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Introduction:Weeds are a major factor affecting crop yield and quality. Accurate

identification and localization of crops and weeds are essential for achieving

automated weed management in precision agriculture, especially given the

challenges in recognition accuracy and real-time processing in complex field

environments. To address this issue, this paper proposes an efficient crop-weed

segmentation model based on an improved UNet architecture and attention

mechanisms to enhance both recognition accuracy and processing speed.

Methods: The model adopts the encoder-decoder structure of UNet, utilizing

MaxViT (Multi-Axis Vision Transformer) as the encoder to capture both global and

local features within images. Additionally, CBAM (Convolutional Block Attention

Module) is incorporated into the decoder as a multi-scale feature fusion module,

adaptively adjusting feature map weights to enable the model to focus more

accurately on the edges and textures of crops and weeds.

Results and discussion: Experimental results show that the proposed model

achieved 84.28% mIoU and 88.59% mPA on the sugar beet dataset, representing

improvements of 3.08% and 3.15% over the baseline UNet model, respectively,

and outperforming mainstream models such as FCN, PSPNet, SegFormer,

DeepLabv3+, and HRNet. Moreover, the model’s inference time is only 0.0559

seconds, reducing computational overhead while maintaining high accuracy. Its

performance on a sunflower dataset further verifies the model’s generalizability

and robustness. This study, therefore, provides an efficient and accurate solution

for crop-weed segmentation, laying a foundation for future research on

automated crop and weed identification.
KEYWORDS

semantic segmentation, UNET, deep learning, MaxViT, CBAM, attention mechanism,
image processing, multi-scale features
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1 Introduction

With the continuous growth of the global population and

increasing demand for food, enhancing agricultural productivity has

become a core objective in modern agricultural development.

Precision agriculture, as a novel management approach, aims to

achieve precise crop management through technological methods,

maximizing yield and resource use efficiency (Li et al., 2024; Chen

et al., 2024). Among the critical factors affecting crop yield and

quality, weed management is particularly impactful. Traditional

manual weeding is not only time-consuming and labor-intensive

but also poses a risk of damaging crops. Consequently, advancing

intelligent agricultural technology, particularly in automated weed

detection and segmentation, is urgently needed. The use of

agricultural chemicals, such as herbicides and pesticides, is a

common approach to managing weed invasions. Currently, weed

control primarily relies on uniform pesticide spraying, where

herbicides are applied at the same dosage to weeds indiscriminately.

This method fails to distinguish between crops and weeds, resulting in

significant pesticide wastage, soil and water pollution, and negative

impacts on farmland productivity and crop growth. To reduce

pesticide waste and improve pesticide utilization, research on

precision variable-rate pesticide spraying based on weed detection is

essential (Jin et al., 2022; Kamath et al., 2022; Simonyan and

Zisserman, 2014).

In recent years, deep learning-based image segmentation

techniques have been widely applied to crop and weed

segmentation tasks in precision agriculture, emerging as a key

technology for intelligent agriculture. For example, the

introduction of Fully Convolutional Networks (FCNs) in 2015

(Long et al., 2015) marked a new era for semantic segmentation.

This network structure achieved a transition from image-level to

pixel-level classification, laying the foundation for subsequent

semantic segmentation models. Later, Google’s DeepLab series

(Chen L. et al., 2017; Chen L. C. et al., 2017) improved

segmentation accuracy and model efficiency by enlarging the

receptive field and introducing an encoder-decoder structure.

PSPNet (Zhao et al., 2017) proposed a pyramid pooling module

that, built upon the FCN network, integrates contextual features

from various scales, facilitating global context aggregation. In 2019,

Google introduced the DeepLabV3+ model (Chen et al., 2018),

which incorporated an encoder-decoder structure into V3 and used

depthwise separable convolutions to reduce model parameters and

enhance accuracy. However, these conventional semantic

segmentation models exhibit limitations when processing

agricultural images, particularly in dealing with complex

backgrounds and multi-scale targets. These models especially

struggle with accurately segmenting weeds at the boundaries

when crops and weeds overlap, leading to suboptimal

control outcomes.

A hybrid research field combining metaheuristic algorithms

with machine learning methods has emerged recently. This novel

direction leverages the advantages of machine learning and swarm

intelligence, showing exceptional performance across various

applications (Bacanin et al., 2021; Malakar et al., 2020; Zivkovic

et al., 2022; Dobrojevic et al., 2023; Jovanovic et al., 2023; Derrac
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et al., 2011) and promising breakthroughs in tasks such as pattern

recognition and image segmentation. Additionally, self-attention-

based Transformer structures (Lyu et al., 2019), originally successful

in natural language processing, have demonstrated superior

performance when extended to computer vision (Han et al., 2022;

Bai et al., 2022; Deng et al., 2022), opening up new research avenues

in this field. For instance, the SegFormer model (Xie et al., 2021)

combines Transformers with a lightweight multilayer perceptron

decoder, providing stronger long-range feature dependencies and

spatial transformations compared to CNNs. The global context

modeling achieved through self-attention enables the extraction of

more comprehensive image feature vectors, offering a direct and

efficient solution.

UNet (Ronneberger et al., 2015), a classical model in semantic

segmentation, introduced the encoder-decoder structure and

employed skip connections to preserve detail features, showing

remarkable performance in medical image segmentation. Its

capability to capture boundary information and details has

attracted significant attention. However, directly applying UNet to

agricultural image segmentation often yields limited performance.

Recently, improved UNet architectures have been widely adopted

for crop-weed segmentation research. For example, Ma et al. (2019)

proposed a SegNet-based method for rice and broadleaf weed

segmentation, and Brilhador et al. (2019) applied an enhanced

UNet to segment crops and weeds at the pixel level. While these

improvements have enhanced segmentation accuracy to some

extent, there remains significant room for improvement in

boundary information extraction and handling complex

backgrounds. To address these issues, this study proposes an

efficient crop-weed segmentation model based on an improved

UNet with attention mechanisms. Our main innovation lies in

incorporating the MaxViT (Multi-Axis Vision Transformer) (Tu

et al., 2022) and CBAM (Convolutional Block Attention Module)

modules (Woo et al., 2018), enhancing UNet’s feature extraction

capability and segmentation accuracy by integrating multi-scale

features and boundary information. Compared with existing UNet

improvements and mainstream Transformer segmentation models,

our proposed model achieves a better balance between

computational efficiency and segmentation accuracy. The primary

contributions of this paper include:
1. Proposing an improved UNet architecture combined with

MaxViT and CBAM modules, enhancing segmentation

accuracy and computational efficiency.

2. Conducting extensive experiments to validate the superior

performance of the improved model in crop-weed

segmentation tasks.

3. Testing the model across various datasets to demonstrate

its generalization and robustness.

4. Providing new insights and technical support for weed

management in precision agriculture.
Based on the above research background and innovations, the

structure of this paper is organized as follows: Section 2 details the

design and implementation of the crop-weed segmentation model

combining improved UNet and attention mechanisms; Section 3
frontiersin.org
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describes the experimental setup and analyzes the results, including

comparison, ablation, and generalization experiments; Section 4

discusses the advantages, limitations, and future directions of

this research.
2 Materials and methods

2.1 Overall architecture

This study introduces an innovative model that combines a vision

transformer with the traditional UNet network to improve the

precision and robustness of crop-weed segmentation. The UNet

architecture employs a U-shaped encoder-decoder structure, where

the encoder extracts features through successive convolution and

pooling layers, and the decoder reconstructs these features to match

the input image resolution. While UNet’s convolution-based encoder

is highly effective in capturing local features, it falls short in capturing

global context, particularly in complex backgrounds and texture-rich

scenes, which limits its segmentation accuracy. To address these

limitations, we utilize MaxViT as the encoder for UNet. MaxViT is a

high-efficiency, multi-axis vision transformer that combines both

local and global attention mechanisms, enabling it to capture

interactions across local and global features at each stage. Unlike

traditional UNet encoders, MaxViT is more adept at capturing long-

range dependencies and global context, allowing the model to better

focus on subtle crop-weed distinctions and enhancing its adaptability

to varying crop types and complex environments.

As illustrated in Figure 1, the modified model retains the UNet

encoder-decoder framework, utilizing MaxViT to extract deep

feature representations that are transferred to the decoder

through skip connections, ensuring the retention of fine details

and preserving feature resolution. The decoder comprises four

stages, primarily tasked with restoring the image’s resolution. In

the final stage, a CBAM module is applied as a multi-scale feature

fusion mechanism, enhancing the model’s ability to represent

small-scale crop and weed features and focus more precisely on

these regions rather than background areas. This refinement
Frontiers in Plant Science 03
improves the segmentation of crop and weed boundaries

significantly. The uniqueness of our model lies in combining the

encoder-decoder architecture with MaxViT and CBAM attention

mechanisms. This integration not only boosts segmentation

performance but also offers enhanced stability and generalization

across diverse crop types and environmental conditions,

demonstrating the model’s robustness and applicability in

agricultural settings.

2.1.1 MaxViT encoder
The model employs a four-stage encoder to extract multi-stage

features from sugar beet dataset images. Each stage’s resolution is

half that of the previous feature map, with the number of channels

doubled. These feature maps are connected to the decoder via skip

connections. As shown in Figure 2, each stage consists of MaxViT

modules, each containing MBConv, block attention mechanism,

and grid attention mechanism. As shown in Figure 1, the feature

maps generated by MBConv are input to the block attention

module and the grid attention module. In crop and weed

segmentation, MBConv differentiates between crops and weeds by

precisely capturing local features. This structure effectively

improves parameter efficiency and computational speed, making

it suitable for real-time image processing on mobile or edge devices.

The block attention mechanism focuses on feature aggregation

within specific areas, enhancing the expressiveness of local

regions by concentrating on small blocks, which helps the model

to focus on details in small regions of crops and weeds, thereby

distinguishing adjacent but different categories of objects. The grid

attention mechanism operates at a global level, adjusting and

enhancing feature expressions across the entire image, integrating

information from the entire image, optimizing segmentation

boundaries, and improving segmentation accuracy and consistency.

MaxViT uses the MBConv block as the primary convolutional

operator. The MBConv block is formulated as:

XMBCov = X + projðSEðDWConv3�3(Conv1�1(Norm(X)))ÞÞ (1)

where X and XMBConv are the input and output feature maps,

respectively. Norm refers to the batch norm and Conv1�1 is the
FIGURE 1

Overall structure of the improved model.
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convolution operation with a 1� 1 kernel size. DWConv3�3

denotes the depthwise convolution with a 3� 3 kernel size, SE is

the squeeze-excitation (SE) layer and proj is a convolution

operation with a 1� 1 kernel size to reduce the number of channels.

In MaxViT blocks, all the attention operators used relative

attention defined in Equation 2: RelAttention:

RelAtention(Q,K ,V) = softmax
QKTffiffiffi

d
p + B

� �
V (2)

where Q,K ,V ∈ R(H�W)�C are the query, key, and value

matrices, (H �W)� C denotes the dimensions of these matrices,

where H and W are the height and width of the feature map,

respectively,and C is the number of channels. d is the hidden

dimension and B refers to a learned static location-aware matrix.

In the block attention module, the hyperparameter P was defined

initially to divide the input feature map X ∈ RH�W�C into H
P

nonover - lapping blocks of size P � P. The shape of the feature

map is described in Equation 3 below:

(H,W,C) →
H
P
� P,

W
P

� P,C

� �
→

HW
P2 � P, P2,C

� �
(3)

Then, the relative attention on the second dimension was

performed, meaning that the local characteristic of the soybean

field within the block was obtained. The forward of the grid

attention is described in Equation 4 below:

XBlock = XMBConv

+ UnBlockðRelAtention(BlockðLNðXMBCon)ÞÞÞ (4)
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where LN denotes the layer normalization and Block( · ) and

UnBlock() are the block partition and reverse block partition,

respectively. Similarly, the feature map was divided into G lattices

of size H
G � W

G by the hyperparameter G and the shape of the feature

map is described in Equation 5 below:

(H,W ,C) → G� H
G
,G� W

G
,C

� �
→ G2,

HW
G2 ,C

� �
(5)

The grid attention module was globally concerned with soybean

canopy pixels and context information in sparse, uniform lattices

covering the entire 2D space. The calculation process of the grid

attention module was formulated as follows:

XGrid = XBlock + UnGridðRelAttentionðGridðLN(XB l o c k)ÞÞÞ (6)

Where Grid( : ) and UnGrid( : ) denote the grid partition and

reverse grid partition, respectively.

2.1.2 Multi-scale feature fusion module
Crops and weeds typically exhibit complex edge and texture

features, requiring high-resolution detail information for accurate

segmentation. As the soil serves as the background and contains

various textures and color variations, the model must have strong

background suppression capabilities. The traditional U-Net decoder

leverages skip connections to obtain features from the encoder.

However, due to insufficient fusion of features across layers, the

decoding process is often limited to shallow, localized features,

making it challenging to comprehensively incorporate multi-scale

information. This limitation hinders segmentation performance in
FIGURE 3

Working mechanism of CBAM module.
FIGURE 2

Working mechanism of MaxViT module.
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complex scenes. To enhance the model’s expressive capability, the

proposed model’s multi-scale feature fusion module is designed to

integrate both high-level and low-level features from all decoding

stages. Unlike the traditional U-Net decoder, which simply up-

samples layer by layer, the multi-scale feature fusion module

processes features at different scales, improving the model’s ability to

recognize objects of varying sizes and shapes. As shown in Figure 1, in

the multi-scale feature fusion module, the output feature maps from

the four decoder stages are first concatenated. The importance of each

feature for crop and weed segmentation is not always the same. The

CBAM (Convolutional Block Attention Module) introduces an

adaptive feature weighting and selection mechanism into the deep

learning model. It enhances important features and suppresses less

important ones through channel attention and spatial attention

modules. This enables the model to better focus on critical detail

features, enhancing the edge information of crops and weeds while

suppressing the interference from background soil.

The CBAM module consists of two sequential sub-modules: a

channel attention module and a spatial attention module. The

channel attention module adjusts the weights of feature map

channels to better utilize global and local contextual information.

Simultaneously, the spatial attention module enhances the feature

representation at key locations in the image, especially for small

weeds, further improving feature recognition capability. Additionally,

due to its structural design, CBAM can be easily embedded into

various deep learning models, further enhancing their performance

and segmentation result (Zhan et al., 2022). Figure 3 illustrates the

specific working mechanism of CBAM, demonstrating its flexibility

and accuracy in feature processing and segmentation tasks.

Channel Attention Module: This module utilizes global average

pooling Pavg(F) and global max pooling Pmax(F) to extract channel

feature descriptors. It then employs a shared fully connected layer,

denoted as MLP, t to learn inter-channel relationships. The results

are normalized using a sigmoid function s to generate feature

weights for each channel. The expression for this module is:

Mc(F) = s MLP½Pavg(F)� +MLP½Pmax(F)�
� �

= s W1½W0(F
c
avg)� +W1½W0(F

c
max)�

� � (7)

In this formula, Pavg   and Pmax   represent the global average

pooling and max pooling, respectively, over a small range, where

Fc
avg and Fc

max are the average and maximum pooled channel

features. Here, MLP is a simple feedforward neural network with a

hidden layer size of C, and s denotes the sigmoid function.

Additionally, W0 and W1 are learnable weight matrices within MLP

;W0 reduces the channel dimension to capture essential features,

and W1 restores the original channel dimension to produce the

attention weights for each channel (Song et al., 2023).

Spatial Attention Module: This module employs global average

pooling and global max pooling to obtain spatial feature descriptors.

It then learns the relationships between spatial locations using a 1 × 1

convolution. The results are normalized using the Sigmoid function

to obtain weights for each spatial location, thereby weighting the

spatial features (Pu et al., 2022). Its expression is:
Frontiers in Plant Science 05
MS(F) = s f 7�7½Pavg(F);Pmax(F)�
� �

= s f 7�7½(Fs
avg; F

s
max)�

� � (8)

In this formula: Pavg and Pmaxdenote global average pooling and

max pooling, respectively, over spatial dimensions. Here, Fs
avg and

Fs
max are the average and max pooled spatial features, while f (7�7)

represents 7� 7 aconvolution applied to capture broader

spatial relationships.

2.1.3 Loss function
For pixel-level image segmentation tasks, each pixel is treated as

an independent classification problem. This study adopts the cross-

entropy loss function, which is the most commonly used loss

function in semantic segmentation. It compares the predicted

probability distribution of each pixel with the true label

distribution, measuring the accuracy of the prediction by

calculating the difference between them. Specifically, for each

pixel, the cross-entropy loss calculates the Kullback-Leibler

divergence between the predicted probability distribution q and

the true label distribution p. The formula is as follows:

CE(p, q) = −oC
i=1pilog(qi) (9)

where C represents the number of classes, pi is the true label,

and qi is the predicted probability.
2.2 Model evaluation metrics

The performance of the model is evaluated from three aspects:

segmentation accuracy, parameter count, and efficiency.

Segmentation accuracy is primarily assessed using pixel accuracy

(PA), intersection over union (IoU), mean pixel accuracy (mPA),

and mean intersection over union (mIoU). IoU measures the spatial

overlap between the model’s predictions and the ground truth

annotations, while PA represents the proportion of correctly

predicted pixels to the total number of pixels. mIoU and mPA

represent the average IoU and PA over the entire dataset,

respectively, providing a comprehensive evaluation of the model’s

performance. The complexity and efficiency of the model are also

considered, measured by the number of parameters and inference

time (the time it takes the model to make a prediction for a single

sample). The optimal model is selected by balancing segmentation

accuracy, parameter count, and efficiency. The calculation formulas

for these evaluation metrics are as follows:

PA = oK
i=0pii

oK
i=0oK

j=0pij
� 100% (10)

mPA =
1

K + 1o
k
j=0

pii

ok
j=0pij

� 100% (11)

IoU =oK
i=0

pii

oK
j=0pij +oK

j=0pji − pii
� 100% (12)
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mIoU =
1

K + 1o
K
i=0

pii

ok
j=0pij +ok

j=0pji − pii
� 100% (13)

where K indicates the number of different categories in the

dataset, which was 3 in this study. pij denotes the number of pixels

for which target category i was predicted to be category j. pji is the

number of pixels for which target category j was predicted to be

category i.
2.3 Dataset

The dataset used in this study consists of beet and weed images

collected by the University of Bonn in Germany in 2016 (Chebrolu

et al., 2017). The images were taken at a farm in Bonn, Germany,

using a JAI AD-13 camera, covering different growth stages of beet.

Due to the difficulty of pixel-level image annotation, the dataset

contains a limited number of labeled images, with a total of 283

images. Figure 4 shows some examples from the dataset. The images

contain beets and various types of weeds, with red areas indicating

beets, blue areas indicating weeds, and black areas indicating soil.

To effectively train and validate the model, the total samples

were divided into a training dataset and a validation dataset at a

ratio of 8:2. Given the small sample size of the original dataset, data

augmentation methods such as flipping, rotation, scaling, cropping,

and changing brightness and contrast were used to simulate

variations in camera angles and lighting conditions during data

collection, thereby enhancing the model’s generalization and

robustness. These data augmentation techniques expanded the

total sample from 283 images to 509 images, reducing the risk of

overfitting (Lee et al., 2019).
Frontiers in Plant Science 06
3 Results

3.1 Experimental setup and
network parameters

All models used in this study were run with GPU support,

specifically utilizing an NVIDIA GeForce RTX 4090 graphics card.

The models were implemented using the PyTorch deep learning

framework. Considering hardware conditions and training

effectiveness, the number of epochs was set to 200, with a batch

size of 2 and a learning rate of 0.0001. The cross-entropy loss

function was used. During the training process, to enhance the

model’s initial performance and training efficiency, we utilized pre-

trained weights based on transfer learning. The backbone networks

of all models employed weights pre-trained on the PASCAL

VOC2012 dataset. After loading the pre-trained weights, we fine-

tuned the models to meet the specific requirements of our crop-

weed task, thereby accelerating training speed and improving

model performance.

Figure 5 shows the changes in loss values and mIoU over 200

epochs during the training process. Both the training loss and

validation loss decreased rapidly at first, indicating fast learning. As

training progressed, the rate of decrease slowed, indicating that the

model began to stabilize and converge. The dashed lines represent

smoothed trends, reducing noise and highlighting the overall

downward trend, indicating good model performance. The close

alignment of the training and validation losses suggests that the

model generalizes well rather than overfitting. Temporary

oscillations in the validation loss are normal and reflect the

model’s response to different patterns in the validation set. By the
FIGURE 4

Examples of dataset. (A) Original image. (B) Tag graph.
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time the curve reaches 200 epochs, it has reached a balanced state

and completed convergence. The mIoU of the model increased with

the number of iterations, reaching its maximum value around

200 epochs.
3.2 Comparative experiments

To verify the effectiveness of the proposed model, we conducted

a comprehensive comparison with six other mainstream semantic

segmentation models: FCN, PSPNet, SegFormer, DeepLabv3+,

HRNet, and UNet. As shown in Table 1, our model demonstrates

superior segmentation accuracy compared to other models, with

improvements in mIoU of 19.6%, 28.33%, 5.05%, 5%, 8.21%, and

3.08%, respectively, and improvements in mPA of 17.1%, 28.16%,

4.34%, 5.27%, 6.77%, and 3.15%, respectively. Among them, FCN

and PSPNet showed the poorest segmentation performance,

indicating that simple convolutional layer stacking and direct

multi-scale feature fusion are not effective for crop-weed

segmentation. DeepLabv3+ struggled with weed feature extraction

due to the lack of global feature extraction capability of the pure

CNN encoder, leading to limited segmentation performance.
Frontiers in Plant Science 07
HRNet’s segmentation performance was inferior to that of our

proposed model, suggesting that its multi-resolution feature

parallel processing is not effective enough for crop-weed

segmentation. UNet achieved an mIoU of 81.20% and an mPA of

85.44%, outperforming SegFormer. This can be attributed to UNet’s

skip connections, which continuously connect the multi-scale

resolution feature maps of the encoder with the corresponding

feature maps of the decoder, improving the segmentation accuracy

of crops and weeds. Among all models, our proposedmodel achieved

an mIoU of 84.28% and an mPA of 88.59%, due to the use of the

MaxViT encoder based on Transformer and the integration of

CBAM attention mechanism modules in the decoder stage to fuse

multi-scale features, thereby enhancing the segmentation accuracy of

crops and weeds. Compared to UNet, our model has a much smaller

parameter size while maintaining similar segmentation accuracy.

The PSPNet method has the smallest parameter count and the

shortest inference time, but the lowest segmentation accuracy. Our

model reduced inference time by 0.0252s, 0.0129s, 0.0496s, and

0.0276s compared to FCN, SegFormer, HRNet, and UNet,

respectively. In summary, our model exhibits better segmentation

performance, lower computational overhead, and achieves a balance

between segmentation accuracy and inference speed.
FIGURE 5

Model training process curve. (A) Training loss curve. (B) Training Miou change curve.
TABLE 1 Overall comparison results of different methods.

Model mIoU/% mPA/% Params/M Inference time/s

FCN 64.68 71.49 21.835907 0.0811

PSPNet 55.95 60.43 2.375955 0.0343

SegFormer 79.23 84.25 3.714915 0.0688

DeepLabv3+ 79.28 83.32 5.813523 0.0381

HRNet 76.07 81.82 9.636783 0.1055

Unet 81.20 85.44 43.932931 0.0835

Proposed Model 84.28 88.59 22.077451 0.0559
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To visually demonstrate the performance of the proposed

model, we visualized the segmentation results from the validation

set on the sugar beet dataset. As shown in Figure 6, our model

effectively optimizes edge segmentation. The red areas represent

sugar beets, the blue areas represent weeds, the black areas represent

soil, and the yellow boxes indicate areas where accurate

segmentation was not achieved. The results show that the

segmentation results of FCN, PSPNet, and HRNet are relatively

coarse, especially for small targets, focusing more on crops and

insufficiently on weeds, incorrectly identifying some weeds as crops.

SegFormer, DeepLabv3+, and UNet show significant improvements

in both primary and secondary target areas, but their edge

segmentation is not accurate enough. In contrast, our model

effectively addresses the aforementioned shortcomings,

performing well in crop and weed segmentation, accurately

capturing target details and boundaries, achieving more precise,

smooth, and clear edge segmentation, and significantly improving

segmentation performance in complex backgrounds with

fewer errors.
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3.3 Ablation experiments

To evaluate the impact of the MaxViT module and the CBAM

attention mechanism module on the overall performance of the

network, we conducted detailed ablation experiments on the sugar

beet dataset. The experimental results are presented in Table 2. U-Net

serves as the baseline model, utilizing the standard U-Net architecture.

Unet_MaxViT builds upon the baseline model by replacing the U-Net

backbone with the MaxViT module. Unet_CBAM extends the

baseline model by incorporating the CBAM attention mechanism

solely in the decoder section. The Proposed Model enhances the

baseline model by substituting the backbone with MaxViT and adding

the CBAM module in the decoder.

As shown in Table 2, the Unet model achieves IoU (Intersection

over Union) values of 98.64% for soil, 89.47% for crops, and 55.49%

for weeds. In terms of PA (pixel accuracy), the values for soil, crops,

and weeds are 99.59%, 94.95%, and 61.79%, respectively. The mIoU

and mPA are 81.20% and 85.44%, respectively, with a parameter

count of 43.93M and an inference time of 0.0835s. When the
TABLE 2 The impact of different modules on the performance of the model.

Model
IoU/% PA/%

mIoU/% mPA/% Params/M
Inference
time/ssoil crop weed soil crop weed

Unet 98.64 89.47 55.49 99.59 94.95 61.79 81.20 85.44 43.93 0.0835

Unet_MaxViT 98.89 89.45 61.58 99.62 95.14 68.80 83.31 87.85 21.82 0.0444

Unet_CBAM 98.76 89.69 60.63 99.49 95.37 70.27 83.03 88.38 44.49 0.0435

Proposed Model 98.95 90.34 63.56 99.65 95.21 70.93 84.28 88.59 22.08 0.0559
FIGURE 6

Comparison of segmentation effects of sugar beet datasets.
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backbone network is replaced with the MaxViT module, forming the

Unet_MaxViT model, improvements are observed in both IoU and

PA metrics. Specifically, the IoU values for soil, crops, and weeds

increase to 98.89%, 89.45%, and 61.58%, respectively, while the PA

values for soil, crops, and weeds rise to 99.62%, 95.14%, and 68.80%.

Consequently, the mIoU and mPA improve to 83.31% and 87.85%.

And the number of parameters is reduced to 21.82M, and the

inference time is reduced to 0.0444s, showing higher efficiency and

better performance. After incorporating the CBAM module into the

U-Net model, the Unet_CBAM model demonstrated significant

improvements across various metrics. Specifically, the IoU for soil,

crops, and weeds increased to 98.76%, 89.69%, and 60.63%,

respectively, while the PA for soil, crops, and weeds rose to 99.49%,

95.37%, and 70.27%. The mIoU and mPA improved to 83.03% and

88.38%, respectively. Although the parameter count slightly increased

to 44.49M, the inference time decreased to 0.0435s, maintaining a

high level of efficiency.

Finally, the Proposed Model, which incorporates the CBAM

module, shows the best performance across all metrics. Specifically,

the IoU values for soil, crops, and weeds are 98.95%, 90.34%, and

63.56%, respectively, while the PA values for soil, crops, and weeds

are 99.65%, 95.21%, and 70.93%. The mIoU and mPA further

improve to 84.28% and 88.59%. Although the parameter count

slightly increases to 22.08M, the inference time remains efficient at

0.0559s. The results indicate that the introduction of the MaxViT

module and the CBAM attention mechanism significantly enhances

the segmentation performance and efficiency of the network,

verifying the effectiveness and feasibility of the proposed method.
3.4 Generalization experiments

To verify the generalization of the model proposed in this paper,

this paper uses two different datasets: beet dataset and sunflower
Frontiers in Plant Science 09
dataset (Flourish Sapienza Datasets). The sunflower dataset was

collected by a custom agricultural robot moving through sunflower

farms in Italy. The dataset captures images taken a few days before

the end of the chemical treatment period of the sunflower crop,

during the crop emergence stage. It consists of 182 images

annotated with three classes: crop, weed, and soil. In these

images, the green areas indicate sunflowers, the red areas indicate

weeds, and the black areas indicate soil. We evaluated the

performance of the original UNet model and the proposed model

on the sunflower dataset in terms of mIoU, mPA, parameter count,

and inference time.

As shown in Table 3, the proposed model achieved mIoU and

mPA values of 87.15% and 90.71%, respectively, representing

improvements of 3.02% and 1.42% over UNet. This indicates a

significant improvement in overall segmentation accuracy. The

parameter count of the proposed model is 22.0777M, nearly half

of UNet’s 43.9329M, demonstrating higher efficiency in

computational resources and storage requirements. Although the

inference time slightly increased, this trade-off is acceptable given

the substantial performance improvement.

Figure 7 compares the IoU and PA of the Unet model and the

proposed model in each category. It can be seen from the figure that

the proposed model shows higher accuracy in the segmentation of

crops, weeds and soil, especially in the identification of weeds. This

further proves that the proposed model has certain advantages in

crop and weed segmentation.

To visually display the segmentation performance, we

compared the original images, labeled images, and the

segmentation results of the UNet model and the proposed model.

As shown in Figure 8, the proposed model provides more accurate

segmentation of weeds and crops, particularly in areas where weeds

and soil intersect. The proposed model can better distinguish the

actual boundaries of weeds, and improves the accuracy and edge

clarity of weed segmentation.

Experimental results on the sunflower dataset indicate that the

proposed model achieves high segmentation performance, not only

excelling on the beet dataset but also performing well on the

sunflower dataset. Given the distinct differences between beet and

sunflower in plant size, morphology, and growth stages, the model’s

incorporation of the MaxViT encoder and CBAM attention

mechanism enables adaptive focus on multi-scale features,
TABLE 3 The performance of the proposed model on the
sunflower dataset.

Model mIoU/% mPA/% Params/M Inference time/s

Unet 84.13 89.29 43.9329 0.0125

Proposed Model 87.15 90.71 22.0777 0.0558
FIGURE 7

Comparison results for each category.
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demonstrating strong adaptability. Consequently, the model

achieves high segmentation accuracy across different crop types

and maintains stable performance in complex field backgrounds.

However, there is still room for improvement in segmentation

under low-light conditions or in areas with irregular weed shapes.

Overall, these results show that the proposed model exhibits strong

generality and adaptability, making it suitable for image

segmentation tasks across various crops and environments, and

contributing to intelligent, precise agricultural production. Future

research may focus on further optimizing the model structure and

integrating environmental variables such as lighting and humidity

to enhance the model’s adaptability and practical utility across

diverse crop types and complex agricultural settings.
4 Conclusion

This paper proposes an efficient crop-weed segmentation model

based on an improved UNet and attention mechanism. By introducing

MaxViT as the encoder and combining the CBAM attention

mechanism module in the decoder part, the weight of the feature

map is adaptively adjusted to make the model more efficient. Focus on

the edge and texture features of crops and weeds to improve

segmentation accuracy. We have verified its effectiveness through a

large number of experiments. The model has achieved significant

performance improvements on the sugar beet data set, with mIoU

reaching 84.28% and mPA reaching 88.59%, respectively improved by

3.08% compared to the traditional UNetmodel. and 3.15%.Additionally,

compared to other mainstream semantic segmentation models (such as

FCN, PSPNet, SegFormer, DeepLabv3+, and HRNet), the proposed

model demonstrated clear advantages in segmentation accuracy, with an

inference time of only 0.0559 seconds, showcasing its potential for real-

time applications. Further analysis through ablation experiments

highlighted the contribution of the MaxViT module and the CBAM

attention mechanism to the overall network performance. The results

showed that the inclusion of these modules significantly enhanced the

model’s performance across various metrics, particularly in the

segmentation of details and boundaries. Moreover, the proposed

model exhibited excellent performance in generalization experiments,

demonstrating good segmentation accuracy across different datasets,

indicating its good robustness and versatility.
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Although incorporating the MaxViT and CBAM attention

mechanisms has improved segmentation accuracy, it also increases

model complexity and computational demands, which may pose

challenges for resource-limited devices or real-time applications.

Additionally, the relatively small dataset limits the model’s

generalization and robustness across diverse application scenarios.

Moving forward, we aim to further optimize the model by simplifying

its structure and reducing computational load while maintaining

segmentation accuracy. This will make the model more lightweight

and suitable for resource-constrained devices and more efficient real-

time applications. Expanding the dataset’s scale and diversity is also

planned, including data from various crop and weed types and testing

in more complex field environments. and we plan to apply the model

to real-world field platforms for testing to verify its performance in

practical scenarios, taking into account challenges such as the

platform’s movement speed, real-time processing, and other

application-specific factors. Future research could incorporate

environmental variables (e.g., climate conditions, soil moisture) and

additional sensor data to enhance the model’s adaptability to diverse

agricultural scenarios. By integrating more sensory data and

environmental variables, we aim to further improve the model’s

versatility and practical utility in intelligent agriculture.
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