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Dynamics of stand density and
self-thinning in Chinese fir
plantations: theoretical insights
and empirical validation
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1Faculty of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China,
2Department of Geography and Environmental Resources, Southern Illinois University, Carbondale,
IL, United States
Introduction: Stand density management is essential for adaptive silviculture,

thinning decisions, growth modeling, and yield prediction in forestry, particularly

for plantations. Despite extensive research on self-thinning rules and the

maximum size-density law, significant gaps remain in the biophysical

understanding and validation of the relationships among key stand variables

and parameters.

Methods: This study theoretically explored and validated the relationship

between maximum size-density and two key metrics: average diameter at

breast height (D) and tree height (H). We used time-series data from a 30-year

clear-cut, fully stocked Chinese fir plantation, a fast-growing commercial species

in China, for validation.

Results: A growth balance status for fully stocked stands was proposed, wherein

prior to self-thinning, the growth rate of the stand basal area (G) aligns with that

of the average tree height (H), expressed as G 0 =(G − b0) = H 0 =H and

approaching a constant slope, b1. Generalized maximum size-density and

stand density index (SDI) equations were developed: N1:0 = A� D−2 and SDI =

A � D−2 with A = 4� (b0 + b1H)=p , differing from traditional equations.

Additionally, a generalized self-thinning equation, v = kHqN−1
1:0 or w = c1H

qN−1
1:0,

was introduced, indicating that in fully stocked stands, tree volume or biomass

depends on both tree height and tree count.

Discussion: These findings advance understanding of the maximum size-density

law and self-thinning boundary, providing refined tools for managing stand

density in Chinese fir plantations.
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1 Introduction

Stand density accounts for the degree of trees occupying and

utilizing space in a forest stand and is a quantitative measure of tree

stocking. Given a tree species, stand growth varies depending

mainly on tree age, site condition, and stand density. Stand

density is controllable by forest management. Stand density is

thus considered as the most important parameter of plantation

management. By adjusting the number of planted trees per unit

area, silviculturists can not only determine tree species of forest

generation and increase the growth of tree diameter, but also

improve merchantable volume and quality of wood and enhance

soil and water conservation (Jack and Long, 1996). Determining an

optimal stand density for a given management purpose becomes

critical. Stand density management thus provides a useful tool for

silviculture, thinning, growth and yield prediction, and harvesting

(Burkhart, 2013; Jack and Long, 1996; Zeide, 2005).

Stand density can be expressed using an absolute and relative

value. Absolute stand densities include the number of trees, basal

area, and stocking per unit area. Relative stand densities consist of

stand density index (SDI), degree of tree canopy closing, relative

spacing index, and stem stock density. The most widely used stand

density measures are the number of trees per unit area, SDI, and

degree of tree canopy closing. Since the maximum size-density

equation was proposed by Reineke (1933), both the maximum size-

density law and SDI have been widely used to account for the

natural mortality of trees in a pure stand of crown closure or fully

stocked pure stand (Yang and Titus, 2002). Based on the maximum

size-density law of Reineke, there is a relationship between number

of trees per unit area (N) and quadratic mean diameter at breast

height (D): N ∝ D. That is, their log–log transformation is a

straight line, implying maximum size-density or a self-thinning

boundary line (Reineke, 1933; Vospernik and Sterba, 2015): lnN =

k + blnD. It is assumed that the relationship exists with a constant

slope, b, of −1.605, independent of tree species, age, location, and

site condition, while the intercept parameter k varies with tree

species (Burkhart, 2013; Burkhart and Tomé, 2012). The maximum

size-density law and SDI equation have been widely applied to

developing forest growth models, density management diagrams,

and forest management plans (Jack and Long, 1996; de Prado et al.,

2020). Despite its utility, substantial debate persists regarding

several assumptions of the model.

One key point of contention is the omission of tree height (H) as

a critical factor in the maximum size-density relationship. Empirical

evidence suggests that while tree D has an inverse relationship with

N, tree H is often positively correlated with N (Drew and Flewelling,

1979). This suggests that tree height plays a substantial role in

determining stand density, which has not been explicitly addressed

in Reineke’s model. Moreover, the SDI equation lacks a biophysical

explanation for why the slope parameter (b) should remain

constant across different tree species and site conditions. Indeed,

studies have demonstrated that the slope value may vary depending

on tree species, datasets, and methods used. For example, Vanclay

and Sands (2009) derived a slope value of −2 for 29 plots of

Eucalyptus pilularis, while Pretzsch and Biber (2005) reported

different slope values for various species in Germany, ranging
Frontiers in Plant Science 02
from −1.789 for common beech to −1.424 for common oak.

Additionally, Yang and Burkhart (2017) found a slope of −1.455

for loblolly pine. Furthermore, studies have indicated that the

maximum stand carrying capacity may also vary with site-specific

factors such as climate (de Prado et al., 2020; Zhang, 2018).

In response to these limitations, Zeide (1985) proposed a

modified SDI equation that accounted for the influence of tree

height on stand density. The modified equation assumed that the

diameter at breast height (D) was related to the length from the

crown base to breast height, with this length being proportional to

H. When compared to the original SDI model, the modified model

demonstrated improved performance (Zeide, 1995). Inoue and

Nishizono (2004) proposed an uneven-aged forest growth model,

which revealed the mechanisms behind different slopes in the

maximum size-density line for uneven-aged stands. The authors

suggested that this model generalized the relationship between N

and D, while the original SDI model represented a specific case of

this generalized model.

Yoda et al. (1963) proposed the self-thinning rule to describe

the relationship between average plant biomass or stem volume and

stand density. The self-thinning rule is based on the assumption of

geometric similarity, implying a consistent relationship between

mean biomass and the approximately −3/2 power of stand density

in overcrowded, even-aged stands. This relationship is known as the

−3/2 power law and has been regarded as a general growth law for

plant ecosystems (White and Harper, 1970; Gorham, 1979; White,

1980; Westoby, 1987). However, some studies have questioned the

data and statistical methods used to derive the self-thinning rule

(Weller, 1987a; Zeide, 1987; Sackville Hamilton et al., 1995) and

raised concerns about the validity of the evidence supporting this

model (Mohler et al., 1978; Weller, 1987b). Empirical studies have

reported that the self-thinning exponents vary depending on species

and site conditions (Osawa, 1995; Kikuzawa, 1999). Zeide (1985)

demonstrated that site quality significantly affected the self-thinning

component, with better site conditions resulting in steeper slopes.

These findings indicate that the commonly assumed universal self-

thinning exponent (−3/2−3/2−3/2) is not universally applicable,

with studies reporting exponents ranging from −1.54 to −2.33,

depending on species and environmental factors. For instance, Fang

(1992) found that when the average stand biomass increment

reached its maximum, the self-thinning exponent approached −1,

suggesting that biomass per unit area becomes constant at

this point.

Weiner and Thoms (1986) argued that the self-thinning rule

arises from asymmetric competition for light, where taller trees

shade smaller individuals, ultimately leading to their mortality

when light is insufficient for growth. Such asymmetric

competition becomes more pronounced under high stand

densities, leading to deviations from the assumptions of

geometrical similarity. This underscores the need to revisit the

self-thinning rule and develop models that account for the dynamic

nature of competition within forest stands.

In addition to using average diameter (D) (Reineke, 1933) and

volume (v) (Yoda et al., 1963), the maximum size-density law or

self-thinning rule can also be expressed using tree height (Hart,

1926). The Hart index, which represents the ratio of mean distance
frontiersin.org
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between trees to stand height, suggests that height plays an

important role in density dynamics. Studies by Zeide (1985, 1987,

1991, 1995, 2001, 2002, 2005, 2010) and Burkhart (2013) have

indicated that quadratic mean diameter is generally the preferred

measure for estimating the number of trees per unit area, with mean

stem volume and mean tree height being less preferred but still

significant (Wilson, 1979; Lynch et al., 2007). This implies that

stand average height also affects maximum size-density

relationships to some extent.

Another crucial aspect is selecting fully stocked stands for

developing maximum size-density or self-thinning boundary

lines. Various methods have been proposed, such as visual

inspection (Yoda et al., 1963), analysis of mortality over time

(Fang, 1992; Weller, 1987a), and relative stand density methods

(Solomon and Zhang, 2002). However, these methods often carry

uncertainties, and there remains a need for objective, reliable

criteria for quantifying the status of fully stocked stands (Bi

et al., 2000).

In light of these ongoing debates, the objective of this study is to

theoretically justify the relationships between the maximum size-

density law and the self-thinning rule by incorporating both average

diameter at breast height (D) and tree height (H). This study uses

time-series data from a 30-year, clear-cut, fully stocked stand of

Chinese fir plantation, one of the most important and fastest-

growing commercial tree species in China, to validate these

relationships. In addition, generalized maximum size-density and

self-thinning equations are proposed, incorporating both D and H

to provide a more comprehensive understanding of stand density

dynamics. Furthermore, the relationship between the growth of

stand basal area (G) and height (H) is explored, and guidelines for

selecting fully stocked stands are provided. This approach aims to

address the limitations of previous models and contribute to the

development of more accurate and practical tools for stand density

management in Chinese fir plantations.
2 Materials and methods

2.1 Study area and dataset

The study deals with a Chinese fir (Cunninghamia lanceolata)

plantation in Guang-Ping-Xiang of Huitong County, one of the

seven provenance seed regions. Huitong County has a humid

subtropical monsoon climate with an annual precipitation of

approximately 1,400 mm. The topography of the study area is

characterized by low mountains and hills with an elevation range of

300 to 500 m and red soils. A square plot of 666.7 m2 located in the

middle part of a low mountain was selected. The plot had an aspect

of northeast and a slope of 30°C with a site index of 16. In the pure

stand of Chinese fir, the trees were planted in 1954 and clear-cut in

1984 to study the growth characteristics of the trees. The plant

species under canopy included Lithocarpus glaber, Mallotus apelta,

and Lindera communis. Stem analysis was conducted using a new

method different from the traditional one. Each of the cut trees was

vertically split into two parts. Growth rings were determined, their

diameters were measured at a 2-m interval along the stem, and
Frontiers in Plant Science 03
heights were recorded at a 2-year period. The volumes of each tree

were calculated at a 2-year time interval using a sectional

measurement method. Based on the relationship of bark diameter

with the diameter inside bark, the values of diameter, basal area, and

volume with bark were derived. The values of the basal area and

volume for all the trees were summed up to obtain the stand basal

area and volume for the periods of every 2 years. The stand average

height for every 2 years was calculated using weighting tree heights

by basal area.

The number of planted trees in 1954 was 200 for the plot, which

is 3,000 per ha. At the age of 10 years, the stand became a canopy

closure, that is, fully stocked. Artificial thinning was carried out by

removing 23 trees, that is, 11.5% of 200 trees, at 10 and 11 years. The

thinning decreased the canopy cover and provided space for the left

trees growing. At the time of clear-cutting in 1984, there were 176

remaining trees, with one dead tree discovered among them. Some

of the living trees had not yet reached a height of 1.3 m. The dead

tree was found to have 22 growth rings, indicating it had died at the

age of 22 years. The statistical parameters of the stand are shown

in Table 1.
2.2 Theoretical assumption

For a young stand without closure of tree crowns, trees can

freely grow with expansion of their crowns. After stands are fully

stocked, trees are limited for expansion of their crowns and start to

compete with each other for materials (light, water, and nutrients)

(Weller, 1987b). The competition leads to different size trees such as

dominant trees, co-dominant trees, average size trees, and

suppressed trees. Thus, it can be assumed that for fully stocked

stands: (1) there are no crown gaps existing and the stock volume

(v) or biomass (w) of individual trees is proportional to the size of

tree crown; (2) the volume of tree crown is proportional to its height

and projected area of crown; and (3) the increase of stock volume or

biomass obeys the self-thinning rule: v ∝ w1:0 (White, 1981).

Because tree diameter at breast height D and height H are easily

measured, these two variables together with total volume (V) are

critical parameters in forest resource inventory and highly

correlated with biomass. Thus, there is vc ∝ HqS, v ∝ vc ∝ HqS

(Weller, 1987b) and:

v = a0H
qS 1

where v is the average tree volume, a0 and q are the parameters,

H is the tree average height, S is the average area of tree crown base,

and vc is the tree crown volume. Let N and g be the number of trees

per hectare and the average basal area for an existing stand, N1.0,

G1.0, V1.0, and P1.0 be the number of trees per hectare, the total basal

area, the total volume, and stem stock density for a fully stocked

stand, respectively. Equation 1

becomes :  v = a0 �Hq � 10000
N1:0

→ V1:0 = N1:0 � v = 10000a0 �Hq = k�Hq , and

N1:0 =
kHq

v

2

where k = 10000� a0. Let HF be the tree height timing the stem

form. Equation 2 means that kHq is the total volume for the fully
frontiersin.org
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stocked stand, V1:0. Thus, there is

N1:0 =
kHq

v
=
G1:0

g
� HF

HF
=
G1:0

g
3

2.3 Theoretical analysis

Basal area-volume tables for fully stocked stands based on the

maximum size-density theory have been widely utilized in forest

inventory and management to determine stand volume with stem

density per unit area in China (Che and Zhang, 2012; Fu et al., 2008;

Zhang, 2018). In the tables, it is assumed that for the stands with a

stem density of 1.0, that is, fully stocked stands, given a mean height,

the total basal area (G1:0) and volume are the same regardless of site

condition. In particular, in forest management and inventory, the

basal area-volume tables can be employed together with angle count

sampling to quickly obtain stand stem density, total basal area, and

volume. This method is simple and practical. An important model

used in the basal area-volume tables is

G1:0 = b0 + b1H 4

Based on Equation 4, G1:0 is a function of H, that is, G = f (H).

Obviously, the G–H relationship does not go through the origin of

the coordinate system. It can be supposed that the intercept is b0,

where b0 and b1 are the parameters. Therefore, there is:

N1:0 =
G1:0

g
=
b0 + b1H

g
5

From N1:0 � g = G1:0, it is known that when the real basal area

G = N � g is smaller than or equal to G1:0, and the stock density P is

smaller than or equal to P1:0. This indicates that in the stand, there
Frontiers in Plant Science 04
are some gaps that provide space for expansion of tree crowns and

the self-thinning does not happen. The trees continue to grow until

G = N � g = G1:0. For plantations, when N � g reaches G1:0, the

self-thinning may not happen immediately and there is a certain

period of time during which the number of trees does not decrease

or increase. For natural uneven-aged forests, the self-thinning may

happen immediately, leading to some trees dying and at the same

time, new trees may appear due to generation.

Based on Equation 5, when the stand basal area G increases and

reaches G1:0, there is

N1:0 =
G1:0

g
=
b0 + b1H

g
=
b0 + b1H

p
4 D

2 =
4
p
� (b0 + b1H)D−2 6

When H in Equation 6 is fixed, the stand maximum number of

trees is

N1:0 = AD−2 7

Equation 7 is similar to N = kDb (Reineke, 1933), but its

exponent is −2, instead of −1.605, and A = 4
p � (b0 + b1H), where

the parameter A varies depending on tree height H.

On the other hand, based on Equation 2: N1:0 =
kHq

v or v = V1:0
N1:0

and v ∝ w1:0, there are:

v =
W
c0

=
V1:0

N1:0
= kHqN−1

1:0, or w =
c1H

q

N1:0
= c1H

qN−1
1:0 8

where c0 is the biomass density, k and q are the parameters,

c1 = c0 � k, and w is the average tree biomass. Equation 8 is similar

to the self-thinning rule v = k� N−3
2 (Yoda et al., 1963).

Based on Equation 4, in addition, the basal area per unit tree

height b1 =
G−b0
H . If the b1 does not change, there is b

0
1 = ( G−b0H )

0
= 0,

that is, b
0
1 =

H(G−b0)
0
−(G−b0)H

0

H2 = 0. The following relationship is

obtained:
TABLE 1 The statistical parameters of the stand trees.

Stand
age (year)

Number of trees
per ha

Mean
D (cm)

Mean
H (m)

Basal area
(m2/ha)

Volume
(m³/ha)

Stem
form

H ×
stem form

4 2,625 3.90 2.92 3.1358 35.4225 3.869 12.31

6 2,790 7.03 5.30 10.8294 79.7455 1.389 15.04

8 2,910 9.19 7.44 19.3025 129.9109 0.905 17.47

10 3,000 10.57 9.16 26.3246 181.2946 0.752 19.80

12 2,655 11.51 10.72 27.6252 210.6803 0.711 19.64

14 2,655 12.32 12.08 31.6501 258.6146 0.676 21.40

16 2,655 12.95 13.18 34.9699 299.2383 0.649 22.70

18 2,655 13.44 14.05 37.6663 332.7382 0.629 23.69

20 2,655 13.85 14.69 39.9994 362.7056 0.617 24.68

22 2,640 14.18 15.22 41.6914 387.4261 0.611 25.47

24 2,640 14.47 15.63 43.4141 407.8722 0.601 26.09

26 2,640 14.74 15.97 45.0494 428.6008 0.596 26.85

28 2,640 14.96 16.27 46.4042 445.5517 0.590 27.38

30 2,640 15.18 16.54 47.7790 463.1672 0.586 28.00
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G0

G − b0
=
H0

H
9

where G0 is the annual increment of the stand basal area, H0 is
the annual increment of the average tree height, and b0 is

the intercept.

Reference from Equation 9: For a stand with any stand density,

as long as its growth of basal area and height meets Equation 9, its

relative stand density does not change, which implies that a fully

stocked stand can grow in the way of Equation 9 until the

relationship of the basal area growth with height growth is

broken, that is, self-thinning happens.
3 Data validation and results

3.1 Relationship of basal area with
average height

The scatter plot of stand basal area against average height

showed three different relationships with changing slopes

(Figure 1). Using Equation 4, the relationship of basal area with

average height was separately modeled for three line segments. Line

segment 1 demonstrated the relationship from 5.3 to 9.2 m of the

average height corresponding with ages of 6 to 10 years. At this

stage, the tree canopies changed from relative open to closure and

natural pruning happened without self-thinning. The artificial

thinning that was conducted at the ages of 10 and 11 years

released the space for the left trees growing. Line segment 2 had a

relatively longer period of time and dealt with the relationship of the

basal area with the average height from 10.7 to 15.2 m

corresponding to the age from 12 to 22 years. Because the

thinning at the ages of 10 and 11 years decreased the stand

density and changed the slope of the basal area–average height

relationship, it made the slope different at line segment 2 from that

at line segment 1. Line segment 3 revealed the relationship of the

basal area with the stand average height from 15.6 to 16.5 m at the

ages of 24 to 30 years. At this stage, as the trees grew, the tree crowns
Frontiers in Plant Science 05
and diameters got larger, the stand developed towards the fully

stocked again, which slowed down the growth of the tree height and

increased the slope of the basal area–average height relationship.
3.2 Stand maximum size-density line

The above analysis (Figure 1 and Table 1) implied that at the age

of 10 years, the canopy cover of the stand became closed and natural

pruning started, but self-thinning had not taken place yet. The

management thinning halted the self-thinning and provided space

for the trees to grow, which led to a longer line segment with an

invariable slope of the basal area–average height relationship. There

was only one dead tree found at the age of 22 years, indicating that

by the year of 22, the stand started to partially get the canopy

closure, but not fully closed. By the age of 24 years, the stand

average height reached 15.6 m and the stand got fully stocked again,

which resulted in the limited space and slowed down the growing of

the tree heights.

Therefore, the slope of the basal area–average height

relationship from line segment 1 could be regarded as the

exponent of the maximum size-density line. When the stand was

fully stocked at the age of 10 years and if no thinning was

conducted, the trees in the stand would continue to grow for a

certain time period and then would start self-thinning. Because of

being fully stocked, the trees would grow by changing the ratio of

height to D and become stable for some years. During this time

period, self-thinning did not necessarily occur. However, without

the artificial thinning, the tree competition would become stronger

and self-thinning would happen when the suppressed trees were not

able to obtain enough light, water, and nutrients to grow.

With the slope of 4.0123, extending line segment 1 resulted in

line segment 4 in Figure 2, implying the maximum size-density line

based on the relationship of the stand basal area with average height

for the fully stocked stand. Then, dividing the values of the basal

area from line segment 2 and line segment 3 by the values of the

basal area from line segment 4 corresponding to the same average
FIGURE 1

The relationship of the basal area with the average height for the stand.
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heights led to the estimates of stock density P with an average

estimate of 0.829.

Line segment 4 was used to define a stand growth balance status

in which its stock density P1.0 = 1.0, the number of trees does not

change, and the change rate of the basal area–average height

relationship is zero. At the stage of the stand growth balance

status, the annual growth rate of the basal area balances the

annual growth rate of the average height. That is, G0
G−b0

= H0
H = b1

with a change rate of almost zero and meeting Equation 9. Because

of the invariable number of trees, this means that the annual growth
Frontiers in Plant Science 06
rate of D also balances the annual growth rate of the average height.

The results are shown in Table 2.

Table 2 shows that during the period of time from 4 to 6 years,

Equation 9 was not met. However, at the ages of 8 and 10 years, the

values of G 0 =(G − b0) were very close to the values of H 0 =H. The

significant differences took place at the ages of 12 years due to the

artificial thinning at the ages of 10 and 11 years. The similarity

between the values of G 0 =(G − b0) andH 0 =H was quickly achieved

at the age of 14 years and maintained until the stand was clear-cut at

the age of 30 years.
FIGURE 2

The maximum size-density line based on the relationship of the stand basal area with stand average height for the fully stocked stand.
TABLE 2 The changes of the stand parameters over age (Note: D and H are the average diameter at breast height and average height; G 0, H 0 and D 0

are the annual increment of basal area, average height, and average diameter; H 0 =H and D 0 =D are the growth rate of average height and diameter;

DH is the average increment of average height given a 2-year interval; g is the average tree basal area; g, G 0, H 0 , H=D,and H 0 =H were derived based
on observations, G'/(G-b0) was derived based on the line segments).

Age
(year)

Trees/
ha

D
(cm)

H
(m)

G’
(cm2·yr)

DH
(m·yr)

H’
(m·yr)

g/H
G’/H’ H/D

G’/
(G−b0)

H’/H

4 2,625 3.90 2.92 0.784 0.73 0.730 4.09 1.074 0.749 0.058 0.250

6 2,790 7.03 5.30 3.847 0.88 1.190 7.32 3.233 0.754 0.181 0.225

8 2,910 9.19 7.44 4.237 0.93 1.070 8.92 3.959 0.810 0.142 0.144

10 3,000 10.57 9.16 3.511 0.92 0.860 9.58 4.083 0.867 0.095 0.094

12 2,655 11.51 10.72 0.650 0.89 0.780 9.71 0.834 0.931 0.019 0.073

14 2,655 12.32 12.08 2.012 0.86 0.680 9.87 2.960 0.981 0.053 0.056

16 2,655 12.95 13.18 1.660 0.82 0.550 9.99 3.018 1.018 0.040 0.042

18 2,655 13.44 14.05 1.348 0.78 0.435 10.10 3.099 1.045 0.031 0.031

20 2,655 13.85 14.69 1.167 0.73 0.320 10.26 3.646 1.061 0.025 0.022

22 2,640 14.18 15.22 0.846 0.69 0.265 10.38 3.192 1.073 0.018 0.017

24 2,640 14.47 15.63 0.861 0.65 0.205 10.52 4.202 1.080 0.012 0.013

26 2,640 14.74 15.97 0.818 0.61 0.170 10.68 4.810 1.083 0.011 0.011

28 2,640 14.96 16.27 0.677 0.58 0.150 10.80 4.516 1.088 0.009 0.009

30 2,640 15.18 16.54 0.687 0.55 0.135 10.94 5.092 1.090 0.009 0.008
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3.3 Analysis of stand growth balance status

For real plantations, at the beginning, the growth of tree basal

area (or D) and height is allometric, that is, at different growth rates,

and Equation 9 is often not met, implying that the growth status of

stands remains unbalanced. During this time period, generally, the

values of G 0 =(G − b0) and H
0 =H are greater than those at the stage

of the stand growth balance status. As trees grow, the stands develop

towards the status of being fully stocked and eventually reach their

balance status of growth. After that, the stands will maintain the

balance status of growth for a certain number of years until self-

thinning happens, which will break the balance status of growth.

The number of years at which the stands stay at the growth balance

status may vary depending on tree species and site condition. After

self-thinning or artificial thinning, trees acquire their space needed

for growing. The trees continue to grow until the stands recover

back the balance status, that is, the maximum size-density line. The

process can be theoretically accounted for as follows:

Based on Equation 9, when b
0
1 = 0, (G−b0)

0

G−b0
= G0

G−b0
= H0

H . Because

of a negative value of b0,
G0
G > G0

G−b0
. As G increases, (G − b0) → G,

and then G0
G−b0

→ G0
G and G0

G−b0
= H0

H  → G0
G = H0

H . This indicates that for

fully stocked stands, maintaining the balance status of growth

requires the equally relative growth rates of height and basal area.

If the number of trees is not changed, then there is G0
G = H0

H → g 0

g =
H0
H → 2D0

D = H0
H . This implies that maintaining the balance status of

growth requires the growth rate of height be close to the doubled

growth rate of D.

In Table 2, there was a big difference in the G0
G−b0

value from that

of H0
H from the age of 4 to 6 years and their values became very

similar to each other at the ages of 8 years and 10 years because the

stand got fully stocked. The artificial thinning at the ages of 10 and

11 years led to a big difference in the G0
G−b0

value from that of H0
H at

the age of 12 years. As the trees grew, the values of G0
G−b0

became

similar to those of H0
H again. After the year of 22, the difference of the

values could be almost ignored.

In Table 2 and Figure 3, as the trees grew, the ratio of H to D

increased with a great change occurring during the period of 10 to

12 years. During this time period, the growth rates of D and height
Frontiers in Plant Science 07
were 4.1% and 7.3%, respectively, implying that the growth rate of

height was smaller than the doubled growth rate of D. That is, 2D0
D −

H0
H > 0. At the stage of the stand growth balance status, theoretically,
2D0
D   should be close to H0

H . However, the management thinning

broke the balance status. On the other hand, without the

management thinning, the stand would grow for a certain time

period but not very long, and then the different growth rates of the

average diameter and height would break the growth balance status

of the stand in which self-thinning would happen. In addition, the

growth curves of height and D in Table 2 and Figure 3 also implied

the variable stem form factors over time (Table 1) due to the

different growth rates of height and D.
3.4 Stand density index and
self-thinning equation

Based on the measurements of average height and D in the

stand, line segment 4, and Equation 7, the following SDI was

derived:

SDI = N(
D0

D
)−2 10

where the standard D0 is 15 cm and b = −2. Using Eq. (10) with

b = −2 and b = −1:605, respectively, the values of maximum SDI for

different average heights and D are calculated in Table 3.

In Table 3, it was found that when the stand maintained the

maximum size-density, the SDI increased as the average height

increased for both b = −2 and b = −1:605, implying that the SDI

varied. Given an average height, moreover, N = A � D−2 led to an

invariable SDI value, while N = A � D−1:605 resulted in variable SDI

values, implying that N = A � D−1:605 did not work, while N =

A � D−2 worked well. This accounted for the reasonability of b =

−2 with A = 4
p (b0 + b1H). The parameter A varied and its value is a

function of average height and relative stand density, but not

dependent on site condition and stand age.

Based on Equation 10, Equation 3 and line segment 4, the

following stand maximum size-density index equation was
FIGURE 3

The growth curves of average height and D in the stand.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1444807
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Long et al. 10.3389/fpls.2024.1444807
obtained:

SDI =
G1:0

g
� D

D0

� �2

=
4G1:0

pD2 � D
D0

� �2

=
4
p
G1:0D

−2
0

=
4(4:0123H − 10:471)

p
� D−2

0 = A� D−2
0 11

The results of SDI obtained using Eq. (11) were consistent with

the corresponding values listed in Table 3. The stand density index

(SDI) of the stand can be calculated using the following

relationship, as shown in Equation 12
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SDI = N � D
D0

� �2

=
G
g

D
D0

� �2

=
4G
pD2

D
D0

� �2

=
4
p
� GD−2

0 12

Based on the data in Table 2, the relationship between tree

height H and diameter D can be expressed using Equation 13

H = 0:056D2 + 0:1758D + 1:3007, R2 = 0:998 13

Combining Equation 7 and A = 4(4:0123H−10:471)
p led to

N1:0 =
4
p
� (4:0123H − 10:471)� D−2 14

In Equations 11, 14, the estimates of intercept and slope related to

A have the statistical test values of −12,108 and 34,652 with p-values

close to zero and are significantly different from zero, implying that the

average tree height has a significant contribution to G1.0 and thus to A,

SDI, and N1.0. Equation 14 implies that the maximum size-density line

varies depending on both average diameter and height. Equation 7 is

generalized and Equation 14 is regarded as its specific case, only applied

to the stand studied in this article and may not be applied to other

planted stands or plantations. Based on Equation 14, the maximum

size-density lines were graphed against average diameter and average

height in Figure 4. Given a tree diameter, the taller the tree, the larger

the maximum stand density. This is mainly because in a fully stocked

stand, for the trees with the same diameter, the taller trees grow up for

obtaining light and often have smaller tree crowns. In practice, this is

widely noticed. On the other hand, given a tree height, the greater the

diameter, the smaller the maximum stand density, which is

also reasonable.

Similarly, Equation 8 is also generalized in which the average

tree volume or biomass in a fully stocked stand is dependent on

both the number of trees and average height. Based on the data in

this study, the following relationship of the stand volume with

average tree height was obtained:

V1:0 = 7:1715H1:5041, R2 = 0:9929 15

Combining Equation 8 and Equation 15 resulted in the

following self-thinning equation for the Chinese fir stand,
TABLE 3 The values of the maximum stand density index for different
average heights and D (D0 = 15 cm).

H D g G N
SDI

(b = −2)
SDI

(b = −1.605)

10

10 0.0079 29.65 3,775 1,678 1,969

12 0.0113 29.65 2,622 1,678 1,833

14 0.0154 29.65 1,926 1,678 1,724

16 0.0201 29.65 1,475 1,678 1,636

12

10 0.0079 37.68 4,797 2,132 2,502

12 0.0113 37.68 3,331 2,132 2,329

14 0.0154 37.68 2,448 2,132 2,191

16 0.0201 37.68 1,874 2,132 2,078

14

12 0.0113 45.70 4,041 2,586 2,824

14 0.0154 45.70 2,969 2,586 2,658

16 0.0201 45.70 2,273 2,586 2,521

18 0.0254 45.70 1,796 2,586 2,406

16

12 0.0113 53.73 4,750 3,040 3,320

14 0.0154 53.73 3,490 3,040 3,124

16 0.0201 53.73 2,672 3,040 2,964

18 0.0254 53.73 2,111 3,040 2,829
FIGURE 4

The relationship of maximum stand density N1.0 with average diameter and average height.
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Equation 16, as a specific case of Equation 8:

v = 7:1715H1:5041N−1
1:0 16

In Equations 15, 16, the estimates of the intercept and slope for

log-transformation have statistical test values of 41.040 and 11.149

with p-values close to zero, implying that the estimates are

statistically significantly different from zero and thus the average

tree height significantly contributes to the stand and average tree

volume. Figure 5 demonstrated that the tree volume varied

depending on both the number of trees per hectare and tree

average height. Given a tree height, the tree volume decreases as

the stand density increases. Given a stand density, the tree volume

increases as the tree height increases. This implies that the self-

thinning boundary line is a function of stand density and

average height.
3.5 Application of G/H

Based on line segment 4, when a stand maintains the balance

status of growth, G1.0 and H are related to each other: G1:0 =

b0 + b1H. There is G1:0
H = b0

H + b1. Because b0 is negative, as the

average height increases, the absolute value of b0
H decreases, while

G1:0
H increases and approaches to b1. The G1:0 is the maximum total

basal area of a fully stocked stand and G1:0
H thus implies that the

average height determines the potential maximum productivity of a

fully stocked stand. In a real stand, the ratio of the G=H to G1:0=H

means the relative stand density, G=G1:0. Therefore, G=H can be

regarded as an indirect indicator of relative stand density, simply

called G=H ratio. This ratio is a function of stand average height and

diameter and number of trees, but not site condition and stand age.

At the stage of the growth balance status with the invariable

number of trees, there is G1:0
H = Ng

H = a
H + b → g

H =
a
H+b
N . The ratio g

H

of the average tree basal area to the average height decreases as the

number of trees increases. On the other hand, Table 2 shows that

the shorter the tree, the smaller the g
H . These imply that at the stage

of the growth balance status, increasing the number of trees will lead
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to shorter trees, which would potentially result in the earlier

occurrence of self-thinning.
4 Discussion

Determining the maximum size-density line is critical for

decision-making of management and planning, such as adaptive

silviculture, thinning, and harvesting, for forests and especially

plantations. The most important techniques include the selection

of stands that are fully stocked and the development of the

maximum size-density line. The traditional methods used to

select the fully stocked stands often lead to uncertainty due to the

lack of measures used to quantify the status of fully stocked stands

(Bi et al., 2000; Newton, 2006; Osawa, 1995; Solomon and Zhang,

2002; Yoda et al., 1963).

In this study, the concept of growth balance status was proposed. At

the stage of growth balance status, stands are fully stocked with an

invariable slope of the relationship (G1:0 = b0 + b1H) between the

stand basal area and average height and G0
G−b0

= H 0
H met, the growth

rate of the per-unit basal area being similar to that of per-unit average

height, and self-thinning has not happened. Artificial or self-thinning

may break the growth balance status:   G0
G−b0

= H0
H , but the change of

stand density due to thinning will adjust the growth of the basal area

and height, which will make the stands eventually get back to the

growth balance status. Thus, the growth balance status, G0
G−b0

= H0
H , can

provide a potential measure for the selection of fully stocked stands. In

practice, the existing stands can be first visually interpreted for their

status of being fully stocked, and the parameters (D and H) and their

growth of the existing stands can be then measured and analyzed using
G0

G−b0
= H0

H to make a decision on whether or not the stands have been

fully stocked and can be used to develop the maximum size-density

line. For plantations, because of different site conditions and different

numbers of trees planted, the time needed for stands to reach the

growth balance status and the length of time for the stands maintaining

the growth balance statusmay vary. However, the growth balance status

does exist and can be used for the selection of fully stocked stands.
FIGURE 5

The relationship of tree volume (v) with the number of trees per hectare (N) and average tree height (H).
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In this study, a generalized maximum size-density equation and

a generalized SDI equation: N1:0 = AD−2 and SDI = AD2
0 were

proposed based on the theoretical assumption and validation of

the obtained data. The proposed equations are different from those

of Reineke. In Reineke’s equations, A is a parameter varying only by

tree species and the exponent of D is a universal constant, −1.605. In

the proposed equations, A varies not only by tree species but also

depending on average height, and the exponent of D is −2, not

−1.605. For the Chinese fir plantation studied, A = 4(4:0123H −

10:471)=p is a specific case of the generalized equations. Moreover,

a generalized self-thinning equation: v = kHqN−1
1:0, or w = c1H

qN−1
1:0,

was also proposed in this study, which shows that the average tree

volume or biomass is a function of both stand density and average

height. As a specific case of the generalized equation, the self-

thinning equation with k = 7.1715 and q = 1.5041 was obtained for

the Chinese fir plantation studied. The proposed equation is

different from the self-thinning equation of Yoda et al. (1963) in

which the average tree volume or biomass is only a function of stand

density with an exponent of −3/2.

In this study, the proposed generalized equations were first

theoretically derived based on the assumption that tree diameter and

height growth are allometric and determined by both tree crown and

height (Weller, 1987a). This is because tree growth is achieved by

biomass accumulation through absorption of materials (light, water

and nutrients) and photosynthesis. During this process, the size of tree

crown and tree height play a critical role. Tree diameter is highly

correlated with tree crown (Fu et al., 2008). Moreover, tree height has a

great effect on tree competition (Burkhart and Tomé, 2012; Long et al.,

2020). The competition will result in different types of trees such as

dominant, co-dominant, average, and suppressed trees. In addition, in

a fully stocked stand, although the growth balance status exist, in which

the basal area growth balances the height growth, the growth balance

status will only last a short time. The allometric growth of diameter and

height will break the growth balance status and lead to self-thinning.

The results of this study also showed that the average tree height had

statistically significant contributions in both maximum size-density

and self-thinning equations. This implies that tree average height

cannot be neglected in developing both the maximum size-density

law and the self-thinning boundary line. This finding is supported by

previous studies (i.e., Burkhart, 2013; Lynch et al., 2007; Vanclay and

Sands, 2009). Both Reineke’s maximum size-density and Yoda’s self-

thinning equation ignore the effect of tree height, which explains why

many authors obtained different values of the exponent based on

Reineke’s and Yoda’s equations (i.e., Rivoire and Moguedee, 2012;

Pretzsch and Biber, 2005). The proposed equations are theoretically

appropriate for other species plantations but may have different values

of parameters A, k, and q due to variable relationships of basal area and

volume or biomass with average tree height by different tree species.

However, the appropriateness of the proposed equations to be applied

to other forests needs further validation based on field measurements.

The analysis of the tree growth in the studied stand revealed that as

the trees grew, the stand reached its maximum size-density and became

fully stocked. During the process, the values of H/D (Table 2) changed,

which implies that the ratio of the stand G/H also varied. Based on the

relationship of G1.0 with H, G1:0 = b0 + b1H, for fully stocked stands;

however, G1.0/H has a limited value, b1, the slope of the G1.0–H
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relationship. Given a site condition, whether or not the limited value

differs from tree species to species needs to be further investigated.

This study was conducted based on the data from the same stand.

Analyzing the growth process of the trees for 30 years revealed the

characteristics of the stand parameters and the relationships among

them. Moreover, in this study, all the trees in the stand were cut and

their stem analyses were carried out through vertically sawing each of

the stems in half and measuring their diameters at an interval of 2 m

and their heights for every 2 years. The analysis greatly decreased the

errors of the measurements and revealed the real growth processes of

the trees. The result of this study showed that the slope of the proposed

SDI equation was not related to site condition and stand age. The

conclusions drawn in this study was reasonable and reliable. However,

it had to be pointed out that the maximum size-density line in this

study was determined based on line segment 4 fit using the time-series

data from 4 to 10 years at which the stand just had the canopy closure.

The determination of the tree crown cover might be associated with

uncertainty. How the uncertainty due to measuring the canopy cover

affects the maximum size-density line should be further explored in

future studies.

In addition, in this study, the relationship of the stand average

diameter and height with the stand density was explored. The growth

of the upper stem diameter and the change of biomass density were

neglected. In the fully stocked stands, in fact, owing to tree competition,

the trees often grow up to obtain space for growing, which will increase

the values of height timing stem form (Table 1). As trees grow, the

change of biomass density is also important but was ignored in this

study due to lack of observations. Generally, when stands become fully

stocked, the increase of tree volume will be slowed down, but biomass

density increases. There are also other factors that affect maximum

size-density lines, including the adaptation of trees to the fully stocked

environment, the effective use of light, and shading (Zeide, 2005). All

the relevant aspects related to growth of trees should be studied in the

future for optimization of maximum size-density equations and stand

density management.
5 Conclusions

Based on the theoretical assumption that growth of stand

parameters is allometric and mainly determined by tree crown

and height, and the validation from the time-series data of

measurements from a 30-year Chinese fir plantation, this study

led to the following novel conclusions:

(1) The growth balance status of fully stocked stands was

proposed, in which before self-thinning, the growth rate of per-

unit stand basal area is similar to that of per-unit average height,

that is, G0
G−b0

= H0
H is met and approaches to a constant, b1, the slope

of the stand basal area–average height relationship. The growth

balance status can be applied to the selection of fully stocked stands.

However, the growth balance status of fully stocked stands may not

last a long time and will be broken by the allometric growth of

diameter and height, which will lead to self-thinning. This implies

that the assumption of the same diameter and height growth rates in

the theory of Reineke’s maximum size-density law was not

supported by the result of this study.
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(2) In this study, a limited value of G1.0/H was found. This

implies that when the average height stops growing, the stand total

basal area will no longer increase. At this stage, the stand volume or

biomass becomes constant because the amount of tree growth will

be cancelled out by the amount of loss due to self-thinning. This

conclusion is consistent with the finding of Fang (1992).

(3) In this study, the generalized maximum size-density and

SDI equations were proposed: N1:0 = AD−2 and SDI = AD2
0 with

G1:0 = b0 + b1H and A = 4(b0 + b1H)=p . The exponent of the

maximum size-density law is −2. Both the maximum size-density

and SDI vary dependent on the average tree height in addition to D.

The average tree height significantly contributes to N1.0 and SDI.

The conclusion differs from the widely used maximum size-density

law of Reineke (1933).

(4) This study also resulted in a generalized self-thinning

equation: v = kHqN−1
1:0, or w = c1H

qN−1
1:0. The average tree height

has a significant contribution to the average tree volume or biomass.

This implies that in a fully stocked stand, the tree volume or

biomass varies depending not only on the number of trees but

also on average tree height. Thus, the self-thinning rule proposed by

Yoda et al. (1963): w = kN−3
2 , is not supported by this study.

It is expected that the findings can help to enhance our

understanding of the maximum size-density law and the self-

thinning rule and provide useful tools for stand density

management of Chinese fir plantations.
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