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Enhancing drought resistance in
Pinus tabuliformis seedlings
through root symbiotic
fungi inoculation
Lingjie Xu1†, Jiadong He2†, Yu Meng1, Yanyan Zheng1, Bin Lu1,
Jiawen Zhang1 and Yong Zhou1*

1Country College of Landscape Architecture and Tourism, Hebei Agricultural University,
Baoding, China, 2Earth and Life Institute, Université catholique de Louvain-UCLouvain,
Louvain-la-Neuve, Belgium
Background:Drought constitutes amajor abiotic stress factor adversely affecting

plant growth and productivity. Plant-microbe symbiotic associations have

evolved regulatory mechanisms to adapt to environmental stress conditions.

However, the interactive effects of different fungi on host growth and stress

tolerance under drought conditions remain unclear.

Objective: This study explored the effects of varying polyethylene glycol (PEG-

6000) concentrations (0%, 15%, 25%, and 35%) on the growth and physiological

responses of two ectomycorrhizal fungi (Suillus granulatus (Sg) and Pisolithus

tinctorius (Pt)) and two dark septate endophytes (Pleotrichocladium opacum (Po)

and Pseudopyrenochaeta sp. (Ps)) isolated from the root system of Pinus

tabuliformis. Specifically, the study aimed to evaluate six inoculation

treatments, including no inoculation (CK), single inoculations with Sg, Pt, Po,

Ps, and a mixed inoculation (Sg: Pt : Po: Ps = 1:1:1:1), on the growth and

physiological characteristics of P. tabuliformis seedlings under different water

regimes: well-watered at 70% ± 5%, light drought at 50% ± 5%, and severe

drought at 30% ± 5% of the maximum field water holding capacity.

Results: All four fungi exhibited the capacity to cope with drought stress by

enhancing antioxidant activities and regulating osmotic balance. Upon

successful root colonization, they increased plant height, shoot biomass, root

biomass, total biomass, and mycorrhizal growth response in P. tabuliformis

seedlings. Under drought stress conditions, fungal inoculation improved

seedling drought resistance by increasing superoxide dismutase and catalase

activities, free proline and soluble protein contents, and promoting nitrogen and

phosphorus uptake. Notably, mixed inoculation treatments significantly

enhanced antioxidant capacity, osmotic adjustment, and nutrient acquisition

abilities, leading to superior growth promotion effects under drought stress

compared to single inoculation treatments.
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Conclusion: All four fungi tolerated PEG-induced drought stress, with increased

antioxidant enzyme activities and osmotic adjustment substances and they

promoted the growth and enhanced drought resistance of P. tabuliformis seedlings.
KEYWORDS

antioxidant activities, ectomycorrhizal fungi, mixed inoculation, osmotic adjustment,
PEG-6000, root symbiotic fungi
1 Introduction

Currently, the trend of global climate change is characterized by

rising temperatures and increasing aridity, with precipitation

patterns undergoing noticeable changes. The frequency, duration,

intensity, and area of droughts have increased significantly.

Drought has emerged as a principal factor impacting vegetation

growth and recovery (Cook et al., 2014; Huang et al., 2016; Kumar

et al., 2024). In arid regions, high summer temperatures adversely

affect the survival of tree seedlings and hinder forest regeneration.

Simultaneously, soil temperature indirectly influences nutrient

synthesis, translocation, and absorption, thereby disrupting the

normal physiological processes of young seedlings and eventually

impeding vegetation growth and regeneration within the entire

forest ecosystem (Chidumayo, 2008). Although drought diminishes

soil productivity, constrains water uptake, induces plant osmotic

and redox imbalances, and ultimately leads to plant mortality (Alori

et al., 2020; Farrell et al., 2017), microbial interventions can

effectively alleviate drought stress (Saritha et al., 2021; Li and Liu,

2016; Salehi-Lisar and Bakhshayeshan-Agdam, 2016). Studies have

demonstrated that when plants establish mycorrhizal associations

in their root systems, their capacity to absorb water and nutrients

significantly improves, thereby enhancing their drought resistance

(Gleason et al., 2006). Consequently, the inoculation of beneficial

fungi represents an effective strategy for maintaining plant health

and quality, necessitating the selection of fungal species capable of

adapting to drought conditions and the screening of strains and

strain combinations exhibiting robust drought tolerance.

Ectomycorrhizal fungi (ECMF) establish ectomycorrhizal

associations when their mycelia infect the nutrient roots of host

plants. The primary host plants of ECMF belong to the Betulaceae,

Pinaceae, Salicaceae, and Fagaceae families (Tedersoo and Brundrett,

2017). Existing studies indicate that Pinaceae are among the earliest

ectomycorrhizal plant lineages (Tedersoo et al., 2012). Dark septate

endophytes (DSE) are a type of minute endophytes that colonize the

epidermal cells, root epidermis, cortex, and even the vascular tissue

cells or intercellular spaces of plant roots, forming dark-colored,

conspicuous structures with laterally septate hyphae and

microsclerotia (Addy et al., 2005; Mandyam et al., 2010; Gaber

et al., 2023). These fungi exhibit a high colonization rate in plant

roots under drought or extreme environmental conditions (Gucwa-

Przepióra et al., 2016), with a broad host range encompassing nearly
02
600 plant species from 320 genera across 114 families (Jumpponen

et al., 1998), garnering increasing research attention in recent years

(Santos et al., 2021; Huertas et al., 2024). Both ECMF and DSE

promote plant growth and improve stress tolerance, playing crucial

roles in ecosystem stability and restoration (Yin et al., 2018; Li et al.,

2022a, b). Recent studies by Zhang et al. (2024) revealed that

inoculating ECMF strains enhanced the drought resistance of Pinus

massoniana seedlings during the early stages of drought stress by

influencing water content, photosynthesis, osmolyte accumulation,

and antioxidant enzyme activities in the shoots and roots. Similarly,

Wang et al. (2021) reported that ECMF inoculation increased water

content, photosynthetic rate, and osmolyte accumulation in P.

tabuliformis under drought stress. Li et al. (2021) demonstrated

that DSE inoculation could increase the biomass of Isatis indigotica

and mitigate oxidative damage caused by drought stress. However,

the interactive effects of these two fungi on host growth and stress

tolerance under drought conditions remain unclear, with limited

research exploring the co-existence of both fungi and their impact on

host plant drought tolerance.

In recent years, the study of co-inoculation with ectomycorrhizal

fungi has emerged as a prominent topic in rhizosphere microecology

research (Corrales et al., 2022; Tedersoo et al., 2024). The combined

application of ectomycorrhizal fungi and Trichoderma has been

shown to effectively enhance the antioxidant capacity of Scots pine

seedlings (Yin et al., 2016). Deng et al. (2017) reported that dual

inoculation with Suillus luteus and dark septate endophytes improved

the resistance of Pinus sylvestris var.mongolica seedlings to damping-

off disease, reduced seedling blight incidence, and increased seedling

survival rates. Our previous studies have demonstrated that

inoculating two ECMF and two DSE strains could improve the

growth, root development, nutrient uptake, and soil microbial

community composition of P. tabuliformis seedlings (Xu et al.,

2022), and effectively regulate the antioxidant defense response and

photosynthesis of these seedlings under cadmium stress. The co-

inoculation of the two fungi exhibited a more pronounced synergistic

effect on plant tolerance to heavy metals (Zhou et al., 2024). Although

the direct effects of beneficial microbial inoculants on plant growth

have been widely reported (Santos et al., 2017; He et al., 2019),

information regarding the contribution of the ECMF and DSE

combination to plant growth under drought stress remains limited.

Pinus tabuliformis, the predominant tree species in North China,

holds immense importance for soil and water conservation, landscape
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aesthetics, and ecological balance within its distribution range (Gao

et al., 2023). P. tabuliformis exhibits sensitivity to climate change-

induced warming and drying. North China represents the most

suitable growth area and concentrated distribution region for P.

tabuliformis. The recruitment and renewal of P. tabuliformis

seedlings profoundly influence the structure and species

composition of forest communities, bearing great significance for

forest resource reserves in this region. The ecological stability of

China’s northern regions is facing a more serious threat in the face of

increasingly severe drought. As the main afforestation species of

plantation forests in the northern region, the plantation forests of P.

tabuliformis, under the influence of prolonged and frequent droughts,

have suffered from degradation of forest stands, poor natural

regeneration, drying up of tree tops and sparse understory

vegetation, which have led to a vicious cycle of ecological

environment in the region and further accelerated the depletion of

forest resources (Chen et al., 2015). Previous studies have revealed the

widespread presence of both ECMF and DSE in the roots of P.

tabuliformis (Chu et al., 2016, 2019, 2021; Xu et al., 2022).

Therefore, in this study, drought tolerance investigations were

conducted on isolated, purified, and identified root symbiotic fungi of

P. tabuliformis to screen for strains exhibiting robust drought

resistance. Subsequently, the root symbiotic fungi were reinoculated

into P. tabuliformis seedlings, and water control experiments were

carried out in a greenhouse. This research aims to provide a reference

for further investigation of the drought resistance mechanisms of root

symbiotic fungi and the screening of drought-resistant fungi. It also

offers theoretical and technical support for P. tabuliformis afforestation

in arid areas, promoting understory regeneration, preventing soil

erosion, and improving forest resource quality. Previous studies on

the resistance of mycorrhizal fungi in plants have predominantly

focused on single inoculation methods. In contrast, this study

introduces a mixed inoculation approach to evaluate the effects of

different inoculation methods on plant-microbe symbionts. This

experiment primarily examines the physiological and biochemical

responses of these symbionts under drought stress conditions. While

current research has provided valuable insights, the molecular

mechanisms by which fungi enhance drought tolerance in P.

tabuliformis remain underexplored. Future research should leverage

advanced molecular biology techniques, such as transcriptomics,

proteomics, and metabolomics, to elucidate these mechanisms.
2 Materials and methods

2.1 Biological material

The four-plant root symbiotic fungi used in this experiment were

two ECMF, Suillus granulatus (Sg) and Pisolithus tinctorius (Pt), and

two DSE, Pleotrichocladium opacum (Po) and Pseudopyrenochaeta

sp. (Ps), which were isolated from the root of P. tabuliformis (Xu et al.,

2022). These fungi were identified by morphological characteristics

and phylogenetic analysis of nuclear ribosomal DNA (nrDNA)

internal transcribed spacer (ITS) sequences (Supplementary Figures

S1, S2). The fungi were cultured on potato dextrose agar media and

stored in a 27°C mould incubator.
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Uniformly sized and plump fresh seeds of P. tabuliformis were

used in the experiments. The seeds were surface-sterilized and

placed in Petri dishes in a 25°C light incubator to accelerate

germination. Germinated seeds were sown in transparent plastic

pots (15 cm height, 8 cm bottom diameter, 12 cm top diameter)

filled with sterilized river sand (2 mm sieve, 121°C, 0.1 MPa, 2 h

autoclaving). Each pot contained 1,000 g of the sterile sand

medium, with four seeds sown per pot. During the seedling

cultivation period, sterile water and Hoagland nutrient solution

were supplied to ensure normal seedling growth.
2.2 Design of the experiment

2.2.1 In vitro drought stress tolerance assay
The drought stress tolerance of four root symbiotic fungi (Sg, Pt,

Po and Ps) isolated from P. tabuliformis was evaluated through solid

and liquid culture experiments using polyethylene glycol (PEG-

6000) to simulate drought stress. Media containing 0%, 15%, 25%,

and 35% PEG-6000 were prepared using potato, glucose, plant gel,

and PEG-6000. The experiment comprised 16 treatments with five

replicates per treatment. Well-growing fungal colonies on potato

dextrose agar were selected, and 6 mm fungal disks were inoculated

into 20 mL solid media and 100 mL liquid media, respectively. Solid

cultures were incubated at 27°C for 14 days, during which fungal

colony morphology was observed and recorded. Liquid cultures

were incubated in a thermostatic incubator at 27°C, with

continuous shaking at 150 rpm, for 14 days in the dark. After this

period, the mycelia were harvested to determine biomass and

physiological indices.

2.2.2 Pot experiment
A greenhouse pot experiment was conducted with different

fungal inoculation treatments and moisture levels as variables.

The experiment was performed under natural light conditions at

Hebei Agricultural University, with temperatures maintained at

30°C during the day and 21°C at night, a 14-h light/10-h dark

photoperiod, and relative humidity of 60% during the day and 70%

at night. Six inoculation treatments were employed: no inoculation

(CK), single inoculations with Sg, Pt, Po, or Ps, and a mixed

inoculation (Sg: Pt : Po: Ps = 1:1:1:1). Liquid inocula was prepared

by inoculating three fungal disks of each fungus into 150 mL potato

dextrose broth and incubating on a shaking table at 27°C for 14

days. The mycelia were then homogenized and mixed with sterile

water (v:v = 3:1) to obtain a mycelial suspension. Seedlings were

inoculated by perforated root irrigation with 20 mL of the respective

liquid inoculum, while the control group received 20 mL of potato

dextrose broth.

One month post-inoculation, root samples were examined to

confirm fungal colonization. Drought stress treatments were then

imposed, with three soil moisture levels: 70% ± 5% (well-watered,

WW), 50% ± 5% (light drought, LD), and 30% ± 5% (severe

drought, SD) of the maximum field moisture capacity. Unified

watering management was implemented, maintaining soil moisture

content within the experimental range by weighing the pots at 17:00

every day. Plastic pots were repositioned every two weeks to
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minimize positional effects. The experiment consisted of 18

treatments with five replications each. After 40 days of drought

stress, seedlings were harvested for relevant index measurements.
2.3 Antioxidant enzyme
activity determination

The superoxide dismutase (SOD) activity in fungi and plants was

determined by the nitroblue tetrazolium photoreduction method

(Elavarthi and Martin, 2010), and the catalase (CAT) activity was

assessed by the ultraviolet absorption method (Zhang, 1990).
2.4 Malondialdehyde and
osmolyte determination

The malondialdehyde (MDA) content was quantified using the

thiobarbituric acid method (Zhang, 1990), and proline content was

determined following the method of Bates et al. (1973). Soluble

protein content was measured by the Coomassie brilliant blue

colorimetric method (Campion et al., 2017).
2.5 Fungal colonization rate determination

The ectomycorrhizal root colonization rates were calculated by

microscopic examination of mycorrhizal and non-mycorrhizal root

tips, and the percentages of root tips with evident ectomycorrhizal

structures were determined (Brundrett et al., 1996). Dark septate

endophyte colonization rates were assessed by trypan blue

staining and microscopic quantification of septate hyphae and

microsclerotia, with the percentage of colonized root segments

calculated (Phillips and Hayman, 1970).
2.6 Mycorrhizal growth
response calculation

The mycorrhizal growth response (MGR) was calculated

according to the method of van der Heijden (2002). If the total

dry weight of inoculated plants (M) exceeded the mean total

dry weight of non-inoculated plants (NMmean), then MGR (%) =

100 × (1 − NMmean/M). If M < NMmean, then MGR (%) = 100 ×

(−1 + M/NMmean). A positive MGR value indicated that the

inoculation treatment promoted plant growth, while a negative

value signified growth inhibition.
2.7 Plant nutrient element analysis

The dried above-ground and below-ground portions of

P. tabuliformis seedlings were ground into a fine powder and

digested using the H2SO4-H2O2 method until the digestion

solution became colorless and transparent (Bao, 2000).
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The digested solution was filtered and used to determine nitrogen

and phosphorus contents in the aboveground and belowground

parts by the Kjeldahl method and molybdenum antimony

colorimetric method, respectively.
2.8 Statistical analysis

Statistical analysis were performed with SPSS software (Version

24; SPSS Inc., Chicago, Ill., USA). For the in vitro experiment, a two-

way analysis of variance (ANOVA) was conducted to analyze the

effects of PEG-6000 treatment and fungal species on the growth and

physiological responses of the four fungi. For the pot experiment,

two-way ANOVA examined the effects of drought treatment and

fungal inoculation on the growth and physiological responses of P.

tabuliformis seedlings. Mean values were compared using Duncan’s

multiple range test at a significance level of p < 0.05. Correlation

analyses were conducted to assess the influence of different fungal

inoculants on plant parameters. Principal component analysis

(PCA) was employed to analyze characteristics including fungal

colonization rates, plant biomass, enzyme activities, and nutrient

element contents. All graphs were generated using GraphPad Prism

software (version 10.1.0).
3 Results

3.1 Effects of different concentrations of
PEG-6000 on the biomass of root
symbiotic fungi

The two-way ANOVA results (Supplementary Table S1)

revealed significant effects of PEG stress, fungal species, and their

interaction on the biomass of the four root symbiotic fungi. The

biomass of the Sg and Ps strains initially increased and then

decreased with increasing PEG-6000 concentration, reaching a

maximum under the 15% PEG-6000 treatment in Ps strain, and

15% and 25% PEG-6000 treatments in Sg strain (Figure 1A). In

contrast, the biomass of the Pt strain first decreased and then

increased, with a 27.0% increase under the 35% PEG-6000

treatment compared to the 0% treatment. The biomass of the Po

strain showed a gradual increase with rising PEG-6000

concentrations and reached the highest under 35% PEG-6000

treatment. Overall, the biomass accumulation of the Sg strain was

higher than that of the Pt strain, and the Ps strain had greater

biomass accumulation than the Po strain across all PEG-

6000 concentrations.
3.2 Effects of different concentrations of
PEG-6000 on the antioxidant enzyme
activities of root symbiotic fungi

With increasing PEG-6000 concentrations, both SOD and

CAT activities in the Sg and Po strains increased, reaching their
frontiersin.org

https://doi.org/10.3389/fpls.2024.1446437
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1446437
maximum under the 25% PEG-6000 treatment (Figures 1B, C).

Compared to the control treatment, the SOD activity in the Pt

strain significantly increased under the 15% and 25% PEG-6000

treatments, reaching its peak at 25% PEG-6000. The CAT

activity in the Pt strain showed no significant difference from

the control at 15% PEG-6000 but significantly increased under

the 25% and 35% PEG-6000 treatments, with the highest activity
Frontiers in Plant Science 05
observed at 35% PEG-6000. In contrast, the SOD and CAT

activities in the Ps strain remained significantly higher under

all PEG-6000 treatments compared to the 0% PEG-6000

treatment. Overall, the two dark septate endophytes (Po and

Ps) exhibited greater improvements in antioxidant enzyme

activities in response to PEG-6000 stress than the two

ectomycorrhizal fungi (Sg and Pt).
FIGURE 1

Effects of different concentrations of PEG-6000 (0%, 15%, 25%, and 35%) on the biomass (A), superoxide dismutase activity (B), catalase activity (C),
proline (D) and soluble protein (E) of Suillus granulatus (Sg), Pisolithus tinctorius (Pt), Pleotrichocladium opacum (Po), and Pseudopyrenochaeta sp.
(Ps). Data (means ± SD, n = 3) are significantly different (p < 0.05) if followed by different letters above the bars.
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3.3 Effects of different PEG-6000
concentrations on osmotic adjustment
substances in symbiotic root fungi

All four fungi influenced the accumulation of proline and soluble

proteins in response to drought stress induced by PEG-6000

(Figures 1D, E). For the Sg, Pt, and Po strains, proline content

peaked at the 15% PEG-6000 treatment, significantly higher than

the control, and subsequently decreased with increasing PEG-6000

concentrations. In contrast, PEG-6000 stress consistently and

significantly increased proline levels in the Ps strain, with no

significant difference between the 15% and 25% treatments.

However, at 35% PEG-6000, the Ps strain exhibited significantly

higher proline content compared to the other treatments (Figure 1D).

PEG-6000 stress consistently and significantly increased soluble

protein levels in the Sg, Po, and Ps strains, while it resulted in a

significant reduction in the Pt strain. The Sg strain reached its

maximum soluble protein content at 15% PEG-6000, followed by a

decreasing trend with increasing PEG-6000 concentrations.

Conversely, soluble protein content in the Po and Ps strains

increased significantly with rising PEG-6000 levels, peaking at

35% PEG-6000. In contrast, the Pt strain exhibited the lowest

soluble protein content at 35% PEG-6000 (Figure 1E).
3.4 Root fungal colonization and growth
performance of P. tabuliformis

In the non-inoculated treatments, no fungal structure was

observed in the roots of P. tabuliformis (Figure 2A). The fungal

colonization rates showed that, except for the Po inoculation under

SD treatment, all other inoculation treatments under various drought

conditions had colonization rates exceeding 50% (Figure 2A). The

colonization rates of Sg increased with drought severity, whereas the

rates for other treatments first increased and then decreased. The

colonization rates for Pt, Po, and mix treatments peaked under LD

conditions. The mix treatment had higher colonization rates than

other treatments under WW and LD conditions.

There was a significant interaction between fungal inoculation

and drought stress on the mycorrhizal growth response of the

seedlings (Supplementary Table S2). With increasing drought

stress, the mycorrhizal growth response values for the inoculation

treatments initially increased and then decreased (Figure 2B). All

inoculation treatments positively affected the growth of P.

tabuliformis seedlings under drought conditions. The MGR values

of the mixed inoculation treatment were higher than those of

individual inoculations, indicating the greatest growth promotion

effects under drought stress.

The plant height of non-inoculated, Sg-, Po-, and Ps-inoculated

seedlings decreased with increasing drought stress (Figure 2C). The

plant height of Pt- and mix-inoculated seedlings first increased and

then decreased, peaking under LD conditions. Shoot and total

biomass of non-inoculated seedlings decreased with increasing

drought stress, while inoculated seedlings showed an initial

increase followed by a decrease, reaching a maximum under LD

conditions (Figures 2D, E). Under all drought conditions, mixed
Frontiers in Plant Science 06
inoculation treatments resulted in significantly higher shoot and

total biomass compared to single inoculations.
3.5 Effects of different inoculation
treatments on the antioxidant enzyme
activities of P. tabuliformis seedlings under
drought stress

With increasing drought stress, the SOD activity of non-inoculated

seedlings gradually increased, while that of inoculated seedlings first

increased and then decreased (Figure 3A). The SOD activity of all

inoculated seedlings peaked under LD conditions. CAT activity in

seedlings from all treatments increased first and then decreased with

increasing drought stress severity (Figure 3B). Under LD and SD

treatments, inoculated seedlings had higher SOD and CAT activities

than non-inoculated ones, indicating that inoculation treatments

enhanced antioxidant enzyme activities to cope with drought stress.
3.6 Effects of different inoculation
treatments on the MDA content of P.
tabuliformis seedlings under drought stress

Under drought stress, the MDA content of seedlings increased

with drought severity, while inoculation treatments reduced MDA

accumulation (Figure 3C). There was no significant difference in

MDA content between inoculated and control seedlings under WW

conditions. Under LD conditions, inoculation treatments

significantly reduced MDA content by 22.8%, 35.4%, 12.0%,

32.0%, and 35.9%, respectively. Under SD conditions, the

reductions were 30.9%, 40.5%, 27.0%, 33.3%, and 41.2%,

respectively. mixed inoculation treatments significantly reduced

MDA content under LD and SD conditions.
3.7 Effects of different inoculation
treatments on the osmotic adjustment
substance contents of P. tabuliformis
seedlings under drought stress

With increasing drought severity, the proline content of non-

inoculated, Sg-, Po-, and mix-inoculated seedlings gradually increased,

while the proline content of Pt- and Ps-inoculated seedlings first

increased and then decreased (Figure 3D). Under SD conditions, the

proline content of all inoculation treatments significantly increased

compared to the control, except for the Ps inoculation. The mix-

inoculated treatment had the highest proline content.

Under WW, LD, and SD conditions, all fungal inoculation

treatments significantly increased the soluble protein content in the

seedlings (Figure 3E). Specifically, under WW conditions, the

soluble protein content in the mix and Pt treatments was

significantly higher than in the Sg, Po, and Ps treatments. Under

LD and SD conditions, the soluble protein content of the mixed-

inoculated seedings was significantly higher than that of the other

four single inoculation treatments.
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3.8 Effects of different inoculation
treatments on the nutrient content
of P. tabuliformis seedlings under
drought stress

With increasing drought severity, the N content in the shoots

and roots of non-inoculated and Sg-inoculated seedlings gradually

decreased, while N content in the shoots and roots of Ps- and
Frontiers in Plant Science 07
mix-inoculated seedlings first increased and then decreased

(Figures 4A, B). The P content in the shoots of non-inoculated

seedlings gradually decreased, while the P content in the roots first

increased and then decreased (Figures 4C, D). The P content in

the shoots and roots of Sg-, Ps-, and mix-inoculated seedlings

gradually decreased, whereas in Po-inoculated seedlings, it

first increased and then decreased with increasing drought

severity (Figures 4C, D).
FIGURE 2

Effects of different inoculation treatments on the growth performance of Pinus tabuliformis seedlings under drought stress. Data (means ± SD, n = 3)
are significantly different (p < 0.05) if followed by different letters above the bars. (A), fungal colonization rate; (B), mycorrhizal growth response;
(C), plant height; (D), shoot biomass and (E), total biomass. Sg, Suillus granulatus; Pt, Pisolithus tinctorius; Po, Pleotrichocladium opacum; Ps,
Pseudopyrenochaeta sp.; Mix, mixed inoculation of four root symbiotic fungi. WW, well-watered; LD, light drought; SD, severe drought.
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3.9 Correlation analysis

Correlation analysis of different inoculation treatments on the

growth and physiological indexes of P. tabuliformis seedlings under

drought stress revealed significant positive correlations between

fungal colonization rates and various growth and nutrient

parameters (Figure 5). The colonization rates of Pt-inoculated

seedlings were significantly positively correlated with plant height,

total biomass, root N content, shoot P content, and root P content
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(p < 0.05) (Figure 5B). Po-inoculated seedlings showed significant

positive correlations with root biomass, SOD, CAT, and shoot P

content (p < 0.05) (Figure 5C). Mix-inoculated seedlings exhibited

significant positive correlations with total biomass and shoot N

content (p < 0.05) (Figure 5E). Higher fungal colonization rates of

Pt-, Po-, and mix-inoculated seedlings promoted seedling growth

and nutrient absorption.

The root biomass of Po-inoculated seedlings was significantly

positively correlated with SOD, CAT, and shoot P content, while
FIGURE 3

Effects of different inoculation treatments on the physiological characteristics of Pinus tabuliformis seedlings under drought stress. Data (means ±
SD, n = 3) are significantly different (p < 0.05) if followed by different letters above the bars. (A), superoxide dismutase activity; (B), catalase activity;
(C), malondialdehyde content; (D), proline and (E), soluble protein. Sg, Suillus granulatus; Pt, Pisolithus tinctorius; Po, Pleotrichocladium opacum;
Ps, Pseudopyrenochaeta sp.; Mix, mixed inoculation of four root symbiotic fungi. WW, well-watered; LD, light drought; SD, severe drought.
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total biomass was significantly positively correlated with SOD and

CAT (p < 0.05) (Figure 5C). Ps-inoculated seedlings’ root biomass

was significantly positively correlated with soluble protein and

shoot N content (p < 0.05) (Figure 5D). The plant height of

mix-inoculated seedlings was significantly positively correlated
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with SOD, CAT, shoot N content, and root N content (p < 0.05)

(Figure 5E). These results indicate that the strong antioxidant

defense and nutrient uptake abilities of Po- and mix-inoculated

seedl ings significant ly promote growth and improve

drought resistance.
FIGURE 4

Effects of different inoculation treatments on nitrogen and phosphorus content in the shoots and roots of Pinus tabuliformis seedlings under
drought stress Data (means ± SD, n = 3) are significantly different (p < 0.05) if followed by different letters above the bars. (A), shoot nitrogen
content; (B), root nitrogen content; (C), shoot nitrogen content and (D), root phosphorus content. Sg, Suillus granulatus; Pt, Pisolithus tinctorius;
Po, Pleotrichocladium opacum; Ps, Pseudopyrenochaeta sp.; Mix, mixed inoculation of four root symbiotic fungi. WW, well-watered; LD, light
drought; SD, severe drought.
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3.10 PCA analysis

PCA was used to evaluate the similarity among different

inoculation treatments and the relationships between plant

height, biomass, enzyme activity, antioxidant capacity, and
Frontiers in Plant Science 10
nutrient composition (Figure 6). The first principal component

(PC1) and the second principal component (PC2) explained 46.4%

and 19.9% of the variance, respectively. There were significant

differences between control and inoculated treatments under

drought stress (Figure 6A). The mix inoculation treatment was
FIGURE 5

Correlations among indicators in the pot experiment. (A) Sg, (B) Pt, (C) Po, (D) Ps, (E) Mix; *: (p < 0.05); **: p < 0.01; ***: p < 0.001; FCR, Fungal
colonization rate; MGR, Mycorrhizal growth response; PL, Plant height; SB, Shoot biomass; RB, Root biomass; TB, Total biomass; SOD, Superoxide
dismutase activity; CAT, Catalase activity; MDA, Malondialdehyde content; Pro, Proline; SP, Soluble protein; SNC, Shoot N content; RNC, Root N
content; SPC, Shoot P content; RPC, Root P content.
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significantly separated from other treatments. Antioxidant enzyme

activity, osmotic adjustment substances, and nutrient content were

the main factors affecting plant growth and were positively

correlated with biomass (Figure 6B). The results indicated that

inoculation treatments promoted plant growth and improved

antioxidant capacity, enhancing the tolerance of P. tabuliformis

seedlings to drought stress.
4 Discussion

4.1 Effects of drought stress on the growth
and physiological characteristics of root
symbiotic fungi

The biomass of fungi is a crucial indicator of their resistance

under stressful environments. All four fungi exhibited normal

growth under PEG stress, indicating their tolerance to PEG-

induced drought stress. Abiotic stresses, such as drought and salt,

have been shown to induce an increase in plant peroxisome content

(Fahy et al., 2017; Castillo et al., 2008; Sanad et al., 2019). Li et al.

(2022b) demonstrated that strains with greater drought resistance

exhibit significant increases in antioxidant enzyme activities (SOD,

POD, and CAT) under drought stress, indicating that increased

antioxidant enzyme activity is a response to drought in sensitive

strains. In this study, the biomass of the Sg, Po, and Ps strains,

except for the Pt strain, was greater under other PEG-6000

treatments compared to the 0% PEG-6000 treatment. This may

be related to the higher contents of antioxidant enzymes and

osmotic adjustment substances in these strains under PEG-6000

treatments. SOD and CAT are critical protective enzymes in the

antioxidant system, responsible for scavenging reactive oxygen

species (ROS) and H2O2, working together to maintain the

balance between ROS production and scavenging (Raja et al.,

2017). This study found that the activities of antioxidant enzymes

and the contents of osmotic adjustment substances increased in all
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four fungi under PEG stress, with SOD and CAT activities showing

consistent changes. This indicates that all four fungi could alleviate

oxidative damage by synthesizing antioxidant enzymes to scavenge

ROS produced by PEG-6000 stress. Simultaneously, they improved

their accumulation of proline and soluble proteins, promoting

cellular osmoregulation to protect mycelial cell membrane

structures, thereby enhancing stress tolerance. This study also

revealed that DSE strains had greater biomass than ECMF strains,

suggesting that DSE strains were less affected by PEG-6000 stress,

possibly due to their highly melanized hyphae. Melanin in fungi

serves to protect them from harmful environmental conditions

(Fernandez and Koide, 2013).
4.2 Effects of root symbiotic fungi on the
growth and development of P. tabuliformis
seedlings under drought stress

Microorganisms are natural partners in plant defense

mechanisms under adverse conditions (Meena et al., 2017). In

this study, typical mycorrhizal structures and DSE hyphae and

microsclerotia were observed in root samples inoculated with

ECMF and DSE strains, indicating effective colonization even

under drought conditions. Additionally, the mycorrhizal growth

response values of inoculation treatments were all positive under

drought stress, with mixed inoculation treatments showing greater

effects than individual treatments. Among the four individual

inoculation treatments, the Ps-inoculated seedlings under SD

conditions exhibited higher fungal colonization rates, mycorrhizal

growth responses, and biomass compared to those inoculated with

the other three fungi. This increased performance is likely due to the

reduction in MDA content and the increase in soluble protein

content in the Ps-inoculated seedlings, which enhances cell

membrane stability and improves dehydration resistance, allowing

the plants to better adapt to stressful environments. These findings

align with previous pure culture experiments where the Ps strain
FIGURE 6

Principal component analysis (PCA) of indicators in the pot experiment. (A) Sg indicates Suillus granulatus; Pt indicates Pisolithus tinctorius; Po
indicates Pleotrichocladium opacum; Ps indicates Pseudopyrenochaeta sp.; Mix indicates mixed inoculation of four root symbiotic fungi.; (B) PL,
Plant height; SB, Shoot biomass; RB, Root biomass; TB, Total biomass; SOD, Superoxide dismutase activity; CAT, Catalase activity; MDA,
Malondialdehyde content; Pro, Proline; SP, Soluble protein; SNC, Shoot N content; RNC, Root N content; SPC, Shoot P content; RPC, Root
P content.
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demonstrated higher biomass and stronger drought tolerance under

the highest PEG concentration stress. Thus, different fungi exhibit

varying levels of drought tolerance and influence the drought

resistance of plants differently. Studies have shown that

inoculation with Amanita vaginata significantly promotes the

growth of P. tabuliformis (Zhang et al., 2011), and the biomass of

Hedysarum scoparium inoculated with DSE under drought stress

was significantly greater than that of non-inoculated treatments (Li

et al., 2019). However, few studies have investigated the co-

inoculation of ECMF and DSE strains under drought stress. This

experiment demonstrated that inoculating ECMF and DSE strains

under drought stress promoted increases in plant height, shoot

biomass, root biomass, and total biomass of P. tabuliformis

seedlings. These growth indices were significantly higher in mixed

inoculation treatments compared to non-inoculated and individual

inoculation treatments. Increased plant biomass indicates more

organic matter to support plants, enhancing their survival in arid

environments. Our study revealed that inoculating root symbiotic

fungi under drought stress effectively mitigated adverse

environmental effects on P. tabuliformis seedlings, promoting

growth and improving drought resistance. Furthermore, mixed

inoculation treatments had synergistic rather than competitive

effects on the growth of P. tabuliformis seedlings under

drought conditions.
4.3 Effects of root symbiotic fungi on the
physiological characteristics of P.
tabuliformis seedlings under drought stress

Drought stress leads to the overproduction of ROS in plants,

causing degradation of lipids, proteins, and nucleic acids, damaging

plant cells, and reducing growth and development (Gill and Tuteja,

2010; Kapoor et al., 2019). Plants produce enzymes such as SOD

and CAT to scavenge ROS, protecting cells from oxidative damage

and preserving membrane integrity (Wu et al., 2006; Raja et al.,

2017). In this study, antioxidant enzyme activities in P. tabuliformis

seedlings inoculated with root symbiotic fungi increased under

drought stress, indicating that these fungi protect host plants

from oxidative damage by enhancing antioxidant enzyme

activities. Under LD conditions, mixed inoculation treatments

significantly increased SOD and CAT activities in seedlings

compared to individual treatments, indicating a greater ability to

eliminate ROS. MDA content, an indicator of oxidative damage,

reflects the degree of stress injury to plants. Excessive MDA

accumulation often results from oxidative damage to membrane

lipids, with lower MDA levels indicating higher membrane stability

(Quiroga et al., 2020). In this study, MDA content in P. tabuliformis

seedlings decreased after inoculation with root symbiotic fungi,

indicating improved cell membrane stability. Under LD and SD

conditions, mixed inoculation treatments resulted in significantly

lower MDA content compared to control and individual

inoculation treatments, consistent with findings in P. sylvestris

var. mongolica seedlings (Zhao et al., 2020). However, under WW

conditions, there was no significant difference in MDA content

between mixed inoculation and control treatments, indicating no
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significant synergistic effect of co-inoculation under well-

watered conditions.

Osmotic adjustment is a crucial mechanism for plants to

regulate water potential under drought stress. Proline and soluble

protein are key osmotic adjustment substances that allow plants to

adapt to stressful environments by increasing dehydration tolerance

through accumulation (Pal et al., 2018; Sharma and Verslues, 2010;

Azmat and Moin, 2019). In this study, proline content in inoculated

seedlings under LD and SD conditions was significantly higher than

in control treatments, with mixed inoculation treatments showing

the highest proline content under SD conditions. Rezaei-Chiyaneh

et al. (2021) also found that co-inoculated plants under severe water

stress had the highest proline content. This study indicates that co-

inoculation of ECMF and DSE strains promotes proline

biosynthesis, enhancing osmotic regulation under severe water

stress. Higher contents of soluble protein in inoculated plants

suggest greater osmotic ability, helping seedlings maintain turgor

pressure under drought conditions (Liu et al., 2021). Therefore, root

symbiotic fungi improve osmotic balance by increasing the content

of osmotic adjustment substances, enhancing plant tolerance and

alleviating the negative effects of drought.

Mycorrhizal symbionts significantly affect the uptake of

nitrogen and phosphorus by plants (Veresoglou et al., 2012).

Research has shown that fungal inoculation improves nutrient

recovery efficiency, accumulation, and growth in host plants

(Surono and Narisawa, 2017; Vergara et al., 2017, 2018; Lu et al.,

2016). In this experiment, N contents in the shoots and roots of

inoculated plants under LD and SD conditions were significantly

higher than in control treatments, with mixed inoculation

treatments showing the highest N contents under LD conditions.

Mycorrhizal fungi increase nitrogen uptake under drought stress by

enhancing root hydraulic conductivity (Graham and Syversen,

1984). Mycorrhizal fungi also promote nitrogen uptake by

decomposing organic matter (Hodge et al., 2001; Goussous and

Mohammad, 2009), helping maintain water status under water

scarcity. Mixed inoculation treatments significantly increased P

content in shoots and roots under WW conditions and were

more effective than individual treatments under LD and SD

conditions. Fungi can explore more soil volume than non-

mycorrhizal plants, enhancing P uptake (Evelin et al., 2009).

Adding mycorrhizal fungi to soil increases microbial biomass and

CO2 release, forming weak acids that dissolve phosphorus-bearing

minerals, and increasing phosphorus availability (Subramanian

et al., 2006). Thus, plants inoculated with mycorrhizal fungi

exhibit higher productivity even under adverse conditions. In

summary, root symbiotic fungi improve the uptake of nutrients

such as N and P, promoting growth and enhancing plant resistance.

The synergistic effects of ECMF and DSE on nutrient absorption are

greater than individual inoculations.
5 Conclusion

Drought stress affects a range of physiological changes in plants,

and root symbiotic fungi can help plants withstand the adverse effects

of drought. This study demonstrated that root symbiotic fungi (Sg,
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Po, Ps, and Pt) enhance the growth and drought resistance of P.

tabuliformis seedlings. All fungi tolerated PEG-induced drought

stress, with increased antioxidant enzyme activities and osmotic

adjustment substances. DSE strains showed greater resilience due

to their melanized hyphae. Acids produced by root symbiotic fungi

under drought stress may help plants to activate elements in the soil

that plants fail to take up. Therefore, the determination of the

composition and content of metabolites of root symbiotic fungi

under drought stress could be carried out in future studies.

Inoculation, especially mixed inoculation, significantly improved

plant height, biomass, and drought resistance. The fungi increased

antioxidant enzymes and osmotic substances, mitigating oxidative

damage and enhancing osmotic regulation. Additionally, they

improved nutrient uptake, particularly nitrogen and phosphorus.

These findings suggest that root symbiotic fungi, particularly in

combination, are effective in enhancing drought resistance and

growth of P. tabuliformis, providing valuable insights for

afforestation and forest management in arid regions.
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