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A combination of joint linkage
and genome-wide association
study reveals putative candidate
genes associated with resistance
to northern corn leaf blight in
tropical maize
Noel Ndlovu 1,2, Manje Gowda 1*, Yoseph Beyene 1,
Biswanath Das 1, Suresh L. Mahabaleswara 1,
Dan Makumbi 1, Veronica Ogugo 1, Juan Burgueno 3,
Jose Crossa 3, Charles Spillane 2, Peter C. McKeown 2,
Galina Brychkova 2 and Boddupalli M. Prasanna 1

1Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT),
Nairobi, Kenya, 2Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway,
Galway, Ireland, 3Biometrics and Statistics Unit, International Maize and Wheat Improvement Center
(CIMMYT), Texcoco, Estado. de México, Mexico
Northern corn leaf blight (NCLB), caused by Setosphaeria turcica, is a major

fungal disease affecting maize production in sub-Saharan Africa. Utilizing host

plant resistance tomitigate yield losses associated with NCLB can serve as a cost-

effective strategy. In this study, we conducted a high-resolution genome-wide

association study (GWAS) in an association mapping panel and linkage mapping

with three doubled haploid (DH) and three F3 populations of tropical maize.

These populations were phenotyped for NCLB resistance across six hotspot

environments in Kenya. Across environments and genotypes, NCLB scores

ranged from 2.12 to 5.17 (on a scale of 1–9). NCLB disease severity scores

exhibited significant genotypic variance and moderate-to-high heritability. From

the six biparental populations, 23 quantitative trait loci (QTLs) were identified,

each explaining between 2.7% and 15.8% of the observed phenotypic variance.

Collectively, the detected QTLs explained 34.28%, 51.37%, 41.12%, 12.46%,

12.11%, and 14.66% of the total phenotypic variance in DH populations 1, 2,

and 3 and F3 populations 4, 5, and 6, respectively. GWAS, using 337,110 high-

quality single nucleotide polymorphisms (SNPs), identified 15 marker–trait

associations and several putative candidate genes linked to NCLB resistance in

maize. Joint linkage association mapping (JLAM) identified 37 QTLs for NCLB

resistance. Using linkage mapping, JLAM, and GWAS, several QTLs were

identified within the genomic region spanning 4 to 15 Mbp on chromosome 2.

This genomic region represents a promising target for enhancing NCLB

resistance via marker-assisted breeding. Genome-wide predictions revealed

moderate correlations with mean values of 0.45, 0.44, 0.55, and 0.42 for

within GWAS panel, DH pop1, DH pop2, and DH pop3, respectively. Prediction

by incorporating marker-by-environment interactions did not show much

improvement. Overall, our findings indicate that NCLB resistance is quantitative

in nature and is controlled by few major-effect and many minor-effect QTLs. We
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conclude that genomic regions consistently detected across mapping

approaches and populations should be prioritized for improving NCLB

resistance, while genome-wide prediction results can help incorporate both

major- andminor-effect genes. This study contributes to a deeper understanding

of the genetic and molecular mechanisms driving maize resistance to NCLB.
KEYWORDS

northern corn leaf blight (NCLB), genome-wide association study (GWAS), quantitative
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Introduction

As a staple crop in sub-Saharan Africa (SSA), maize underpins

food security and livestock production while also providing a vital

source of income for smallholder farmers. This crop contributes no

less than 30% of the aggregate caloric intake for people in this region

(Nuss and Tanumihardjo, 2010). In this context, initiatives focusing

on enhancing productivity and sustainability hold the potential to

empower maize-dependent smallholder farming communities.

Although advances in agricultural research and technology have

resulted in a gradual increase in maize production, average maize

field productivity in SSA (∼1.7 tons/ha) is far below the global

average (∼5 tons/ha) (Prasanna et al., 2020). This can be attributed

to various abiotic and biotic stressors, including low soil nitrogen

(Das et al., 2019; Ndlovu et al., 2022; Kimutai et al., 2023),

inadequate availability and use of farm inputs (e.g., improved seed

and fertilizer), insect pest infestations (Kansiime et al., 2023), and

disease incidences. Some of these stresses have a negative effect on

grain quality or nutrient composition (Sharma and Carena, 2016;

Ndlovu et al., 2024a), with far-reaching implications for household

nutrition in smallholder communities. Most importantly, diseases

such as gray leaf spot (GLS) (Lehmensiek et al., 2001; Benson et al.,

2015; Kibe et al., 2020a), maize lethal necrosis (MLN) (De Groote

et al., 2016; Beyene et al., 2017; Boddupalli et al., 2020), and

northern corn leaf blight (NCLB) (Ding et al., 2015; Chen et al.,

2016; Galiano-Carneiro et al., 2021) have been reported to cause

considerable losses in maize production systems. The latter has

been widely observed to significantly reduce maize grain yield on a

global scale, as reported in earlier studies (De Rossi et al., 2022;

Raymundo and Hooker, 1981).

NCLB (also known as Turcicum leaf blight) is a foliar disease of

maize caused by the ascomycete fungus Setosphaeria turcica

(anamorph Exserohilum turcicum) (Li et al., 2018; Jindal et al.,

2019; Cao et al., 2020; Ahangar et al., 2022). Setosphaeria turcica is

categorized into distinct races distinguished by their virulence levels

against Ht (Helminthosporium turcicum) genes in maize (Galiano-

Carneiro and Miedaner, 2017).Ht genes are recognized for providing

race-specific qualitative resistance that is inherited through single

genes (Bentolila et al., 1991; Zaitlin et al., 1993; Yin et al., 2003; Xiao
02
et al., 2007; Chung et al., 2010). However, environmental factors may

influence the expression of the Ht genes within maize or the

avirulence genes of Setosphaeria turcica, leading to resistance that is

unstable and/or less durable (Rashid et al., 2020). NCLB is commonly

widespread in mid-altitude tropical and sub-tropical regions with

moderate temperatures (17°C–28°C) and cloudy weather coupled

with high rainfall and high humidity (Hooda et al., 2017; Bankole

et al., 2023). Tropical regions show high pathogen abundance and

genetic diversity, resulting in inflated disease severity and a high risk

of resistance breakdown (Rashid et al., 2020). These favorable

conditions allow the fungus to spread biotrophically during the

initial infection process and later switch to a necrotrophic lifestyle.

Infections manifest as lesions on leaves and necrosis, leading to a

drastic reduction in the photosynthetic potential of the host plant,

leading to huge grain yield losses (Ramathani et al., 2011; Ding et al.,

2015). The disease affects maize at all growth stages, and infection at

an early stage leads to premature death and reduced vigor (Welz and

Geiger, 2000; Muiru et al., 2007).

The key to tackle NCLB in tropical maize lies in uncovering the

pathogen’s mechanism of infection and the factors that govern

resistance. Wisser et al. (2006) alluded that understanding the genetic

architecture of host resistance is the foundation of disease

management. This is also highly relevant for resistance breeding

programs (Yang et al., 2017). However, despite the modern tools and

advancements in this field, the genetic basis of resistance to several

foliar diseases (like NCLB) in maize is still not well understood. Several

studies focusing on the genetics of NCLB resistance documented a

combination of both qualitative and quantitative types of inheritance

(Welz and Geiger, 2000; Poland et al., 2011; Li et al., 2018). Qualitative

resistance stems from allelic variations at only one or two resistance

genes, with allele effects large enough to reliably deduce a plant’s

resistance genotype from its phenotype (St. Clair, 2010), irrespective of

environmental fluctuations (Yang et al., 2017). Quantitative resistance,

which is widely used by maize breeders (Yang et al., 2017), refers to the

contribution of several genes with small additive effects for the

expressed resistance. Resistance to NCLB has been reported to be

governed by genes with additive effects coming from a few major genes

(such as Ht1, Ht2, Ht3, ht4, Htnl, Html, and NN) (Welz and Geiger,

2000; Kaefer et al., 2017; Li et al., 2018). Earlier breeding schemes have
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predominantly relied on qualitative resistance governed mainly by

major gene effects, conferred by Ht genes, which are vulnerable to

break down of resistance and are impeded by the emergence of new

races of the pathogen through recombination events or mutation

(Wende et al., 2018). In tropical settings, a broad-based quantitative

resistance to NCLB is preferred. This can be achieved either through

quantitative disease resistance loci (dQTLs) independently or in

conjunction with potent Ht genes (Rashid et al., 2020). Carson and

Dyke (1994) alluded that quantitative resistance is more durable

because it includes both major and minor effect quantitative trait loci

(QTL). In this respect, for the development of comprehensive

resistance to NCLB in maize, a combination of both additive and

non-additive effects is required (Ogliari et al., 2007; Vieira et al., 2009).

Several mapping studies have been conducted to identify QTLs

associated with NCLB resistance across diverse maize germplasm

and environments. Freymark et al. (1993) and Dingerdissen et al.

(1996) identified five QTLs, which together explained 48% of total

phenotypic variance (PVE) for NCLB resistance in F2:3 populations.

With a high-density genetic map, Chen et al. (2016) identified a

major QTL qNCLB5.04 (for NCLB disease severity and lesion size),

which explained 20% of the observed phenotypic variation. Another

study by Omondi et al. (2023) identified 18 QTLs, which together

explained 64.9% of the total PVE in NCLB disease severity. Poland

et al. (2011) and Li et al. (2018) used populations derived from

multiple parents in nested association mapping (NAM) design and

identified 29 and 48 NCLB-associated QTLs, respectively.

Depending on the type of population used for QTL mapping,

researchers reported the presence of both additive and non-

additive effects for NCLB resistance in these studies.

Genome-wide association study (GWAS) is another robust and

cost-effective method for dissecting polygenic traits, enhancing

mapping resolution, and complementing linkage mapping

techniques (Gowda et al., 2021). GWAS has been employed to

detect allelic variations for MLN (Gowda et al., 2015), GLS (Kibe

et al., 2020a), tar spot complex (Cao et al., 2017), corn rust (Wang

et al., 2023), sorghum downy mildew (Rashid et al., 2018), and

NCLB (Galiano-Carneiro et al., 2021). Several research studies have

documented GWAS results on NCLB resistance in maize,

predominantly concentrating on temperate germplasm and

environments (Rashid et al., 2020). Using a large association

mapping panel with 999 inbred lines, Ding et al. (2015) revealed

81 significantly associated SNPs for NCLB resistance. Another

study by Van Inghelandt et al. (2012) identified significant SNPs

on chromosomes 2, 5, 6, 7, and 9. Although numerous QTLs that

control resistance to NCLB have been identified in maize, the

current understanding of the genetic architecture particularly in

the germplasm adapted to SSA is low. Indeed, GWAS and linkage

analyses have their own merits and demerits when used

independently. For example, because of population structure,

GWAS generally shows higher false positive rates compared to

linkage analysis (Yu et al., 2006; Zhang et al., 2018). In this respect,

methods that incorporate linkage mapping and GWAS can bring

together the merits of both approaches. Such combined approaches

have been successfully applied to reveal the genetic basis of complex

quantitative traits like MLN (Sitonik et al., 2019) and tar spot

complex (Cao et al., 2017).
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Genomic prediction (GP), previously developed for dairy

breeding, has also been used in plant breeding for disease

resistance. GP utilizes all available phenotyped and genotyped

marker data of a training set to build a prediction model while

bypassing the need for QTL detection (Meuwissen et al., 2001). GP

has successfully been applied in the prediction of resistance to

diseases such as Gibberella ear rot (Han et al., 2016), MLN (Gowda

et al., 2015, 2018), and Goss’s wilt (Cooper et al., 2019) in maize.

However, only a few studies have reported GP in NCLB resistance

in maize (Technow et al., 2013; Omondi et al., 2023). GP studies

have included genotype-by-environment interactions by

performing overall predictions across environments (Heffner

et al., 2011), within environments (Burgueño et al., 2012; Heslot

et al., 2014), or using marker-by-environment interactions (Jarquıń

et al., 2014; Lopez-Cruz et al., 2015). In this respect, the objectives of

the study were (1) to investigate the phenotypic variation for NCLB

resistance and its correlation with other agronomic traits in tropical

and sub-tropical maize lines; (2) to use linkage mapping, JLAM, and

GWAS to identify genomic regions associated with NCLB

resistance; and (3) to assess the potential of utilizing GP in

breeding to improve NCLB resistance.
Materials and methods

Plant materials and field trials

Here, we evaluated one association mapping (IMAS) panel,

three biparental doubled haploid (DH) populations, and three

biparental F3 populations across diverse environments in Kenya

(Table 1). The parental lines used to form DH populations

(CML494, CML504, CML511, and CML550) and F3 populations

(CML505, CZL074, CZL009, CZL0723, CZL0719, and

LapostaSeqC7-F103-1-2-1-1) showed a wide variation for foliar

diseases including NCLB, corn rust, and GLS and known donors

for low soil nitrogen stress and drought tolerance. More

information on these populations has been reported in earlier

studies (Ertiro et al., 2020b; Sitonik et al., 2019). The IMAS panel

(composed of 390 inbred lines) was evaluated in replicated trials

established across six Kenyan locations (i.e., Alupe 2012, Alupe

2013, Alupe 2014, Kibos 2013, Kibos 2014, and Embu 2013). The

field trials were established in disease hotspot locations under

natural infestation during the long rainy seasons (March to

August). All three locations—Kibos [−0.03861°S, 34.81596°E;

1,193 m above mean sea level (masl); 865-mm mean annual

rainfall), Alupe (0.503725°N, 34.12148°E; 1,153 masl; 1,400-mm

mean annual rainfall), and Embu (0°31′52″ S 37°27′02″ E, 1,406

masl; 1,206-mm mean annual rainfall)—have a bimodal rainfall

distribution. All three DH populations [CML494×CML550 (DH

pop 1), CML504 × CML550 (DH pop 2), and CML511 × CML550

(DH pop 3)] were evaluated in Kakamega (0°17′3.19″ N 34°45′
8.24″ E, 1,535 masl) and Kitale (1.0191°N 35.0023°E, 1900 masl) for

2 years in 2014 and 2015. Three F3 populations (F3 pop 4, CZL074 ×

LaPostaSeqC7-F103-1-2-1-1; F3 pop 5, CZL009 × CML505; and F3
pop 6, CZL0723 × CZL0719) were evaluated in two locations in

Kakamega and Embu in 2013 during long rainy season
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(Table 1; Supplementary Table S1). All populations were evaluated

in one row of 4-m plots, with two replications. For all these trials,

two seeds were planted per hill and thinned to a single plant per hill

3 weeks after emergence. This was done to ensure a uniform plant

density per entry. Alpha (a)–lattice experimental design was used,

and all standard agronomic practices were applied.
Phenotypic evaluation

The locations used in this study are all hotspots for NCLB.

Disease severity data were visually rated based on an ordinal scale of

1 (highly resistant, without disease symptoms) to 9 (highly

susceptible, leading to necrosis) (Ding et al., 2015). For each

population, each location-year combinations were treated as an

independent environment, which resulted in six environments for

the IMAS panel, four environments for DH populations, and two

environments for each F3 population. In addition to the NCLB

disease severity score, data were collected for other agronomic traits,

including days to anthesis (AD; days from planting to 50% pollen

shed), days to silking (SD; days from planting to 50% silking), and

anthesis to silking interval (ASI; calculated as the difference between

SD and AD). Plant height (PH; measured as the length in

centimeters from the base of a plant to the insertion of the first

tassel branch of the same plant for 10 representative plants per plot)

and ear height (EH; measured as the length in centimeters from the

base of a plant to the internode of the top ear of the same plant for

10 representative plants per plot). Ear position (EPO) was

calculated as the ratio between PH and EH. GLS disease severity

data were recorded at the mid-silking stage and scored plot-wise on

an ordinal scale of 1 (highly resistant, without disease symptoms) to

9 (highly susceptible, leading to necrosis). Before harvesting the

crop, the number of ears in each plot with portion of the ear

exposed was recoded and expressed as a percentage of poor husk

cover (HC) relative to the total number of ears harvested. Grain

yield (GY) was calculated using the field weight of ears per plot,
Frontiers in Plant Science 04
assuming an 80% shelling percentage and adjusting for a moisture

content of 12.5%. Grain texture (TEX) was measured on a 1-to-5

scale (where 1 = flint, 2 = semi-flint, 3 = intermediate, 4 = semi-

dent, and 5 = dent). NCLB disease severity data were recorded on an

ordinal scale of 1 to 9, and the data met all the assumptions of the

applied statistical model (i.e., normally distributed, constant

variance, and independent) (Rawlings et al., 1998).

Analysis of variance for individuals and across environments

was carried out using the ASREML-R (Gilmour et al., 2015; Kibe

et al., 2020a, b) for the IMAS panel and DH and F3 populations. The

linear mixed model with the restricted maximum likelihood

(REML) was used to calculate all variance components. The study

treated replication as a fixed effect and all other treatment effects as

random. As defined by Knapp et al. (1985), the components of

variance were estimated using the complete random effects model,

whereas broad-sense heritability was calculated as the ratio of

genotypic to PVE. META-R software (Alvarado et al., 2015) was

used to generate best linear unbiased predictions (BLUPs) and best

linear unbiased estimators (BLUEs), which were used in

downstream processes.
Genotyping-by-sequencing

The IMAS panel and DH populations used in this study have

also been used in earlier studies for different traits (Sitonik et al.,

2019; Ertiro et al., 2020a; Kibe et al., 2020a). The populations have

been routinely used because the lines are representative of tropical

and sub-tropical regions, developed over time. For all the inbred

lines from the IMAS panel and biparental populations, DNA was

extracted, purified, and genotyped with high-density makers using

genotyping-by-sequencing (GBS) at the Institute of Genomic

Diversity, Cornell University, USA, as described in earlier studies

(Elshire et al., 2011; Gowda et al., 2015, 2021; Ndlovu et al., 2022).

GBS data for all biparental populations were filtered by using

TASSEL version 5.2 (Bradbury et al., 2007) with a criterion of
TABLE 1 Trait means, estimates of heritability, and variance components for NCLB disease severity in the IMAS panel, DH, and F3 populations
evaluated in multiple environments.

Population # Loc Pop size Mean s2G s2GE s2e h2

IMAS panel 6 390 4.16 0.19** 0.09** 0.18 0.86

CML494 × CML550 (DH pop 1) 4 110 5.17 0.02* 0.01* 0.15 0.52

CML504 × CML550 (DH pop 2) 4 210 3.64 0.06** 0.02* 0.18 0.68

CML511 × CML550 (DH pop 3) 3 107 4.69 0.17** 0.06** 0.15 0.79

Across three DH pops 4 421 5.24 0.33** 0.03** 0.29 0.88

CZL074 × LaPostaSeqC7-F103-1-2-
1-1 (F3 pop 4) 2

172
3.93 0.01* 0.01* 0.13 0.25

CZL0009 × CML505 (F3 pop 5) 3 195 2.21 0.01* 0.02* 0.07 0.30

CZL0723 × CZL0719 (F3 pop 6) 2 195 3.06 0.05* 0.00 0.14 0.59
* and ** indicate significance at P < 0.05 and P < 0.01, respectively. s2G, s2GxE, s2e, and h2 refer to genotypic variance, genotype × environment interaction variance, error variance, and broad
sense heritability, respectively.
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excluding markers with heterozygosity of >5%, minor allele

frequency (MAF) of < 0.05, and a minimum count of 90%. Only

polymorphic SNPs between the parents and marker loci

homozygous for both parents were retained in each biparental

population. Finally, SNPs were further filtered with the criteria of

minimum distance between adjacent SNPs as ≥200 Kilo base pairs

to ensure uniform distribution of markers throughout the genome.
Linkage mapping

The linkage map for each biparental population was constructed

by using QTL IciMapping version 4.1 (Meng et al., 2015). Finally, we

used 2,105, 2,699 1,962, 1,160, 1139, and 1,160 high-quality SNPs in

DH pop 1, DH pop 2, DH pop 3, F3 pop 4, F3 pop 5, and F3 pop 6,

respectively. The linkage map was constructed by using these SNPs

and by selecting the most significant markers using stepwise

regression. A likelihood ratio test was used to calculate the

logarithm of odds (LOD) for each marker at a score of >3 with a

30-cM maximum distance between two loci. The Kosambi mapping

function (Kosambi, 1944) was used to transform the recombination

frequencies between two linked loci. BLUPs across environments

were used to detect QTLs based on inclusive interval mapping for

each population. Phenotypic variation explained by individual QTLs

and total variation explained by all QTLs together was estimated.

QTL naming was done with the letter “q” indicating QTL, followed

by an abbreviation of the trait name, the chromosome, and the

marker position, respectively. For comparisons of QTL positions

detected in different biparental populations, QTL sharing the same

flanking markers and within the same chromosome interval were

defined as the same QTL.
Joint linkage association mapping

All three DH populations were genotyped with GBS markers and

then combined for filtering. As a first step in quality control, we

excluded markers with a heterozygosity of >5%, MAF of < 0.05, and a

minimum count of 90%. For joint linkage association mapping

(JLAM), markers were further filtered to retain SNPs with <1%

missing values. As a result, a set of 7,490 SNPs that are uniformly

distributed across the genome were retained for JLAM analyses. BLUPs

across locations were used for the analyses. A linear model comprising

co-factors and population effect (Würschum, 2012) was used to

implement JLAM as it performs well for association analysis in

segregating populations. This model was explained in detail by Liu

et al. (2011) and Würschum (2012). In brief, with this model, in a first

step, stepwise multiple linear regression was used in addition to

population effect to select the cofactors based on the Schwarz

Bayesian criterion (Schwarz, 1978), and, in the second step, P-values

for the association of each marker with phenotypic value were

calculated for the F-test by comparing a full model (including SNP

effect) against a reduced model (without SNP effect) [for details see Reif

et al. (2010)]. R software version 4.2.1 (R_Core_Team, 2023) was used

to carry out genome-wide scans for QTLs, and cofactors were selected

using PROC GLM SELECT from SAS 9.4 (SAS Institute 2015).
Frontiers in Plant Science 05
Genome-wide association analyses

The raw GBS data set was subjected to a filter at 90% minimum

count, with a MAF > 0.05 and heterozygosity < 5% to retain high-

density markers. After these quality checks, 337,110 high-quality

SNPs were retained for GWAS analyses. BLUPs across locations

were used as phenotypes in association mapping scans. Population

structure and linkage disequilibrium plots were already reported in

earlier studies (Kibe et al., 2020b), so we used the same information

in this study. Principal components (PC) were calculated using

TASSEL version 5.2 (Bradbury et al., 2007). The R package

“FarmCPU-Fixed and random model Circulating Probability

Unification” with GAPIT (Genome Association and Prediction

Integrated Tool) was used for GWAS analysis (Tang et al., 2016).

The first three PCs were used in the model. A false discovery rate

(FDR; p < 0.05) was used to correct for multiple testing while

determining the significance threshold. To summarize GWAS

results per chromosome, Manhattan scatter plots were generated.

The −log10 P-values for all the analyzed SNPs for NCLB disease

severity data were used to construct the Manhattan plots. Quantile-

quantile (Q-Q) plots were plotted from the estimated −log10 (P)

from the association panel for the NCLB disease severity trait.

SNPs detected in the association panel or from JLAM results

were examined as polymorphisms in linkage disequilibrium with

putative candidate genes from the “B73” RefGen_v2. Candidate

genes were identified through BLAST searches against the “B73”

RefGen_v2. (https://www.maizegdb.org/gbrowse/maize_v2).

Putative candidate genes were selected by delving into the

information gene ontology, Kyoto Encyclopedia of Genes and

Genomes, and protein families (Pfam) (Ashburner et al., 2000;

Bateman et al., 2004; Kanehisa and Goto, 2000). The presence of the

protein-coding genes was searched within the range of 10 kb (5 kb

upstream and downstream) in the vicinity of the detected SNPs.
Genomic prediction

BLUEs across environments for the IMAS panel, each of the

DH populations, and across DH populations were used for the

analysis. Because all DH populations and IMAS panel were

genotyped with GBS SNPs, we filtered in single file by excluding

SNPs with MAF < 5%, heterozygosity > 5%, and no missing values.

For all populations, the same set of high-quality uniformly

distributed 4,000 SNPs was used. Among different GS models,

ridge regression BLUP (RR-BLUP; Meuwissen et al., 2001;

Endelman, 2011) appears well suited for regular plant breeding

trials (Albrecht et al., 2011). Moreover, RR-BLUP has the advantage

of being computationally less intensive, which is important in cross-

validation studies. Therefore, we used RR-BLUP in the present

study. GP analyses were conducted by using the package rrBLUP in

R program (Endelman, 2011; Zhao et al., 2012; Crossa et al., 2017;

R_Core_Team, 2023). We applied five-fold cross-validations in

three different scenarios: the “within population” approach where

both training and estimation set are derived from within each DH

population and IMAS panel called as within-within approach. The

second scenario is across-within populations, where all DH
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populations together form training set and individual DH

population will be an estimation set. A third scenario is a

combined population prediction approach where either all DH

populations were combined and/or all DH populations together

with IMAS panel were used to form both training and estimation

sets. For each scenario, 100 iterations were performed for the

sampling of the training and estimation sets. The predictive

ability within each scenario (within-within, across-within, and

combined all) was estimated by the Pearson correlation

coefficient between the corrected phenotypic values (BLUEs) for

each population and their predicted Genomic estimated breeding

values (GEBVs).

The genotype-by-environment interaction plays a key role in

genome selection and prediction in multi-environmental trials,

across environments or at each environment usually is improved

modeling the genotype-by-environment interaction (Burgueño

et al., 2008). We evaluated three different models using the IMAS

panel to evaluate prediction accuracy by doing prediction by

environment or considering the genotype-by-environment

interaction. The first model is a simple model in which each

environment is analyzed individually. The second model includes

an environmental effect in it, but marker effects are the same across

environments. Finally, we fit a model in which marker effects vary

by environment, it is a marker by environment interaction

component. The model includes an overall marker effect across

environments plus a specific environmental effect of each marker

(Lopez-Cruz et al., 2015). For the analysis, we used a modified

version of the scripts presented in github.com/MarcooLopez/

Genomic-Selection/blob/master/multi_environment.mdfollowed

the scripts. Here, we mimic two scenarios of prediction: one in

which 82 genotypes (30%) were not evaluated in any environment

(CV1) and the second in which 82 (30%) genotypes were not tested

in two of six environments (CV2). Prediction accuracy was

measured as the Pearson correlation between observed and

predicted values in each environment and across environments.
Results

Phenotypic evaluation resistance to
northern corn leaf blight in tropical
maize germplasm

One association panel, three DH, and three F3 populations were

evaluated in NCLB disease hotspots in Kenya. Assessments of

NCLB disease severity for each population at each location

revealed significant genotypic variances (Supplementary Table

S1), indicating sufficient disease pressure and differential response

among the tested genotypes. In addition to genotypic variations,

there were significant positive correlations between locations for

each population (Supplementary Table S2). The locations selected

for assessing each population differed in terms of NCLB disease

severity (significant environmental variations). These variations
Frontiers in Plant Science 06
offered valuable insights into the reaction of individual lines to

NCLB at different locations.

Analyses of variance within populations and across

environments revealed significant variations in disease severity

(Table 1). On a scale of 1.0–9.0, NCLB disease severity was high

in DH populations, with mean scores of 5.17 (CML494 × CML550

DH pop 1) and 4.69 (CML511 × CML550 DH pop 3). Across the

studied populations, CZL0723 × CZL0719 F3 pop 6 (mean = 3.06)

and CZL0009 × CML505 F3 pop 5 (mean = 2.21) had the lowest

disease severity scores (Table 1). The distribution frequency of

mean NCLB disease severity scores resembled a normal pattern

(Figure 1). Across environments, analysis of variance revealed

significant genotypic and G × E variations (P < 0.05) in all

populations except for CZL0723 × CZL0719 F3 pop 6 (Table 1).

Broad-sense heritability was moderate to high. In the correlation

analysis, NCLB disease severity was positively and significantly

correlated to AD, PH, and GLS (Figure 2). However, NCLB was

negatively and significantly correlated to GY, ER, EPO, and EA. GY

was positively and significantly correlated with PH and EPO but

negatively correlated with ER, GLS, EA, and PA. ER was negatively

and significantly correlated with NCLB, GLS, PH, AD, and GY

(Figure 2). PH was positively correlated with AD and GLS.
QTLs associated with resistance to NCLB in
tropical maize populations

The maize populations used in this study for QTL mapping were

also evaluated in earlier studies (Ertiro et al., 2020a; Kibe et al., 2020a;

Sitonik et al., 2019), which provided detailed genetic map information.

Table 2 shows details of the QTLs associated with NCLB in the studied

tropical maize populations. Three QTLs associated with NCLB were

detected in DH pop 1, which explained a total phenotypic variation of

34.3% (Table 2). The detected QTLs were found on chromosomes 2

and 7. For DH pop 2, six QTLs were detected on chromosomes 1, 2, 6,

9, and 10. These QTLs together explained 51.4% of total phenotypic

variation. In DH pop 3, four QTLs were detected; among them, two

QTLs were located on chromosome 3 and the others on chromosomes

1 and 10. Together, they explained 41.1% of the total phenotypic

variation. In F3 pop 4, two QTLs were identified which together

explained 12.5% of total PVE. In F3 pop 5, four QTLs were detected

for resistance to NCLB, which together explained 12.7% of the total

PVE. In F3 pop 6, there were four QTLs detected which together

explained 14.7% of the total phenotypic variations. The proportion of

PVE explained by each QTL in each population varied from 10.2% to

15.8% for DH pop 1, 2.8% to 15.8% for DH pop 2, 9.9% to 13.1% for

DH pop 3, 5.9% and 9.6% for F3 pop 4, 6.2% to 9% for F3 pop 5, and

4.1% to 10.9% for F3 pop 6 (Table 2).

Through JLAM, we identified 37 QTLs associated with

resistance to NCLB. These QTLs were distributed in all 10

chromosomes and together explained 49.4% of the total PVE

(Table 3). Unlike linkage mapping where phenotypic variation

explained by each QTL showed minor to major effects (2.8%–
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FIGURE 1

Phenotypic distribution of NCLB disease severity scores (on a 1-to-9 scale) in IMAS association panel, three DH populations, and combined DH
populations, and three F3 populations evaluated across locations.
FIGURE 2

Pairwise phenotypic correlations between northern corn leaf blight scores and other traits in combined three DH populations evaluated in three
environments. Correlation values > 0.10 and >0.15 were interpreted as significant at 0.05 and 0.01 levels, respectively. GYG, grain yield; AD, days to
anthesis; PH, plant height; EH, ear height; EPO, ear position; HC, husk cover; GLS, gray leaf spot; NCLB, Northern corn leaf blight; ER, ear rot; EA, ear
aspect; PA, plant aspect.
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15.8%), JLAM-detected QTLs showed minor effects, ranging from

0.5% to 2.1%. Most of the QTLs identified through JLAM were

located on chromosome 2 (eight QTLs) followed by chromosome 5

(seven QTLs). Large variation was observed in SNP allele

substitution effects which varied between −0.48 and 0.34

(Table 3). The putative candidate genes associated with these

identified QTLs and their predicted function are also reported in

Table 3, which are either directly or indirectly involved in plant

defense (Table 3).

The QTLs or SNPs detected through GWAS, JLAM, and linkage

mapping were compared on a physical map, which revealed several
Frontiers in Plant Science 08
QTLs overlapped at same genomic regions (Figure 3). The SNP

detected through JLAM at 36 Mbp (qNCLB1_36) is located within

the QTL region detected in F3 pop4 (qNCLB-01-41). QTL detected

in DH pop3 (qNCLB1_238) is adjacently located with SNP

detected through JLAM (qNCLB1_248). Among the 37 QTLs

identified through JLAM, 10 were co-located within the QTLs

identified through individual population-based QTL mapping

(Tables 2, 3). On chromosome 1, SNP S1_36801883 was co-

located within the QTL qNCLB1-40 identified in F3 pop 6

(Table 2). On chromosome 2, SNP S2_15475173 and

S2_197936812 were co-located within the QTL qNCLB2-14 and
TABLE 2 Analysis of QTLs associated with NCLB resistance in DH and F3 biparental populations evaluated in multiple environments.

Trait Chr
Position
(cM) LOD PVE (%) Add Dom

TPVE (%)
Flanking markers

QTL
name

CML550 × CML494 (DH pop 1)

NCLB

2 2 6.06 15.77 0.04 –

34.28

S2_197381415 S2_197936812 qNCLB2-197

2 319 4.66 11.75 −0.04 – S2_15120146 S2_14108062 qNCLB2-14

7 124 4.06 10.16 0.04 – S7_17180908 S7_17479195 qNCLB7-17

CML550 × CML504 (DH pop 2)

NCLB

2 172 9.13 6.86 0.06 –

51.37

S2_200406183 S2_199173754 qNCLB2-199

4 67 18.70 15.81 −0.10 – S4_217096503 S4_216318317 qNCLB4-216

5 474 4.59 3.30 0.04 – S5_27062274 S5_24712589 qNCLB5-24

6 232 3.82 2.76 −0.04 – S6_159006932 S6_161010798 qNCLB6-161

7 220 7.66 5.80 0.06 – S7_127579232 S7_126523093 qNCLB7-126

8 280 12.15 9.62 0.07 – S8_146976545 S8_146475249 qNCLB8-146

CML550 × CML511 (DH pop 3)

NCLB

1 323 3.34 10.40 −0.11 –

41.12

S1_244433411 S1_238464323 qNCLB1-238

3 40 4.07 13.05 −0.12 – S3_214123437 S3_213338610 qNCLB3-213

3 367 3.22 9.89 0.10 – S3_45037474 S3_40065285 qNCLB3-40

10 173 3.70 11.80 0.12 – S10_90044674 S10_84229674 qNCLB10-84

CZL074 × LaPostaSeqC7-F103-1-2-1-1 (F3 pop 4)

NCLB
1 284 3.53 5.88 −0.17 -0.08

12.46
S1_46406150 S1_33884416 qNCLB1-40

8 108 3.01 9.60 −0.26 0.01 S8_27220841 S8_64174106 qNCLB8-30

CZL00009 × CML505 (F3 pop 5)

NCLB

4 572 6.02 6.80 0.24 0.03

12.1

S4_204127436 S4_222798122 qNCLB4-220

4 581 8.59 8.98 −0.29 0.05 S4_222798122 S4_224911596 qNCLB4-222

8 217 5.11 6.25 −0.22 0.04 S8_21874363 S8_19295622 qNCLB8-20

8 224 7.61 7.96 0.26 0.02 S8_19295622 S8_14702663 qNCLB8-19

CZL0723 × CZL0719 (F3 pop 6)

NCLB

3 221 3.69 4.10 0.16 −0.27

14.66

S3_54472637 S3_34440945 qNCLB3-50

4 279 3.23 10.95 −0.43 −0.03 S4_237390755 S4_236648145 qNCLB4-237

8 80 4.42 5.47 −0.31 −0.12 S8_147263937 S8_135592710 qNCLB8-146

8 83 3.49 5.55 0.32 −0.13 S8_135592710 S8_134080585 qNCLB8-135
Chr, chromosome; LOD, logarithm of odds; cM, centiMorgan units; add, additive effect; TPVE, total phenotypic variance explained; QTL name composed by the trait code followed by the
chromosome number in which the QTL was mapped and a physical position of the QTL; NCLB, northern corn leaf blight.
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TABLE 3 Analysis of NCLB-associated markers, allele substitution (a) effects, and the explained proportion of phenotypic variance (R2) of the joint
linkage association mapping in multiple segregating DH populations.

SNPa QTL
name Chr a-Effect

PVE
(%)

Putative
candidate

Predicted function of candidate gene

S1_3010423 qNCLB1-3 1 −0.07 0.70 GRMZM2G137236 Cell vesicle transport Adaptor protein complex AP-2, alpha subunit

S1_36801883 qNCLB1-36 1 −0.06 0.50 GRMZM2G150827 Dynamin-related protein 4C (DRP4C)

S1_248124348 qNCLB1-248 1 0.13 0.80 GRMZM2G110304 RNA regulation of transcription putative transcription regulator

S1_287290870 qNCLB1-287 1 −0.10 1.70 GRMZM2G178415 N-metabolism N-degradation, glutamate dehydrogenase

S2_4464978 qNCLB2-4 2 0.06 0.50 GRMZM2G076212 Serine/threonine-protein kinase SD2-5

S2_7207049 qNCLB2-7 2 0.16 0.70 GRMZM2G419290 Putative G-type lectin S-receptor-like serine/threonine-protein kinase

S2_10474509 qNCLB2-10 2 −0.20 1.10 GRMZM2G044629 UDP-N-acetylglucosamine diphosphorylase 2/cell wall precursor synthesis

S2_15475173 qNCLB2-15 2 0.14 1.50 GRMZM2G493586 Uncharacterized

S2_136562142 qNCLB2-136 2 0.11 0.50 GRMZM2G003234
RNA regulation of transcription. C2H2 zinc finger family C2H2-like zinc
finger protein

S2_148660794 qNCLB2-148 2 −0.18 1.20 GRMZM2G115658 ABC transporters and multidrug resistance systems zinc-induced facilitator

S2_186533942 qNCLB2-186 2 0.23 2.00 GRMZM2G123972 Uncharacterized

S2_197936812 qNCLB2-197 2 −0.11 2.10 GRMZM2G021587 RNA regulation of transcription

S3_114875183 qNCLB3-114 3 −0.48 1.80 GRMZM2G176282 EXS, C-terminal

S3_123784490 qNCLB3-123 3 0.34 0.90 GRMZM2G173280 RNA regulation of transcription unclassified Remorin family protein

S3_200187150 qNCLB3-200 3 −0.06 0.40 GRMZM2G078756
Phenylalanine-tRNA ligase phenylalanyl-tRNA synthetase class IIc
family protein

S3_209548358 qNCLB3-209 3 0.13 0.50 GRMZM2G078926 Signaling, leucine-rich repeat protein kinase family protein

S3_212501774 qNCLB3-212 3 0.05 0.30 GRMZM2G160971 Uncharacterized

S4_157115413 qNCLB4-157 4 −0.07 0.30 GRMZM2G570925 Uncharacterized

S4_218847954 qNCLB4-218 4 −0.10 1.7 GRMZM2G057402
C2 domain–containing protein calcium-dependent lipid-binding
family protein

S5_5924352 qNCLB5-5 5 −0.12 0.90 GRMZM2G114557 Protein degradation Peptidase S24/S26A/S26B/S26C family protein

S5_8350170 qNCLB5-8 5 −0.09 0.20 GRMZM2G100380
Cell organization ankyrin repeat family protein/ankyrin repeat-containing
protein At5g02620

S5_8409630 qNCLB5-8 5 0.18 0.80 GRMZM2G065669 Unknown

S5_26100208 qNCLB5-26 5 −0.21 0.30 GRMZM2G022175 Putative RING zinc finger domain superfamily protein

S5_183126431 qNCLB5-183 5 0.09 0.70 GRMZM2G007466 postranslational modification Integrin-linked protein Kinase family

S5_209733109 qNCLB5-209 5 −0.14 0.30 GRMZM2G163776 Uncharacterized

S5_215991184 qNCLB5-215 5 −0.06 0.80 GRMZM2G064603
ABC transporter G family member 28/transport ABC transporters and
multidrug resistance systems

S6_165014618 qNCLB6-165 6 0.07 0.90 GRMZM2G065757 Protein degradation aspartate protease

S7_127888863 qNCLB7-127 7 −0.09 1.80 GRMZM2G140633
Cell cycle, encodes a cyclin involved in cell proliferation during stomatal
cell lineage development

S8_21847291 qNCLB8-21 8 0.11 0.30 GRMZM2G032551 Uncharacterized

S8_35814899 qNCLB8-35 8 −0.18 0.90 GRMZM2G001024 Uncharacterized

S8_146017787 qNCLB8-146 8 −0.08 0.70 GRMZM2G017523 Uncharacterized

S8_164859738 qNCLB8-164 8 0.15 1.00 GRMZM2G050693 Uncharacterized

S8_170127444 qNCLB8-170 8 −0.08 0.90 GRMZM2G036448 Transmembrane amino acid transporter family protein

S9_8467793 qNCLB9-8 9 −0.17 1.70 GRMZM2G066373 Uncharacterized

(Continued)
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qNCLB2-197, respectively (identified in DH pop 1). SNP

S4_218847954 was co-located within the QTL (qNCLB4-220)

from F3 pop 5. SNPs S5_26100208 and S7_127888863 were co-

located within the QTLs detected in DH pop 2, qNCLB5-24 and

qNCLB7-126 on chromosomes 5 and 7, respectively. Three SNPs

from chromosome 8—S8_21847291 , S8_35814899 , and

S8_146017787—were co-located within the QTLs qNCLB8-20

from pop 5, qNCLB8-30 from pop 4, and qNCLB8-146 from pop

6, respectively (Tables 2, 3).
Genome-wide association study for NCLB
resistance in tropical maize germplasm

The IMAS panel was used to identify and validate genomic regions

for resistance to NCLB through GWAS. Fifteen marker–trait

associations were identified by using 337,110 high-quality SNPs

filtered from the raw GBS data set (Table 4; Figure 4). Because both

fixed and random effect models are iteratively used in FarmCPU, which

helps in avoiding overfitting of the model by stepwise regression (Liu

et al., 2016), we used the FarmCPU model in the association mapping.

The detected markers were distributed across all chromosomes except

chromosomes 9 and 10, with P-values ranging from 5.58 × 10−14 to

8.29 × 10−06. The Manhattan plot revealed the highest peak on

chromosome 5 (S5_24157791). Our analysis identified SNPs whose

physical coordinates co-localized with chromosome bins where QTLs

associated with NCLB resistance had been previously reported. For

instance, SNP S6_165023408 was co-located with QTL qNCLB6-165

[detected in JLAM (Tables 3, 4)]. Using B73 maize genome V2.0,

predicted gene annotations were studied to identify putative candidate

genes associated with NCLB resistance. Numerous SNP associations

identified in this study were situated within genes featuring functional

domains related to metabolism, stress tolerance, and plant

development. For example, SNP S2_213818302 was associated with

peroxidase activity and oxidase stress responses. SNP S6_100083188,

on the other hand, was associated with the gene responsible for

phosphoglycerate kinase (PGK) activity that is involved in plant

defense response (Table 4).
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Genome-wide prediction accuracies of
NCLB resistance in tropical
maize populations

RR-BLUP has the advantage of being computationally less

intensive, which is important in cross-validation studies and suits

well for routine application in plant breeding trials (Albrecht et al.,

2011). Therefore, we used the RR-BLUP model (Endelman, 2011) to

estimate the performance of tropical maize genotypes under NCLB

disease pressure (Figure 5). The prediction accuracy was highest for

combined all three DH populations (r = 0.88) followed by prediction

across DH populations and GWAS panel (r = 0.79). Overall, the

prediction accuracies across genotypes weremoderate to high (0.32 to

0.88). Average prediction accuracies within DH populations were

relatively higher: 0.44, 0.55, and 0.42 for DH pop 1, DH pop 2, and

DH pop 3, respectively. The IMAS association panel had a prediction

accuracy of 0.45. For the across-within prediction scenario, the

accuracy values were 0.32, 0.49, and 0.42 when estimation set is

DH pop 1, DH pop 2, and DH pop 3, respectively.

Table 5 shows the results of genome-wide prediction

correlations using and not using marker by environment effect or,

similarly, genotype-by-environment effect. The major difference

between by environment and across environment prediction is

because, for by environment prediction, we used un-tested

genotypes to calculate Pearson correlation, whereas, for across

environment prediction, we used all genotypes, because all

genotypes were missing in at least two environments. As usual,

under CV2 cross-validation, the prediction accuracy is high because

there are not completely untested genotypes. The comparison

between models shows that the across model is better in average

to predict by environments in four and five environments in CV1

and CV2, respectively. The single model without marker by

environment interaction was only better than the other models in

CV1 to predict at location Embu12. The model with marker by

environment interaction presented the largest prediction accuracy

in one environment in each, CV1 (Alupe14) and CV2 (Embu12),

and to do prediction across environments.
TABLE 3 Continued

SNPa QTL
name Chr a-Effect

PVE
(%)

Putative
candidate

Predicted function of candidate gene

S9_140347342 qNCLB9-140 9 −0.06 0.30 GRMZM2G179329 Uncharacterized

S9_153223374 qNCLB9-153 9 0.09 0.90 GRMZM2G442769 Uncharacterized

S10_12104511 qNCLB10-12 10 −0.11 0.50 GRMZM2G004060 WRKY transcription factor 15 (wrky15)

Total
PVE (%) 49.4
Chr, chromosome; PVE, proportion of phenotypic variance explained; NCLB, northern corn leaf blight; athe exact physical position of the SNP can be inferred from the marker’s name, for
example, S1_82702920: chromosome 1; 82,702,920 bp.
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Discussion

Phenotypic evaluation of tropical maize
populations in NCLB hotspots

Assessing the genetic architecture of complex disease-resistance

traits in plants requires extensive and accurate phenotyping. In

environments where pathogen genetic diversity and disease

pressure are high, broad-based quantitative resistance is essential

because it is less broken by pathogen evolution (Galiano-Carneiro

and Miedaner, 2017). Quantitative resistance to NCLB is governed

by many genes (polygenic), with most QTL having minor effects

and few having major phenotypic effects (Poland et al., 2011; Van

Inghelandt et al., 2012). In this study, the NCLB scores for the IMAS

association panel and each biparental population showed that
Frontiers in Plant Science 11
resistance to NCLB in tropical maize is quantitative (Figure 1).

This was well supported by earlier studies on association panels

(Poland et al., 2011; Van Inghelandt et al., 2012) and biparental

maize populations (Ranganatha et al., 2021; Omondi et al., 2023).

We also observed significant genotypic and G × E interaction

variances (Table 1). Estimates of broad sense heritability on a

mean line basis (within individual populations) ranged from

moderate to high. This suggests that the estimated variance

within each population is reliable and indicates the potential for

significant progress in selecting for NCLB resistance in this tropical

maize germplasm.

Understanding the correlation and interactions between

different traits is crucial in the development of marker-assisted-

based multi-trait strategies (Xu and Crouch, 2008). Our results

showed that NCLB has a negative and a significant relationship with
FIGURE 3

Mapping of NCLB resistance-associated QTLs detected based on individual biparental-based linkage mapping, joint linkage association mapping
(JLAM), and IMAS association mapping panel (AMP). Red, green, and blue colors represent QTL detected under biparental-based linkage mapping
(pop 1, pop 2, pop 3, pop 4, pop 5, and pop 6), JLAM, and AMP approaches, respectively.
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grain yield. Similar findings of the negative relationship between

NCLB and GY have been reported in earlier studies (Pataky et al.,

1998; Weems, 2016; Razzaq et al., 2019). The negative correlation

between plant height and NCLB in this study corroborated with

Welz and Geiger (2000) who found a correlation coefficient of −0.27

(P = 0.01) between these two traits. The significant negative

correlation indicates taller plants may have better resistance to

NCLB. On the other hand, this will enhance lodging problems and

having taller plants resistant to NCLB may not hold in different

germplasm, so it warrants more studies before using in

breeding selection.
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Linkage and joint linkage mapping and
putative candidate genes

The SNP-based linkage maps are being used to map NCLB

resistance via linkage mapping, helping researchers understand the

function of the chromosomal region or loci at the gene level. In this

study, we used three DH populations and three F3 populations and

identified genomic locations on all chromosomes except on

chromosomes 1 and 9 (Table 2). Six major effect QTLs (>10% PVE)

were identified; among them, three were in DH pop1, located on

chromosomes 2 and 7. The moderate effect QTLs on chromosome 2
TABLE 4 Highly significant SNPs identified in GWAS analysis of DH and IMAS panel that were evaluated for NCLB resistance.

SNP
namea

Chr
MLM

P-value
MAF

FDR
P-values

SNP
effect

Putative
candidate
genes

Predicted function of
candidate gene

S1_17844737 1 1.60E-07 0.29 0.01 −0.10 GRMZM2G059020 ATP-dependent helicase activity

S2_13777598 2 8.71E-07 0.14 0.02 −0.11 GRMZM2G031981 HSP binding, protein folding

S2_52683494 2 1.87E-08 0.21 0.00 0.12 GRMZM2G101730 Unknown

S2_213818302 2 4.34E-07 0.24 0.01 −0.10 GRMZM2G450717
Peroxidase activity, heme binding, oxidative
stress response

S3_122496339 3 1.69E-06 0.18 0.04 0.10 GRMZM2G340251 ATP binding

S3_150390803 3 5.44E-10 0.27 0.00 0.11 GRMZM2G176968 Quercetin sulphate biosynthesis

S4_239705109 4 1.34E-06 0.43 0.03 −0.08 GRMZM2G150337 G protein–coupled receptor signaling pathway

S5_22035704 5 2.78E-10 0.10 0.00 0.17 GRMZM2G549959 Unknown

S5_24157791 5 5.58E-14 0.29 0.00 0.16 GRMZM2G107444 Response to freezing

S5_187085620 5 1.49E-08 0.42 0.00 −0.10 GRMZM2G042173 Protein binding

S6_100083188 6 3.25E-09 0.49 0.00 0.10 GRMZM5G811022 Phosphoglycerate kinase activity

S6_165023408 6 7.32E-11 0.11 0.00 −0.19 GRMZM2G366795 WRKY transcription factor 51

S7_6577768 7 2.79E-06 0.22 0.05 −0.09 GRMZM2G032266 Unknown

S7_13616198 7 2.18E-06 0.28 0.05 0.08 GRMZM2G458494 Uncharacterized

S8_174614781 8 8.29E-06 0.42 0.15 −0.07 GRMZM2G118770 Oxidoreductase, malic enzyme activity
MAF, minor allele frequency; athe exact physical position of the SNP can be inferred from SNP’s name, for example, S1_82702920: chromosome 1; 82,702,920 bp.
FIGURE 4

Manhattan and quantile-quantile (Q-Q) plots generated using a mixed linear model for NCLB scores across environments. The x-axis indicates the
SNP location along the 10 chromosomes, with chromosomes separated by different colors. The significance level was set at P = 2 × 10–5 at 0.05
false discovery rate (FDR) and is represented on the plot by the dashed horizontal line. The position of SNPs along the 10 maize chromosomes is
shown on the x-axis, with each color indicating distinct maize chromosomes. The −log10(P observed) is shown on the y-axis.
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(qNCLB2_14 and qNCLB2_197) were detected within the QTL

region reported in an earlier study that used DH populations

(Omondi et al., 2023). The major effect QTL qNCLB7_14 detected in

DH pop 1 (bin 7.02) was also co-located by Wang et al. (2018) with

13.16% of phenotypic variance explained. Bin 4.09 is another

important region that harbors NCLB resistance QTLs. Chromosomal

bins 1.03–06, 4.04–06, 5.04–07, 8.02–03, 8.05–06, and 9.02–04 have

been consistently identified across multiple QTL mapping studies

(Rashid et al., 2020). Welz et al. (1999) also found five QTLs located

on different chromosome bins 1.06/1.07, 3.07, 4.03, 5.04, and 6.05/6.06

in a temperate F3 population. Most of the QTLs detected in this study

overlapped with earlier studies (Miedaner et al., 2020; Galiano-

Carneiro et al., 2021; Ranganatha et al., 2021; Omondi et al., 2023),

indicating the presence of consistent QTLs across regions. This
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supports the potential for enhancing NCLB resistance across

different genetic backgrounds through either marker-assisted

recurrent selection or genome-wide selection.

For JLAM, even though the total PVE explained by the 37 QTLs

was 49.4%, individual phenotypic variation for each QTL was less

than 2.5% (Table 3), indicating that NCLB resistance being a

polygenic trait. As expected, JLAM improved the resolution

within the QTL intervals, finding new QTLs that are hard to find

in individual population-based linkage mapping (Figure 3). Six of

the QTLs identified by JLAM lay within or just outside of the

confidence intervals identified earlier (Tables 2, 3; Figure 3). Many

previous studies on resistance to NCLB have implicated the use of

qualitative resistance in temperate and tropical germplasm (Welz

and Geiger, 2000; Galiano-Carneiro and Miedaner, 2017). These are
FIGURE 5

Genome-wide prediction correlations for NCLB resistance in biparental and IMAS association panel based on three different scenarios. WW (within-
within) scenario, estimation and prediction sets are derived within populations; AW (across-within) scenario, combined populations serve as a
training set and an estimation set is from single biparental population; and combined scenario, where combine all populations and randomly derive
both training and testing set and evaluate with five-fold cross-validation.
TABLE 5 Average Pearson correlation and standard deviation (n = 100), between observed and predicted NCLB disease severity values by
environment and across environment in two cross-validation scenarios.

Environment
CV1 CV2

Single Across M × E Single Across M × E

Alupe11 0.352 (0.084) 0.410 (0.088) 0.384 (0.085) 0.350 (0.073) 0.712 (0.042) 0.677 (0.047)

Alupe12 0.329 (0.092) 0.384 (0.095) 0.354 (0.091) 0.329 (0.088) 0.680 (0.059) 0.663 (0.056)

Alupe13 0.358 (0.075) 0.404 (0.089) 0.385 (0.079) 0.365 (0.084) 0.712 (0.048) 0.694 (0.049)

Embu12 0.327 (0.082) 0.266 (0.088) 0.312 (0.083) 0.332 (0.080) 0.445 (0.066) 0.475 (0.064)

Kibos11 0.259 (0.096) 0.332 (0.093) 0.325 (0.095) 0.253 (0.086) 0.676 (0.065) 0.651 (0.061)

Alupe14 0.400 (0.091) 0.403 (0.081) 0.408 (0.090) 0.393 (0.092) 0.695 (0.063) 0.649 (0.068)

Across environment,
all genotypes

0.856 (0.021) 0.875 (0.021) 0.878 (0.021) 0.913 (0.006) 0.963 (0.004) 0.967 (0.003)
CV1 and CV2, using three different models, individual environment analysis (single), across environment without marker by environment interaction (across), and across environment with
marker by environment interaction (M × E).
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mostly Ht genes including Ht1, Ht2, Ht3, Ht4, Htn1, and Html,

which could be partially or fully dominant (Carson, 1995; Welz and

Geiger, 2000; Ogliari et al., 2005; Pataky and Ledencan, 2006). HtP,

a dominant gene, and rt, a recessive gene conferring resistance to E.

turcicum have been mapped on bins 2.08 and 3.06, respectively

(Ogliari et al., 2007). These two regions were in proximity to SNPs

S2_197936812 (qNCLB2-197) and S3_212501774 (qNCLB3-212)

identified through JLAM (Table 3). Marker S2_197936812 lies at

the exact location of the upper confidence interval of QTL qNCLB-

197 identified through linkage mapping within DH pop 1, which

coincidentally explained the highest phenotypic variation within

that population. However, S3_212501774 found on chromosome 3

fell outside the confidence interval of QTL qNCLN3-213 in DH pop

3 (Tables 2, 3). The QTL qNCLB5-26 was co-located within the QTL

qNCLB5-24 identified in DH pop 2 at bin 5.03 (Tables 2, 3). This is

also a region identified for NCLB resistance through NAM in earlier

studies (Poland et al., 2011). Interestingly, QTLs were identified in

five genomic regions across chromosome 2 (10-15 Mbp),

chromosome 4 (220-239 Mbp), chromosome 5 (22-26 Mbp),

chromosome 6 (161-166 Mbp), and chromosome 8 (19-35 Mbp)

using all three mapping approaches (Figure 3). These genomic

regions where QTLs detected via linkage mapping, JLAM, and

GWAS not only demonstrated stability but also contributed to

narrowing down the confidence interval of the QTLs. These are the

regions need to prioritize for future marker assisted breeding for

NCLB resistance.
Genome-wide association analyses

The identified significantly associated 15 SNPs were distributed

on all maize chromosomes except chr 9 and 10. The total phenotypic

variance explained by each SNPwas <9%, indicating that resistance to

NCLB is a polygenic in nature. Loci conferring resistance to NCLB

has been detected through association mapping in previous studies

(Wisser et al., 2006; Jamann et al., 2014). SNP S8_174614781

identified in our GWAS lay within the upper confidence interval of

QTL identified in linkage mapping within F3 pop 5. Likewise,

S6_165014618 on chromosome 6 identified via JLAM was closely

associated with SNP S6_165023408 identified via GWAS. Because we

did not observe deviation of SNP toward the expected P-value of Q-Q

plots, putative candidate genes associated with significant SNP gave

greater confidence in response to NCLB disease severity (Table 4).

SNPs S1_17844737 on chromosome 1 and S3_122496339 on

chromosome 8 were associated with genes GRMZM2G059020 and

GRMZM2G340251, which code for ATP-dependent helicase activity

and binding (Table 4). Using SNP-based bulk segregant analysis, Zhai

et al. (2022) reported ATP-dependent helicase with disease resistance

QTLs associated with NCLB in maize.

The candidate gene GRMZM2G031981 associated with

S2_13777598 on chromosome 2 codes for heat shock protein

(HSP) binding and folding. HSP proteins play a pivotal role

within the intricate cellular system of molecular chaperones and

catalysts for protein folding (Mayer and Bukau, 2005; Diogo-Jr
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et al., 2023). These HSPs function as chaperones by either

enhancing the stability of newly synthesized proteins to

facilitate proper folding or by aiding in the re-folding process

of proteins that have been compromised due to cellular stress

(Abou-Deif et al., 2019). HSPs are crucial for maintaining the

integrity of PRRs on the cell membrane and R proteins inside the

cell, ensuring that they are ready to counter potential threats

(Park and Seo, 2015; Berka et al., 2022).

GRMZM2G450717 on chromosome 2 encodes peroxidase

activity. Peroxidase activity contributes to lignification in plant

cell walls, facilitating the production of phenolic compounds and

ultimately reinforcing cell walls to prevent pathogen intrusion

during infection (Almagro et al., 2008; Yanti, 2015). Earlier

studies have also documented the role that peroxidases in plant

growth and development (Li, 2023). The gene was also associated

with heme binding and oxidative response. Under stress, earlier

studies have reported on the role of heme-mediated homeostasis in

plants (Singh and Bhatla, 2022; Wu et al., 2022). Another SNP

identified in this study, S3_150390803 , was linked to

GRMZM2G176968 , which codes for quercetin sulphate

biosynthesis. Under osmotic stress, quercetin has been shown to

enhance seed germination and vigor (Yang et al., 2021).

GRMZM2G150337 gene that codes for G protein–coupled

receptor signaling pathway was significantly associated with SNP

S4_239705109. The G protein–coupled receptor genes have been

shown in earlier studies to enhance chilling tolerance in maize

(Zhou et al., 2023). Similarly, GRMZM2G107444 that codes for

response to freezing was associated with SNP S5_24157791 on

chromosome 5.

The candidate gene GRMZM5G811022 associated with

S6_100083188 on chromosome 6 codes for PGK activity. In

activating plant defense mechanisms, protein kinases have been

shown to be important in signaling during pathogen recognition. In

a GWAS for NCLB resistance study, Rashid et al. (2020) identified

significant SNPs on chromosome 7 that were associated with a gene

coding for the protein kinase superfamily.

S3_150390803 and S8_174614781 were l inked to

GRMZM2G366795 and GRMZM2G118770, which codes for

WRKY transcription factor 51, and oxidoreductase and

malic enzyme activity, respectively. WRKY transcription factors,

specific to plants, are significant regulators of the expression of

genes involved in defense responses against pathogen attack (Huo

et al., 2021). They also have been associated with regulating maize

antioxidant defense under cadmium (Hong et al., 2017) and salt

stress tolerance (Hu et al., 2021). On the other hand, malic

enzymes (malate oxidoreductases), crucial in the photosynthetic

C4 pathway (Ludwig, 2016; Bovdilova et al., 2019), facilitate the

oxidative decarboxylation of malate into pyruvate, a reaction

pivotal in several metabolic pathways. This study showed the

usefulness of GWAS in revealing genomic regions associated with

NCLB resistance. The identified genomic regions and candidate

genes are crucial, and their validation would aid in comprehending

the genetic and molecular mechanisms underlying NCLB

host resistance.
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Prospects of genomic selection for
northern corn leaf blight resistance in
tropical maize

NCLB is known to carry both major effect (qualitative) and

minor effect (quantitative) genes, which makes it difficult to improve

the resistance only based on selection of few QTLs or marker-

assisted selection (Omondi et al., 2023). However, the observed wide

range of heritability estimates from low to high in multiple

populations (Table 1) coupled with identification of consistent

QTLs across populations suggests that NCLB resistance is

predominantly controlled by additive effects. Several studies on

genetic analyses of NCLB resistance reported the predominance of

additive effects over non-additive effects (Vivek et al., 2010; Sibiya

et al., 2013; Badu-Apraku et al., 2021). These results favor improving

resistance through recurrent selection. Traditional recurrent

selection is time-consuming and resource-intensive, and, on the

other hand, genomic selection that captures all variations from small

to large effects is well for such kind of traits to improve effectively. In

tropical maize, genomic selection has been used for various

economically important traits (Gowda et al., 2015, 2021; Ndlovu

et al., 2022; Kimutai et al., 2023; Ndlovu et al., 2024b). Predictions

within a population for NCLB resistance are moderate to high (0.42

to 0.55), which is comparable to earlier reported prediction

accuracies by Omondi et al. (2023). Having an independent

training population like historical data or related population data

and being able to predict the breeding populations is more desirable

for routine application of genomic selection in breeding. Here, we

tried to predict individual DH populations by combining all DH

populations as a training set. The prediction accuracies are moderate

(r = 0.32 to 0.49) but comparable to the square root of the heritability

estimates, which is equivalent to phenotypic selection efficiency

(Lorenzana and Bernardo, 2009; Kibe et al., 2020a; Omondi et al.,

2023). In the tropics, the opportunity to complete three cycles per

year for genomic selection enables breeders to achieve high selection

gain per year. Even if we are interested in predicting genotype

performance in specific environments, it is important to include

additional information from other environments, which help to

improve the prediction accuracy. The marker by environment effect

did not showmuch improvement in genome prediction compared to

average prediction correlations and their standard deviations

obtained in both CV1 and CV2 scenario (Table 5). This kind of

model performs better in conditions in which the genotype-by-

environment effect is large and marker effects are different in

different environments. Overall, our results suggest that it is useful

to have a common training population to predict NCLB resistance in

multiple linked but distinct maize populations. This also helps the

breeder to improve NCLB resistance and use their resources

optimally in developing multiple stress-tolerant lines and hybrids.
Conclusion

To dissect the genetic basis of NCLB resistance, we used linkage

mapping, JLAM, GWAS, and genomic selection on the IMAS panel
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and biparental-based DH and F3 populations evaluated in multiple

locations in Kenya. Linkage mapping in six biparental populations

identified several minor- and major-effect QTLs with few

overlapping across populations. JLAM identified 37 QTLs

associated with NCLB resistance and many of them are co-

located within the QTL detected in individual populations. Using

337,110 high-quality SNPs, GWAS identified 15 marker–trait

associations. The putative candidate genes identified in the study

are directly or indirectly involved in plant defense responses.

However, their proposed functions require further validation to

confirm the involvement of these genes in NCLB resistance. Several

genomic regions were identified, which were found to be

overlapping across different mapping approaches and with earlier

studies. These genomic regions can serve as a potential target to

improve CLB resistance. Genomic selection is a powerful

methodology in plant breeding; however, its implementation is

challenging because predictive model behavior depends on the

specific conditions in which genome selection is used. Our results

demonstrated that phenotypic selection to improve NCLB

resistance under high disease pressure can be successfully

supported by incorporating genomic selection in the ongoing

breeding programs. Furthermore, significant variations in NCLB

resistance observed across several populations imply that

combining various sources of resistant alleles can be instrumental

in increasing the levels of NCLB resistance in tropical maize.
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