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Plant diseases caused by microbial pathogens pose a severe threat to global food

security. Although genetic modifications can improve plant resistance; however,

environmentally sustainable strategies are needed to manage plant diseases.

Nano-enabled immunomodulation involves using engineered nanomaterials

(ENMs) to modulate the innate immune system of plants and enhance their

resilience against pathogens. This emerging approach provides unique

opportunities through the ability of ENMs to act as nanocarriers for delivering

immunomodulatory agents, nanoprobes for monitoring plant immunity, and

nanoparticles (NPs) that directly interact with plant cells to trigger immune

responses. Recent studies revealed that the application of ENMs as nanoscale

agrochemicals can strengthen plant immunity against biotic stress by enhancing

systemic resistance pathways, modulating antioxidant defense systems,

activating defense-related genetic pathways and reshaping the plant-

associated microbiomes. However, key challenges remain in unraveling the

complex mechanisms through which ENMs influence plant molecular

networks, assessing their long-term environmental impacts, developing

biodegradable formulations, and optimizing targeted delivery methods. This

review provides a comprehensive investigation of the latest research on nano-

enabled immunomodulation strategies, potential mechanisms of action, and

highlights future perspectives to overcome existing challenges for sustainable

plant disease management.
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1 Introduction

Agriculture is the most important sector that plays a crucial role

in providing food, supporting economic stability, and maintaining

ecological balance worldwide (Hartmann and Six, 2023). Plant

pathogens, including fungi, bacteria, viruses, and other pathogens,

pose a severe threat to agricultural productivity and food security

worldwide (Kim et al., 2023). In the last few decades, due to trade

globalization, climate change, and other factors, new pathogens are

constantly emerging, and existing diseases are also spreading,

posing a serious threat to agricultural production (Singh et al.,

2023). Moreover, since the Green Revolution the global population

has dramatically raised by more than 5 billion people, and the

shortage of typical agricultural methods has critically restrained our

capability to conserve food safety (Conway, 1998). Traditional

methods such as broad-spectrum antibiotics and chemical

pesticides provide some support; however, they also pose adverse

effects to the environment and human health and can also lead to

drug resistance in plant pathogens (Ahmed et al., 2022). To address

these issues, traditional breeding and modern biotechnology are

expected to significantly improve plant resilience to various

pathogens by improving crop resistance genes and immune

signaling pathways (Conway, 1998; Munaweera et al., 2022).

Although genetic modifications of plants offer promising

advantages, these require risk assessment and careful

consideration to confirm their safety and sustainability (Anders

et al., 2021). Therefore, it is important to find new strategies for

environmentally friendly and sustainable plant disease

management. Enhancing crop resilience to pathogens is one of

the key strategies to control plant diseases and maintain agricultural

sustainability, while minimizing the reliance on traditional

pesticides (Hannan Parker et al., 2022; Ngou et al., 2022).

Notably, the innate immune system of plants provides a strong

defense against pathogen invasion (Ma et al., 2021), but how to

effectively regulate and enhance plant immunity remains to be

established. In recent years, the application of nanotechnologies in

agriculture has attracted increasing attention, due to their unique

nanoscale-specific properties such as high efficiency, large surface

area, small size, targeted delivery, and controlled release (Beckers

et al., 2021).

Nano-enabled immunomodulation involves the use of

engineered nanomaterials (ENMs) as nanoscale agrochemicals to

modulate the immune response of plants to improve disease

resistance (Ahmed et al., 2024; Zhang et al., 2024). ENMs can be

used as nanocarriers to efficiently and precisely deliver immune

signaling molecules or genes to specific locations in cells, thereby

regulating the plant immune system (Zhang et al., 2021b).

Additionally, nanoprobe technology is also used to monitor key

biomolecular changes in plant immunity, and biotic and abiotic

stress responses in real-time (Son et al., 2023). Recent studies have

demonstrated that ENMs application strengthens the plant

immunity and tolerance against biotic stress by enhancing

systemic acquired resistance (SAR) and induced systemic

resistance (ISR), and modulating antioxidative defense systems.

For example, the foliar application of silica nanoparticles (SiNPs)
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100 mg L−1 improved the disease resistance in Arabidopsis thaliana

plants against bacterial pathogen Pseudomonas syringae by

inducing the SAR in a dose-dependent manner. SAR-inducing

phytohormone such as SA successfully enhances stress tolerance

by upregulating the expression of pathogenesis-related genes (El-

Shetehy et al., 2021). In another recent study, Noman et al. (2024)

reported that salicylic acid (SA) coated biogenic iron nanoparticles

(bio-FeNPs) at 100 mg Kg-1 concentration significantly suppressed

Fusarium wilt disease in watermelon (Citrullus lanatus L.) caused

by a fungal pathogen Fusarium oxysporum f. sp. niveum by

improving SAR response via triggering antioxidative defense

systems and SA signaling pathway genes. These findings suggest

that nano-enabled immunomodulation might be an alternative way

for enhancing plant resilience against phytopathogens; however,

mechanistic insights and translation of these approaches from

laboratory to the field scale involves significant challenges.

The aim of this review is to provide a comprehensive overview

of the latest research progress in nano-enabled immunomodulation

for enhancing plant resilience against phytopathogens threats. We

aim to elucidate the potential mechanisms by which ENMs can

modulate plant immune responses, critically evaluate the latest

research advances, and highlight future challenges and

opportunities for translating these approaches into sustainable

agricultural practices.
2 Dynamics of immunomodulation in
plants against phytopathogens

The coevolution of plants and microbial pathogens has led to an

intricate interplay of defense and attack mechanisms (Fields and

Friman, 2022; Harris and Mou, 2024). Microbial pathogens have

developed strategies for evading or suppressing plant immune

systems; however, plants employ various sophisticated defense

mechanisms in response (Sun and Zhang, 2021). Notably,

effector-triggered immunity (ETI) and pattern-triggered

immunity (PTI) are two primary defense mechanisms of innate

plant immunity against phytopathogens. In plants, NOD-like

receptors (NLRs) constitute sensor and helper NLRs, which are

responsible for ETI (Laflamme et al., 2020; Nabi et al., 2024). For

example, Wang et al. (2023) reported that MPK3 and MPK6

suppression in Arabidopsis can potentially reduce pre-PTI-

mediated ETI suppression (PES) through inhibition of two

protein phosphatases genes (AP2C1 and PP2C5). Furthermore,

recognition of conserved microbial features such as microbe-

associated molecular patterns (MAMPs) through plant pattern

recognition receptors (PRRs) can initiate PTI. However,

phytopathogens can evade PTI by shielding or modifying

MAMPs, inhibition of PRRs or downstream signaling

components by secreting effectors (Lü et al., 2022; Loo et al.,

2022; Totsline et al., 2023). Lee et al. (2024) reported that

AVRblb2 pathogen effector forms a complex with calmodulin-like

(CML) and calmodulin (CaM) proteins to interact with

NbCNGC18 to disrupt PAMP-triggered immunity signaling.

These mechanisms can potentially hijack plant defense systems,
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driven by the coevolutionary relationship between plants and

phytopathogens (Sood et al., 2021; Harris and Mou, 2024).

Pathogen effectors can also play a central role in modulating

plant immunity (Dou and Zhou, 2012), which target various

components of plant immune system, from early recognition

events to downstream signaling and defense responses (Figure 1).

Effectors can prevent release, binding, or perception of MAMPs, or

inhibit key signaling hubs such as receptor-like cytoplasmic kinases,

interfere with PRR complexes, MAPK cascades, and phytohormone

signaling pathways (Ceulemans et al., 2021; Iswanto et al., 2022). In

a recent study, Qiu et al. (2023b) reported that inhibition of

GmLHP1-2/GmPHD6 complex transcriptional activity in soybean

due to suppressing effect of PsAvh110 nuclear effector from

Phytophthora sojae can potentially evade plant immunity

response. In another study, Shang et al. (2024) reported that

CfEC12 (a fungal effector) from Colletotrichum fructicola binds to

MdNIMIN2 and disrupting its interaction with MdNPR1 leading to

suppression of salicylic acid defense pathway.

Pathogens create a favorable environment for infection by

rewiring plant immune signaling networks. In addition to

suppressing immune signaling pathways, pathogens also target and
Frontiers in Plant Science 03
manipulate the downstream defense outputs of the plant immune

system (Mishra et al., 2021; Singh et al., 2023). Effectors and secreted

enzymes help pathogens overcome physical and chemical barriers in

the plant, such as cell wall reinforcements, antimicrobial

compounds, and hydrolytic enzymes. Some pathogens produce

toxins or phytohormone mimics that further manipulate plant

physiology and development to their advantage (Kaur et al., 2022;

Wang et al., 2022). The dynamics of plant-pathogen interactions are

further shaped by the spatiotemporal regulation of immunity and

infection processes (König et al., 2021). Plants must balance the

allocation of resources between growth and defense, while pathogens

face the challenge of avoiding detection and preserving host viability.

Therefore, timing and localization of immune responses and

pathogen colonization are critical determinants of disease

outcomes (Li et al., 2020; Monson et al., 2022). Taken together,

the dynamics of plant immunomodulation against phytopathogens

involve an intricate interplay of recognition mechanisms that detect

PAMPs, DAMPs and effector molecules, subsequent signaling

cascades that transmit this detection, and the activation of diverse

defense responses. Furthermore, the application of ENMs to

modulate plant immune responses has emerged as a promising
FIGURE 1

Schematic representation of plant immunomodulation against microbial pathogens. Microbial pathogens invasion initiates plant defense responses in
three phases including immune recognition, signal integration, and defense response. Firstly, plants perceive pathogen-associated molecular
patterns (PAMPs), damage-associated molecular patterns (DAMPs), and microbial effectors through intracellular and surface receptors. Secondly,
various immune signaling events are activated, which involve the integration of immune signals from the recognition of diverse patterns and
effectors. Finally, an effective and swift defense response is initiated in each cellular compartment of the plant cell, which leads to pattern-triggered
immunity (PTI) and NLR-mediated pathways triggering the effector-triggered immunity (ETI) response. Host resistance is modulated by the
cumulative action of effectors transmitted by microbial pathogens.
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alternative strategy for enhancing plant disease resistance and

management (Liu et al., 2024; Zhang et al., 2024).
3 Nano-enabled technologies for
plant immunomodulation

The plant immune system is essential for maintaining plant

health and responding to pathogen invasions. However, the

traditional methods (conventional breeding, crop rotation

chemical fertilizers and pesticides) for activating or regulating

plant immunity have shortcomings such as low efficiency and

poor targeting (Raymaekers et al., 2020; Ma et al., 2021). Nano-

enabled agriculture provides a new idea for the precise regulation of

plant immunity and reducing the dependence on chemical

pesticides (Fiol et al., 2021). Nano-enabled immunomodulation

mechanisms lies in the ability of ENMs to act as nanoscale delivery

platform for immunomodulatory agents (Noman et al., 2023b).

Notably, ENMs as nanoscale carrier can efficiently carry immune

signaling molecules (such as protein, enzymes, hormones, and

RNA, etc.) into plant cells and activate immune responses (Vega-
Frontiers in Plant Science 04
Vásquez et al., 2021; Liu et al., 2024). ENMs can be divided into

different groups (metal based or inorganic ENMs, carbonaceous

ENMs, polymer ENMs and hybrid ENMs) based on their unique

nanoscale properties including size, shape, crystalline structure,

chemical composition (Figure 2) (Saleh, 2020). Metal-based or

inorganic ENMs mainly including zinc (Zn), gold (Au), silver

(Ag), copper (Cu), titanium (Ti) and silica, which shown great

potential for enhancing plant immunity against pathogens and

environmental stresses (Mitchell et al., 2021). These inorganic

ENMs can be produced to desired properties, geometries, sizes,

and with desired functionalization/coatings to optimize benefit. Ma

et al. (2020) reported that nanoscale Cu (250 mg L−1) amendments

significantly suppressed soybean sudden death syndrome by

activating plant immunity and enhancing the phytohormone

contents, photosynthetic endpoints, antioxidant enzymes and

nutritional status.

Carbon-based ENMs including carbon dots (CDs), carbon

nanotubes (CNTs) and graphene NPs have been shown to promote

plant growth and resilience against pathogens (Li et al., 2023). For

example, Adeel et al. (2021) demonstrated that foliar exposure of

CNTs at 200 mg L−1 significantly suppressed tobacco mosaic virus
FIGURE 2

Schematic illustration of the current engineered nanomaterials (ENMs) toolbox to improve plant immunity against microbial pathogens. ENMs can be
divided into different groups based on their unique physiochemical properties. nanoparticles (NPs), metal-organic framework (MOFs), nanocapsules
(NCs), mesoporous silica nanoparticles (MSNs) chitosan (Cs), pectin (Pt), cellulose (Cl), alginate (A), quantum dots (QDs), graphene nanosheets
(GNSs), carbon nanotubes (CNs), iron (Fe), copper (Cu), gold (Au) and zinc (Zn).
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infection by activating of the defense system in tobacco (Nicotiana

benthamiana) plants. Additionally, CNTs application enhanced the

plant immunity by triggering defense-related phytohormones,

antioxidant enzymes and improving photosynthetic performance.

Polymeric ENMs such as polylactic acid, chitosan, pectin,

carboxymethyl cellulose and alginate have attracted recent attention

for controlled and sustained release of amicrobial agents and protect

plants against pathogens (Shakiba et al., 2020; Vemula and Reddy,

2023). In a recent study, Hafeez et al. (2024) reveled that biologically

produced chitosan NPs enhanced the rice blast disease resistance by

improving antioxidant defense system (SOD, APX and CAT), nutrient

uptake, photosynthesis efficiency and reducing the cellular oxidative

stress (MDA and H2O2) in rice (Oryza sativa L.) plants. Nanohybrid,

such as liposomes, nanocapsules (NCs), nanoemulsions and

mesoporous silica nanoparticles (MSNs) can be engineered to carry

pesticides, nutrients, enzymes and phytohormones for targeted

delivery. Abdelrasoul et al. (2020) demonstrated that monoterpenes-

based nanoemulsions at 100 mg L-1 concentration inhibited the

Pectobacterium carotovorum and Ralstonia solanacearum pathogens

growth and induced systemic resistance in potato (Solanum

tuberosum L.) leaves by improving antioxidant enzymes activity.

Overall, ENMs are able to modulate plant immune responses

through multiple pathways, not only enhancing plant resistance to

pathogens, but also promoting crop growth and increasing yields

(Figure 2). However, there is still little understanding of the

translocation, transformation, residue, and long-term environmental

impact of ENMs in plants, and further research needs to be explored
Frontiers in Plant Science 05
the potential mechanisms. In addition, the development of more

environmentally friendly, efficient, and biodegradable ENMs

formulations is also a key direction in future research.
4 Mechanisms of nano-enabled
immunomodulation in plants

4.1 Nano-enabled activation of
phytohormone signaling

Phytohormone signaling pathways are involved in inducing a

variety of defense responses against biotic and abiotic stresses. Plant

hormones such as jasmonic acid (JA), salicylic acid (SA), ethylene

(ET) and abscisic acid (ABA) play an important role in the plant

immune response against pathogens (Huang et al., 2020; Zhao et al.,

2021). In recent years, nano-enabled activation of plant hormone

signaling represents an innovative approach in plant disease

management (Figure 3). ENMs can design too slowly release

hormones in a controlled manner, thus activating signaling

pathways and enhancing the plant resistance to microbial

pathogens (Tripathi et al., 2022; Liu et al., 2024). For example,

Noman et al. (2024) observed that soil-application with SA-doped

FeNPs suppressed the Fusarium wilt disease in watermelon through

inhibiting the fungal invasive growth and improving the

antioxidative capacity, and primed a SAR response via activating

the SA signaling genes (Figure 4B). In another study, lanthanum
FIGURE 3

Schematic representation of nano-enabled immunomodulation to revolutionize plant health through several mechanisms. On the left, the diseased
plant shows symptoms due to various pathogen-induced mechanisms, which inhibit plant growth. On the right, foliar and soil exposure to ENMs
enhance plant growth by activating systemic responses, enhancing antioxidant enzyme activity, inducing hormone signaling, and maintaining
ROS homeostasis.
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oxide NMs at 200 mg L-1 with different surface modifications

significantly suppressed cucumber wilt disease by 12.50–52.11%

by improving total amino acids, vitamin contents, and activating

SA-dependent systemic acquired resistance (Cao et al., 2023a).

Similarly, elemental sulfur NPs increase resistance against

Fusarium wilt disease, caused by a fungal pathogen Fusarium

oxysporum f. sp. lycopersici. Notably, sulfur NPs 30–100 mg L-1
Frontiers in Plant Science 06
suppressed pathogen infection by regulating the SA-dependent

systemic acquired resistance pathway and modulating of the

expression of antioxidase-related and pathogenesis-related genes.

Polymeric ENMs have also demonstrated excellent ability to

regulate plant hormone signaling (Table 1). For example, Giri et al.

(2023) reported that chitosan fabricated AgNPs control the

bacterial leaf spot disease in tomato plants by inducing SAR
A B

C

FIGURE 4

Examples of engineered nanomaterials (ENMs) used for plant disease management through immunomodulation. (A) The figure illustrates the
synthesis of berberine-loaded ZnO-Z (Ber@ZnO-Z) nanosphere to synergistically control the bacterial wilt disease in tomato plants through direct
pathogen inhibition and modulating antioxidant enzymes. Adapted with permission from reference (Liang et al., 2022). Copyright 2022 American
Chemical Society. (B) Therapeutic delivery of salicylic acid-coated biogenic iron nanocomposites (BINCs) suppressed Fusarium wilt damages in
watermelon plants by inducing systemic acquired resistance (SAR) and modulating antioxidative defense system. Adapted with permission from
reference (Noman et al., 2024). Copyright 2024 Elsevier. (C) Schematic representation of the proposed mechanism of moringa chitosan
nanoparticles (M-CsNPs) to control bacterial rice blast disease of rice. M-CsNPs act as nanofungicides that inhibit the pathogen Magnaporthe oryzae
infection and improve defense responses by improving biochemical attributes and regulating transcriptional traits and modulating plant-associated
microbiome. Adapted with permission from reference (Hafeez et al., 2024). Copyright 2024 Elsevier.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1445786
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Masood et al. 10.3389/fpls.2024.1445786
TABLE 1 Potential applications of engineered nanomaterials (ENMs) for improving immunomodulatory mechanisms and enhancing disease resilience
in agricultural crops.

ENMs ENMs
concentrations

Target
pathogens

Host
plants

Mechanisms References

Chitosan NPs 200 mg L−1 Magnaporthe
oryzae

Rice Enhanced disease resistance by improving antioxidant enzymes,
photosynthesis pigments and reshaping the
rhizosphere microbiome

(Hafeez
et al., 2024)

Chitosan-coated
silica NPs

200 mg L−1 Fusarium
virguliforme

Soybeans Reduced disease incidence by improving chlorophyll and
micronutrient contents

(O’Keefe
et al., 2024).

Chitosan coated
zinc oxide NPs

200 µg mL−1 Pseudomonas
syringae
pv. tomato

Tomato Suppressed bacterial speck disease by improving
photosynthesis parameters

(Esserti
et al., 2024)

Chitosan coated
iron NPs

250 mg L−1 Xanthomonas
oryzae pv. oryzae

Rice Reduced disease incidence by inducing plant antioxidative defense
mechanisms, and modulating microbiome

(Ahmed
et al., 2022)

Copper
chitosan NPs

0.16% w/v Curvularia lunata Maize Enhanced defense responses by regulating antioxidant enzymes
activity and photosynthesis profile

(Choudhary
et al., 2017)

Copper
oxide NPs

10-50 ppm Fusarium
oxysporum. f.
sp. ciceris

Chickpea Enhanced disease resistance by increasing photosynthetic rate,
protein, tannin, phenolics, and flavonoid and enzyme contents

(Tiwari
et al., 2024)

Copper NPs 31.25 mg L–1 Rhizoctonia solani Tomato Suppressed disease progression by activating antioxidative defense
response and improving chlorophyll contents

(Shen
et al., 2020)

Copper NPs 100 µg mL−1 Acidovorax citrulli Watermelon Activated antioxidant enzymes and stomatal immunity for
disease suppression

(Noman
et al., 2023c)

Zinc oxide NPs – Fusarium
oxysporum

Tomato Enhanced disease resistance by inducing plant defense responses (Bouqellah
et al., 2024)

Zinc oxide NPs 500 µg mL−1 Fusarium
oxysporum

Eggplant Reduced disease incidence by activating plant biochemical
defense mechanisms

(Abdelaziz
et al., 2022)

Sulfur NPs 200 mg L−1 Fusarium
oxysporum f.
sp. Lycopersici

Tomato Preserved the enrichment of plant beneficial bacteria (Steven
et al., 2024).

Sulfur NPs 100 mg L−1 Fusarium
oxysporum f.
sp. Lycopersici

Tomato Reduced disease incidence by activating SA-mediated disease
resistance mechanisms

(Cao
et al., 2021)

Sulfur NPs 100 mg L−1 Pectobacterium
carotovorum

Lettuce Decreased the disease occurrence by activating SA- and JA-
dependent pathways

(Cao
et al., 2023b)

Lanthanum
silicate NPs

100 mg L−1 Rhizoctonia solani Rice Enhanced disease resistance by regulating SAR immune responses (Cao
et al., 2023a)

Selenium 5 mg L−1 Rhizoctonia solani Rice Suppressed disease by promoting flavonoid biosynthesis,
antioxidative system and SA -dependent acquired disease resistance

(Chen
et al., 2024)

SA-coated
iron NPs

100 mg Kg L−1 Fusarium
oxysporum f.
sp. niveum

Watermelon Suppressed Fusarium wilt by inducing SAR response via activating
antioxidative capacity and SA signaling pathway

(Noman
et al., 2024)

Iron NPs 0.25 mM Fusarium
oxysporum

Cucumber Reduced the disease incidence by improving morphological traits
and photosynthetic pigments

(El-Batal
et al., 2023)

Silver NPs 20 ppm Alternaria solani Tomato Inhibited disease incidence by activating antioxidant enzymes and
maintaining ROS homeostasis

(Narware
et al., 2024)

Silver NPs 100 mg L−1 Xanthomonas
oryzae pv. oryzae

Rice Decreased disease occurrence by regulating plant antioxidative
defense system

(Ahmed
et al., 2020)

Manganese NPs 100 µg mL−1 Fusarium
oxysporum f.
sp. niveum

Watermelon Suppressed disease progression by activating antioxidative defense
response, phytohormones and modulating microbial community

(Noman
et al., 2023a)

Manganese NPs 500 µg mL−1 Fusarium
oxysporum f.
sp. niveum

Watermelon Decreased disease occurrence by regulating the expression of
defense-related genes

(Elmer
et al., 2018)

(Continued)
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mechanism through upregulating stress hormones responsive genes

(PR1, NHO1, NPR1, MYC2, JAR1, ERF1). Taken together, these

previous studies confirm that ENMs can precisely regulate plant

immune responses by influencing hormone concentrations and

regulating signaling pathways. However, the mechanism of action

of different ENMs is different, and the specific effect may also vary

depending on the plant species and the type of pathogen. In the

future, it is necessary to study the interaction between ENMs and

molecular networks in plants and explore new strategies to improve

the specificity of immune mechanisms.
4.2 Nano-enabled stimulation of
antioxidant defense system

Nano-enabled stimulation of the plant antioxidant defense

system offers a promising approach to mitigating the deleterious

effects of oxidative stress induced by pathogens (Pan et al., 2023).

This system is designed to neutralize reactive oxygen species (ROS)

generated during pathogen attacks or other stress conditions. ROS

can cause oxidative damage to cellular components, including

lipids, proteins, and DNA, ultimately leading to cell death and

tissue dysfunction (Chen et al., 2023). The antioxidant defense

enzymes (CAT, SOD, POD, APX, PPO) acts as a frontline defense,

mitigating the detrimental effects of ROS and protecting plant cells

from oxidative stress (Dvorá̌k et al., 2021). ENMs with their unique

physicochemical properties, have demonstrated the ability to

modulate the plant antioxidant defense system. Notably, ENMs

can interact with plant cells and trigger specific signaling pathways

(Figure 3), leading to the upregulation of antioxidant enzymes and

the biosynthesis of non-enzymatic antioxidants (Abdelrhim et al.,

2021; Tiwari et al., 2024). For example, Noman et al. (2023c)

investigated that foliar exposure of biogenic CuNPs at 100 µg

mL−1 concentration substantially suppressed bacterial fruit blotch

disease in watermelon plants by triggering antioxidants enzymes

(CAT, SOD and POD), modulating stomatal immunity, and

reducing the ROS activity.

In another study, biologically synthesized AgNPs improved

early blight disease resistance by enhancing antioxidant enzymes

(CAT, LPX, PO, SOD), and maintaining ROS (H2O2 and O−
2)
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homeostasis in tomato plants (Narware et al., 2024). Similarly, FeO

nanocomposites control the cucumber wilt disease caused by

Fusarium oxysporum by stimulating morphological performances,

total phenol, soluble protein contents, photosynthetic pigments and

antioxidant enzymes (POD and PPO) (El-Batal et al., 2023). Liang

et al. (2022) demonstrated that berberine loaded ZnO NMs at 100-

1000 ug mL-1 significantly reduced the tomato bacterial wilt disease

severity by 45.8% by improving the plant growth and antioxidant

enzymes (SOD, PPO, PPO) (Figure 4A). Previous studies primarily

focused on the mitigation of pathogen-induced oxidative stress by

enhancing antioxidant activity (Table 1). However, ongoing

research exploring biocompatible ENMs formulations and

targeted delivery methods holds immense potential for

sustainable agriculture and food security.
4.3 Nano-enabled regulation of
photosynthesis and nutritional profile

Photosynthesis is an important process that drives plant growth

and development, is often disrupted by pathogen infections (Yang

and Luo, 2021). Phytopathogens can negatively impact

photosynthesis by disrupting the structure and function of

photosynthetic apparatus, reducing the efficiency of light

harvesting, and impairing carbon fixation. Consequently, this can

lead to reduced plant productivity, compromised nutrient

acquisition, and an overall decline in plant health (Parveen and

Siddiqui, 2021; Karpagam et al., 2023). In recent years, ENMs

mediated regulation of photosynthesis and the nutritional profile

of plants represents a promising strategy in sustainable agriculture,

offering a multifaceted approach to mitigating the impacts of

pathogens on crop productivity and quality (Figure 3).

Importantly, ENMs can interact with plant cells and trigger

specific signaling pathways, leading to the upregulation of

photosynthetic enzymes, the biosynthesis of pigments, and the

modulation of nutrient uptake and assimilation (Ahmed et al.,

2022; Parveen and Siddiqui, 2022). For example, the foliar

application of ZnONPs at 0.20 mL−1 concentrations significantly

enhanced the plant growth and photosynthesis efficiency (Total

chlorophyll and carotenoids contents) of tomato plants under
TABLE 1 Continued

ENMs ENMs
concentrations

Target
pathogens

Host
plants

Mechanisms References

Titanium
dioxide NPs

Ralstonia
solanacearum

Tomato Increased disease resistance by regulating antioxidative
immune responses

(Pan
et al., 2023)

Quantum dots 50 mg L−1 Verticillium
dahliae

Cotton Suppressed disease by maintaining ROS homeostasis (Qiu
et al., 2023a)

Silica NPs 25-1600 mg L−1 Pseudomonas
syringae

Arabidopsis
thaliana

Increased disease resistance by inducing SAR immune responses (El-Shetehy
et al., 2021)

MOFs NPs 5-15 mg L−1 Phytophthora
infestans

Wheat Controlled release of fungicide significantly inhibited the fungal
pathogen and improved the plant growth

(Shan
et al., 2020)

MOFs NPs 1mg L−1 Rhizoctonia solani Rice In vitro studies showed the antifungal activity of MOFs, while also
enhancing plant growth

Huang
et al., 2023)
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several bacterial and fungal pathogens infection (Parveen and

Siddiqui, 2021).

In another recent study, Esserti et al. (2024) chitosan embedded

ZnONPs effectively control the bacterial speck disease of tomato by

improving the plant growth, photosynthetic pigments (Chlorophyll

a, Chlorophyll b, carotenoids), and gas exchange parameters such as

internal CO2 concentration, net photosynthesis rate, transpiration

rate and stomatal conductance. Notable, this study showed that

bacterial speck disease significantly affected plant biomass and

photosynthetic performance; however, NP applications mitigate

the negative impact of phytopathogens. Likewise, Mogazy et al.

(2022) reported that Ca and FeNPs at (100 and 200 ppm) positively

regulate innate immune responses in strawberry (Fragaria

ananassa) plants against gray mold disease caused by a fungal

pathogen Botrytis cinerea. This study revealed that foliar exposure

of NPs significantly increased the vitamin, phenolics, and

flavonoids contents, and nutritional profile (Zn2+, Mg2+, Ca2+, Fe,

N, P, and K+) in strawberry plants as compared to infected control.

Likewise, chitosan coated mesoporous SiNPs treatment significantly

reduced the sudden death syndrome by 30% and increased the

micronutrient (Zn, Mn, Mg, K, B) content, and chlorophyll

efficiency in soybean plants (O’Keefe et al., 2024). Taken together,

previous studies demonstrated that nano-enabled regulation of

nutritional profiles and photosynthesis shows great promise in

mitigating pathogen impacts on crops (Table 1). However further

research on ENMs toxicity, application methods, and biosafety is

recommended for sustainable agricultural applications.
4.4 Nano-enabled modulation of
microbiome and metabolites

The plant-associated microbiome (bacteria, fungi, viruses) plays

a crucial role in plant health, growth, and resistance against

pathogens (Trivedi et al., 2020; Steven et al., 2024). The plant-

associated microbiome serves as a frontline defense against

pathogens, conferring protection through various mechanisms,

such as competitive exclusion, antimicrobial compound

production, and the induction of systemic resistance pathways in

plants (Fitzpatrick et al., 2020; Wang et al., 2022). Additionally, the

intricate network of metabolites produced by plants and their

associated microbiomes acts as a defensive arsenal against

invading pathogens (Liu et al., 2020; Rangel and Bolton, 2022).

However, microbial pathogens can disrupt the delicate balance of

the plant microbiome, leading to dysbiosis and compromising plant

health (Zhang et al., 2021a). Nano-enabled microbiome engineering

has recently emerged as a powerful platform to enhance plant

resilience against pathogenic threats (Ahmed et al., 2023; Hussain

et al., 2023). In recent years, several studies have demonstrated the

potential impact of ENMs plant-associated microbiome under

biotic stress condition. The application of biogenic chitosan-Fe

nanocomposite (BNCs) at 250 mg mL−1 concentration

significantly reduced the bacterial leaf blight (BLB) disease

incidence (67.1%) by enhancing the relative abundance of

beneficial bacterial community such as Allorhizobium ,

Ochrobactrum , Pseudolabrys , Sphingomonas , Devosia ,
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Bradyrhizobium and Methylobacterium in rice plants (Ahmed

et al., 2022).

Additionally, BNCs amendments also enhanced the rice plant

growth by modulating antioxidant enzymes, enhancing

photosynthesis efficiency, and reducing ROS activity. Similarly,

Noman et al. (2023a) revealed that soil application of biologically

synthesized manganese (Mn) NPs control the Fusarium wilt disease

in watermelon by enhancing SAR mechanism via triggering

antioxidative defense machinery, SA signaling pathway, and

modulating the soil bacterial community (Sphingomonas,

Gemmatimonadaceae, Nocardioides, and Burkholderiaceae) and

fungal community (Penicillium, Botryotrichum, Conocybe, and

Mortierella). The foliar spray of nitrogen-doped CDs (10 mg L−1)

alleviated tomato bacterial wilt disease induced damage by 71.2%

through indirect resistance activation (SAR activation) and ROS

scavenging. Moreover, metabolomics profile revealed that nitrogen

doped CDs significantly improved the fatty acid and tricarboxylic

acid synthesis in tomato plants (Luo et al., 2021). Similarly, the

application of sulfur NMs at 10–100 mg L-1 significantly decreased

the occurrence of bacterial soft rot disease in lettuce (Lactuca sativa

L.) plants by improving the chlorophyll contents, antioxidant

enzymes and regulating the defense-related genes expression. In

addition, metabolomics analysis showed that sulfur NMs enhanced

the tricarboxylic acid cycle and also regulated SA and JA metabolite

biosynthesis, thereby enhancing the bacterial soft rot disease

resistance in lettuce (Cao et al., 2023b). Taken together, nano-

enabled modulation of microbiome and metabolites profile to

enhance plant disease resistance has the potential to serve as

highly sustainable, efficient, sustainable, and non-toxic alternative

for the management of plant diseases (Figure 3).
4.5 Nano-enabled activation of defense
related genetic pathways

Plants have evolved intricate defense mechanisms to protect

themselves against a wide range of microbial pathogens. These

defense responses are governed by complex genetic pathways that

involve the coordinated expression of numerous genes encoding

various proteins, enzymes, and signaling molecules (Kaur et al.,

2022). After pathogens attack, specific defense-related genes are

activated, triggering a cascade of events that ultimately lead to the

production of antimicrobial compounds, the reinforcement of

physical barriers, and the activation of systemic resistance

pathways (Nishad et al., 2020; Dodds et al., 2024). Nano-enabled

activation of defense-related genetic pathways represents a

promising strategy in sustainable agriculture, offering a targeted

and efficient approach to enhancing plant resilience against

pathogenic threats (Cao et al., 2023a). For example, selenium (Se)

NMs application 5 mg L-1 decreased the disease severity (68.8%) by

enhancing the organic Se content (44.8%), nutritional quality by

(7.2%) and rice yield up to (31.1%). Additionally, metabolomic and

transcriptomic analyses confirmed that SeNMs simultaneously

boosted the SA and JA dependent acquired disease resistance

pathways, flavonoid biosynthesis and antioxidative defense

system. Notably, Importantly, SeNMs significantly upregulated
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the expression of genes LOX2, LOX3, LOX6, OPR1, PR1, PR3, AOC,

and JAR while reducing the expression level of genes POD, CAT,

and SOD2 in rice plants compared to the infected controls,

indicating overall stimulation of SAR in SeNM-treated rice (Chen

et al., 2024).

Similarly, Hafeez et al. (2024) revealed that foliar exposure of

biogenic chitosan NPs at 200 mg L−1 significantly control the rice

blast disease by triggering defense related genes expression such as

(OsNPP1, OsGRF9, WRKY71, OsAPX, OsSOD, OsCAT, OsNPR1,

OsPR1, OsPR9, and MoCUT2) in rice plants (Figure 4C). In

another study, seed primed with AgNPs enhanced the rice blast

disease resistant by triggering transcriptional and metabolic

reprogramming in rice seeds. In this study, KEGG pathway of

transcriptomics data demonstrated that AgNPs-priming activated

stress signaling and defense related pathways, such as MAPK

signaling pathway, flavonol biosynthesis, glutathione metabolism,

plant hormone signal transduction, and plant−pathogen interaction

(Yan et al., 2022). Similarly, the application of ROS-generating

AgNPs as nano-stimulants significantly triggered plant immune/

stress responses against rice blast disease. The disease resilience

mechanisms showed that AgNPs mediated “stress memory”

induced considerable transcriptional reprogramming in rice leaves

by modulating the expression of defense genes, including pathogen-

plant interaction genes, cell membrane lipid metabolism genes,

specialized metabolite biosynthesis-related genes, and other genes

related to biosynthesis. These studies have demonstrated the potential

of nanotechnology-mediated activation of defense-related gene

expression in enhancing crop resilience against pathogens.

However, further research is needed to explore the molecular

signaling pathways involved in the interactions between ENMs and

plant pathogens, as well as their co-stimulating impact on plant

defense against phytopathogens.
5 Concluding remarks and
future outlook

The promising field of nano-enabled immunomodulation has

demonstrated exceptional opportunities to enhance plant resilience

against a multitude of phytopathogenic threats (Zhang et al., 2024).

The unique physicochemical properties of ENMs, coupled with

their ability to interact with and modulate intricate plant defense

mechanisms, have positioned them as promising tools in

sustainable disease management strategies (Singh et al., 2024).

However, as this domain continues to evolve, several critical

considerations and future research directions must be addressed

to harness the full potential of these innovative approaches. Firstly,

while significant progress has been made in elucidating the

underlying mechanisms through which ENMs influence plant

immune responses, a comprehensive understanding of the

complex interplay between ENMs and the intricate molecular

networks governing plant defense remains elusive (Zhang et al.,

2020; Kumar et al., 2024). Future endeavors should focus on

unraveling the intricate signaling cascades, transcriptional

regulation by ENMs, enabling the development of more targeted
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and efficient immunomodulatory strategies (Ma et al., 2023b; Zhang

et al., 2024).

Addit ional ly , the transformation of nano-enabled

immunomodulation from laboratory-scale studies to field

applications necessitates rigorous investigations into the

environmental fate, behavior, and potential risks associated with

the use of ENMs in agricultural settings (Ahmed et al., 2023; Ma

et al., 2023a). Comprehensive assessments of the long-term impacts

on soil health, nutrient cycling, and ecosystem dynamics are

imperative to ensure the responsible and sustainable integration

of these technologies into agricultural practices (Ijaz et al., 2023).

Furthermore, the development of environmentally friendly,

biodegradable, and biocompatible ENM formulations should be a

priority, minimizing potential adverse effects on non-target

organisms and ensuring compatibility with diverse plant species

and environmental conditions (Balusamy et al., 2023; Wahab et al.,

2024). Interdisciplinary collaborations between material scientists,

plant biologists, and ecotoxicologists could facilitate the design and

synthesis of tailored nanomaterials that balance efficacy,

sustainability, and biosafety considerations (Shelar et al., 2023;

Zain et al., 2023).

Another crucial aspect that warrants attention is the

optimization of ENM delivery methods and application

techniques. Developing efficient and targeted delivery systems,

such as nanocarriers or nanoemulsions, could enhance the

bioavailability and site-specific delivery of immunomodulatory

agents, minimizing potential off-target effects and maximizing the

desired immune responses (Ma et al., 2023c; Jeon et al., 2024). By

addressing these critical considerations and leveraging the

transformative potential of nanotechnology, researchers and

agricultural stakeholders can revolutionize plant disease

management practices, contributing to a more resilient,

sustainable, and secure global food system.
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