

1.11.0 deep learning framework and the operating system of the

experimental environment is Ubuntu 20.04. We implement the

model code using Python 3.9 programming language and the GPU

hardware platform is used with 2 pieces of RTX3080.Adam is

chosen as the model optimizer. The batch of input images is 8 at

a time. The learning rate is initially set to 0.01, and the number of

iterations for model training is set to 120. All models are trained

from scratch to ensure the fairness of the comparison results. The

configuration of specific parameters is shown in Table 2.

To evaluate the effectiveness of the proposed method, two plant

datasets, Ai Challenger (AI Challenge, 2018), Plant Village (Hughes

and Salathé, 2015), and an insect dataset, IP102 (Wu et al., 2019),

are selected in this paper. The Ai Challenger plant disease

identification dataset is shown in Figure 5A, which includes
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31,718 plant leaf images with 61 categories, including 10 species

such as apple and 27 pests. Plant Village dataset is shown in

Figure 5B, which is labelled by crop pathologists and contains

54309 images with 13 species and 26 crop disease categories. IP102

is a field-constructed large-scale dataset used for pest identification

and is shown in Figure 5C. It has a total of 75,222 images containing

102 common pests with an average of 737 samples per class. Some

images of plant pests and diseases in the three datasets are shown in

Figure 5. The experimental datasets were divided according to the

8:2 training and testing sets.
4.2 Comparative models and
evaluation metrics

In order to demonstrate the superiority of the proposed

method, the experiment uses five lightweight classification models

such as ShuffleNet-V2 (Ma et al., 2018), MobileNet-V3-Large

(Howard et al., 2020), EfficientNet B1 (Tan and Le, 2019),

MobileViT-S (Mehta and Rastegari, 2022) and Inception v3

(Szegedy et al., 2015) to carry out comparison experiments with

PDLM-TK. Since this study belongs to the task of pest and disease

image classification, the various models are quantitatively evaluated

using Precision (P), Recall (R) and F1 score (F1). And the confusion

matrix is drawn according to its evaluation results to visualize the

correct classification of the models in each category and realize the

visual evaluation of the model performance. Its calculation is shown

in Equations 13–15.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2� Precision� Recall
Precision + Recall

(15)

Where TP is the correct image pest category, the number of

images that the model correctly predicts as positive instances. FP is

the false positive instances of the image, the number of images that

the model incorrectly categorizes as positive instances. TN is the

number of images that the model correctly predicted as other pest

and disease types. FN denotes the number of images that the model

incorrectly predicted as other categories when categorizing the

correct category.

Considering the large number of pest and disease categories in

the plant and insect datasets used, in order to evaluate the
TABLE 2 Configuration table of experimental environment and parameters.

Experimental environment Configuration Model parameters Configuration

GPU RTX3080(10 GB) * 2 optimizer Adam

OS Ubuntu 20.04 Batch_size 8

Deep Learning Framework PyTorch 1.11.0 lr 0.01

programming language Python 3.9 epoch 120
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diagnostic performance of the proposed methods more

comprehensively, the experimental evaluation was statistically

analyzed using the Top1 accuracy rate (the accuracy rate of the

pest category ranked No. 1 in the model diagnostic results in

accordance with the actual results) and the Top5 accuracy

rate, respectively.

At the same time, in order to evaluate the diagnostic efficiency

of the models, the experiments not only analyzed the performance

of the above six models in the three indexes of Acc, P and F1, but

also evaluated the number of parameters and the amount of

floating-point calculations (GFLOPs) included in the models. In

general, the larger the number of parameters included in the model,

the lower its training and execution efficiency, and the larger the

amount of floating point calculations, the slower the model

diagnosis speed.
4.3 Quantitative effectiveness evaluation of
plant pest and disease diagnostics

The results of the evaluation of Top1 accuracy of six models on

three plant pest and disease datasets are shown in Table 3. The

comparison shows that multiple models have the best classification

results on the Plant Village dataset. The reason for this is analyzed

to be due to the fact that this dataset contains fewer types of pests
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and diseases as compared to the other two, and therefore the models

classify better on this dataset with less difference in the amount of

data. The PDLM-TKmethod achieved the best P, exceeding the best

EfficientNet B1 model by 1.82%, but slightly lower in R and F1

values. This is due to the fact that the composite scaling strategy

used by EfficientNet can well utilize the feature extraction ability of

the convolutional layer to form a more complete deep learning

model network structure. PDLM-TK performs even better on the

other two datasets, exceeding the other models by an average of

2.54%, 1.22% and 1.86% on P, R and F1. The experimental results

effectively demonstrate the effectiveness of the PDLM-TK method

proposed in this paper in plant pest and disease diagnosis.

Specifically, the method not only achieves high classification

accuracy across various datasets but also showcases superior

efficiency compared to traditional approaches.

In order to evaluate the comprehensive classification

performance of the methods and avoid the error that exists in

using only Top1 accuracy, as shown in Table 4, the evaluation

results of Top5 accuracy of various models on the three plant

diseases and pests datasets are shown in Table 3. According to the

experimental results, it can be seen that it is in line with the Top1

accuracy assessment, and the Top5 accuracy assessment results of

each model are more accurate compared to the Top1 accuracy.

Meanwhile, the PDLM-TK method performed better in classifying

pests and diseases on multiple datasets compared to other methods.
(a) Different Leaf images of plants in Ai Challenger 

    
(b) Different Leaf images of plants Plant Village 

    
(c) Different Leaf images of plants IP102 

FIGURE 5

Selected images from the three datasets used for the experiment. As shown in Figures (A, B) are five plant leaves from the Ai Challenger and Plant
Village datasets, respectively, and the five images in Figure (C) are plant insects from the IP102 dataset.
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The highest P, R and F1 values were found on the Ai Challenger and

IP102 datasets, and the R and F1 values on the Plant Village dataset

were higher than the Inception v3 optimal model by 2% and 0.82,

respectively. This shows that our proposed PDLM-TK can realize

the diagnosis of plant pests and diseases in a more comprehensive

and accurate way.
4.4 Plant pest and disease diagnosis effect
visualization and analysis

As shown in Figure 6, the average accuracy histograms of

methods such as PDLM-TK on the three plant pest and disease

datasets are shown. Analyzing along the direction of the dataset, it

can be seen from the height of the histogram that the three colors of

the bar represented by PDLM-TK have the highest average on the

three datasets. This proves that its combined performance is better

on both Top1 and Top5 assessment methods. Meanwhile,

according to the column height performance of different models,
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it can be seen that the heights of the columns of the three colors of

PDLM-TK are closer to each other. This indicates that the method

has stronger classification accuracy and stability for plant pest and

disease images, and can realize more accurate pest and

disease diagnosis.

In order to further observe the performance of each model on

the test set of plant pests and diseases in a more intuitive way, we

utilize the confusion matrix to present the test set classification

results of each model. The confusion matrix can be taken in the

form of a matrix to summarize the real and predicted categories,

and to observe the differences that exist in the prediction results for

the classification of different categories. Due to the large number of

labels and samples in the plant pest and disease dataset, the

numbers in it are no longer displayed, and the performance of

each model is only observed and analyzed through the model

classification results. Each square in the horizontal and vertical

axes of the confusion matrix represents the category corresponding

to plant pests and diseases, and the color of each square corresponds

to the number of images classified into that region. The darker the
TABLE 4 Evaluation results of Top5 accuracy for various models.

DataSet Metrics
Model

ShuffleNet-V2 MobileNet-V3-Large EfficientNet B1 MobileViT-S Inception v3 PDLM-TK

Ai Challenger

P 89.34 87.11 90.32 85.13 95.71 96.19

R 85.31 84.16 88.49 82.13 91.60 93.72

F1 87.28 85.61 89.40 83.60 93.61 94.94

Plant Village

P 94.30 90.16 94.55 93.63 95.79 95.20

R 90.31 88.02 89.90 89.08 90.16 92.26

F1 92.26 89.08 92.17 91.30 92.89 93.71

IP102

P 80.13 80.35 82.43 76.64 83.42 85.51

R 76.48 78.31 79.60 74.33 80.02 80.69

F1 78.26 79.32 80.99 75.47 81.68 83.03
The bolded text represents the type and the values represent the best results.
TABLE 3 Evaluation results of Top1 accuracy for various models.

DataSet Metrics
Model

ShuffleNet-V2 MobileNet-V3-Large EfficientNet B1 MobileViT-S Inception v3 PDLM-TK

Ai Challenger

P 86.74 83.21 87.93 82.93 90.42 92.64

R 83.12 81.13 85.10 80.79 87.51 89.32

F1 84.89 82.16 86.49 81.85 88.94 90.95

Plant Village

P 90.13 87.20 94.36 92.12 93.62 95.44

R 89.64 85.42 92.03 87.48 88.16 90.57

F1 89.88 86.30 93.18 89.74 90.81 92.94

IP102

P 77.75 75.46 78.52 72.13 80.02 82.87

R 72.61 73.60 71.37 70.03 78.46 79.10

F1 75.09 74.52 74.77 71.06 79.23 80.94
The bolded text represents the type and the values represent the best results.
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color on the diagonal represents the more images that are

classified correctly.

The confusion matrix for each model’s classification prediction

for the test set portion of the Ai Challenger dataset is shown in

Figure 7. From the distribution of squares of different colors in the

confusion matrix, it can be seen that the MobileNet-V3-Large and

MobileViT-S models have more uniform diagnosis results for

different categories of plant pests and diseases, which is mainly

manifested by the similar colors of the squares on the diagonal line,
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but their classification effect is lower than that of the MobileNet-V3-

Large and Inception v3 models. Inception v3 has a better

classification effect on some kinds of plant pest and disease

images, but there is a phenomenon of misclassification of some

categories, which is mainly reflected in the lighter color of the

squares in the middle of the diagonal of some categories. The

confusion matrix corresponding to the PDLM-TK method has a

more uniform and saturated color distribution on the diagonal,

which shows that its classification effect is more stable.
  
ShuffleNet-V2 MobileNet-V3-Large EfficientNet B1 

  
MobileViT-S Inception v3 PDLM-TK 

FIGURE 7

Confusion matrix of different methods on Ai Challenger dataset.
FIGURE 6

Histogram of Top1 and Top5 average accuracy of various models on three datasets.
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The confusion matrix of each model for classifying images on

Plant Village test set is shown in Figure 8, which is a richer dataset

with fewer disease categories. As shown by the color and

distribution of diagonal squares, the methods have better

classification results. Especially, the two methods, Inception v3

and EfficientNet B1, have the majority of dark-colored squares on

the diagonal. The MobileNet-V3-Large method has multiple light-

colored squares compared to the two, indicating a partial

misclassification. While PDLM-TK has the darkest colored

squares compared to the other methods and all of them are

distributed on diagonal. It can be fully demonstrated that PDLM-

TK has strong classification performance for plant pest disease

image diagnosis.

According to the confusion matrix distribution shown in

Figure 9, it can be seen that the models are slightly less effective

than the other two datasets in classifying insects in the IP102

dataset. The reason is due to the large number of insect species

contained in this dataset, and the lightweight classification models

are difficult to balance multiple critical features. Among them, two

models, EfficientNet B1 and Inception v3, have better classification

effects than the other models and can basically realize the

discrimination of multiple types of insects. The PDLM-TK

method proposed in this paper has the best classification

performance compared to the other models because it trains the

model by KD, which has a strong feature capturing ability despite

the small number of model parameters. In summary, the validation

of the plant leaf and insect datasets demonstrates that the
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PDLM-TK method is able to accurately realize plant pest and

disease diagnosis.
5 Discussion

5.1 Evaluation of model stability
and efficiency

Plant pest and disease diagnosis should not only have high

accuracy, but also the stability and efficiency of the model is equally

important, which is related to the classification effect and diagnosis

quality in the practical application of agriculture. Therefore, in this

paper, several models are trained on Ai Challenger using the same

experimental environment, and their loss functions are plotted as

line graphs for analysis. At the same time, the models are ranked

according to the number of parameters they contain and their

actual execution efficiency, and are compared and analyzed in the

form of a table.

As shown in Figure 10, the change process of loss when the six

methods are trained on the IP102 dataset is shown. From the

fluctuation of the folded line, it can be seen that the PDLM- TK

method proposed in this paper converges rapidly in the first 20

iteration loops and decreases steadily with the growth of the

number of iterations. Notably, after the 110th iteration, the

models exhibited stability. While the other methods exhibit

similar fold convergence processes, their fluctuations are more
ShuffleNet-V2 MobileNet-V3-Large EfficientNet B1 

 

MobileViT-S Inception v3 PDLM-TK 

FIGURE 8

Confusion matrix for different methods on the Plant Village dataset.
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pronounced, and their final converged values are higher. This

clearly demonstrates that the method proposed in this paper is

more stable and achieves faster convergence.

To evaluate the actual running efficiency of each model, this

paper uses GFLOPs and Params metrics to measure the execution

speed of the models. As shown in Table 5, EfficientNet B1 has the

smallest amount of computation, and PDLM-TK is only 0.1 behind

it in the second place. As shown by the parameter count, PDLM-TK

contains the least number of parameters, followed by MobileNet-

V3-Large. Combining the evaluation indexes such as the accuracy

of each method, the PDLM-TK method achieves higher accuracy
Frontiers in Plant Science 13
through less time, and is able to better balance the efficiency and

accuracy of the model, compared to other models both in diagnostic

accuracy and efficiency.
5.2 Assessment of KD effectiveness in
teacher networks

As presented in Table 6, the evaluation results of the Top1

accuracy for PDLM-TK when different teacher networks were

utilized across three plant pest and disease datasets are shown.
  
ShuffleNet-V2 MobileNet-V3-Large EfficientNet B1 

  

MobileViT-S Inception v3 PDLM-TK  
FIGURE 9

Confusion matrix for different methods on the IP102 dataset.
FIGURE 10

Loss curves for various methods on the IP102 dataset.
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The comparison indicates that using ResNet18 as the teacher

network yielded superior overall results, surpassing the ImageNet

model by 0.63, 1.14, and 0.9 in the P, R, and F1 metrics, respectively.

This improvement is attributed to the structural similarities

between PDLM-TK’s backbone, which is derived from the

residual blocks of ResNet. It can thus be concluded that

knowledge migration is more effective when the chosen teacher

network has a similar model structure, enhancing the effectiveness

of the KD process.
5.3 Network grad-CAM visualization

To better assess the PDLM-TK model’s ability to learn the

characteristics of plant pests and diseases, we predicted a portion of

the test set data for each disease and visualized the results using

Grad-CAM. The visualization outcomes are presented in Figure 11.

In this study, the last layer of the PDLM-TK model was selected as

the feature visualization layer, with the heat map superimposed on

the original image. The Figure 11A displays the original plant

pest images, while the Figure 11B shows the weighted

visualization results..

Upon examining the visualization results, we observed that the

PDLM-TK model not only accurately predicted the classification of

each disease but also successfully identified the key regions

corresponding to various plant disease locations or pests.

Additionally, it was noted that the model paid less attention to

irrelevant and complex backgrounds surrounding the diseased

leaves, instead concentrating on the characterization of disease

features and pests during the feature selection process.
5.4 Ablation experiment

Based on the existing plant disease and pest classification model

structure we designed the PDLM-TK model, which contains several

modules to realize feature extraction, mining and model training
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respectively. Among them, residual blocks integrating multiple

LRB-STs are designed to enhance the deep extraction of semantic

features of different dimensions and to improve the model

classification accuracy, which extracts the semantic information of

different channels in plant disease images layer by layer. For the

redundant information interference in the image, we proposed

BNF-GC, which deeply mines the residual block features by

graph convolution in order to focus on the disease features. We

utilize the plant pest and disease dataset to train the teacher network

and construct MTS-KD to realize knowledge transfer to the student

network. To fully evaluate the main role played by each module, we

designed ablation experiments based on the architecture of unused

modules (Basic). Finally, they are evaluated and analyzed on Ai

Challenger using P, R and F1 respectively.

As shown in Table 7 for the results of the ablation experiments of

each module. “✓” stands for the blocks being selected, in the first four

sets of experiments the Basic model (ResNet18) without several

modules has the lowest evaluation scores, while the effect of using

MTS-KD is higher than the other two types of modules. This proves

that each module plays a role in improving the model classification

effect, especially the effect of MTS-KD improves the model

classification performance more. From the experimental results of

groups 5 to 7, it can be seen that BNF-GC and MTS-KD have the best

R when they are paired together, which is higher than the effect of

group 8 when multiple modules are used at the same time, but it is

slightly lower in terms of P and F1 values. The reason for this is that the

BNF-GC module is able to better balance the feature information

between different levels, but due to the similarity of some plant pests

and diseases in terms of the types of performance, it is difficult to

distinguish the real categories by only emphasizing the attention to the

same representations, which leads to the easy occurrence of the

misclassification phenomenon. With the addition of LRB-ST enables

the multilayer channel semantic information to be better mined, which

is used to enhance the model’s capture of plant pest and disease

characteristics for each category. Therefore, a combination of multiple

evaluation indexes leads to the best classification performance of the

PDLM-TK method incorporating the three modules.
TABLE 5 Statistical results of parameters and computational efficiency from various models.

Metrics ShuffleNet-V2 MobileNet-V3-Large EfficientNet B1 MobileViT-S Inception v3 PDLM-TK

GFLOPs 0.56 0.23 0.6 1.75 9.62 0.7

Params[M] 5.6 4.3 6.6 5.1 24.7 1.97
The bolded text represents the type and the values represent the best results.
TABLE 6 Top1 accuracy evaluation results of different teacher networks.

Teacher Networks
P R F1

ResNet18 ImageNet ResNet18 ImageNet ResNet18 ImageNet

Ai Challenger 92.64 91.27 89.32 88.36 90.95 89.79

Plant Village 95.44 96.62 90.57 90.77 92.94 93.60

IP102 82.87 81.13 79.10 76.43 80.94 78.71

Average 90.31 89.67 86.33 85.18 88.27 87.37
The bolded text represents the type and the values represent the best results.
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6 Conclusion

To address the issues of low efficiency and accuracy in plant pest

and disease diagnosis, the capabilities of tensor and graph deep

learning in feature mining are fully utilized. The model network

structure is optimized by integrating knowledge distillation (KD)

and other techniques, resulting in the proposal of a Plant Pest and

Disease Lightweight Identification Model (PDLM-TK) that fuses

tensor features and KD. First, a lightweight residual block based on

spatial tensor is constructed to enhance the perception and

extraction of shallow detail features of plant images by

introducing spatial tensor, and depth separable convolution is

used to reduce the number of model parameters to improve the

diagnostic efficiency. Secondly, a branching network incorporating
Frontiers in Plant Science 15
graph convolutional features is proposed to realize image super-

pixel segmentation by using spanning tree clustering based on pixel

features, and graph convolutional neural network is used to extract

correlation features to improve diagnostic accuracy. Finally, a

model training strategy based on KD is designed to train the pest

and disease diagnosis model by building a knowledge migration

architecture, which fully balances the accuracy and diagnosis

efficiency of the model.

In order to verify the diagnostic performance of the model in

plant diseases and pests, we carried out experiments on three plant

disease and pest datasets, including Plant Village, and the results

proved that PDLM-TK had the best performance in terms of

classification accuracy and efficiency, and was able to realize fast

and accurate diagnosis of plant diseases. Although the method
TABLE 7 Evaluation results of ablation experiments.

No.
Blocks Metrics

Basic LRB-ST BNF-GC MTS-KD P R F1

1 ✓ 76.43 73.21 74.79

2 ✓ ✓ 82.64 80.3 81.45

3 ✓ ✓ 83.22 79.67 81.41

4 ✓ ✓ 85.34 81.27 83.26

5 ✓ ✓ ✓ 86.42 83.13 84.74

6 ✓ ✓ ✓ 92.35 89.47 90.89

7 ✓ ✓ ✓ 91.42 88.74 90.06

8 ✓ ✓ ✓ ✓ 92.64 89.32 90.95
The bolded text represents the type and the values represent the best results.
   
(a) original plant pest images 

    
(b) Grad-CAM visualization results 

FIGURE 11

Plant disease and pest images used Grad-CAM visualization results, figure (A) shows the plant leaves in the dataset and figure (B) shows the results
visualized using Grad-CAM.
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achieves better plant disease and pest classification results, the

performance of the model in the face of some small-sample

disease and pest datasets remains to be examined, and in the

future, we can further increase the number of disease and pest

species as well as datasets with different sample set sizes for testing,

so as to further enhance the model’s value for practical application.

In the subsequent study, we will further integrate real farming

environments within the experimental field, collect data on a variety

of plant diseases and pests, and assess the model’s performance in

varied deployment settings and on smaller-scale farmland.
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