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Enhanced tomato detection in
greenhouse environments: a
lightweight model based on
S-YOLO with high accuracy
Xiangyang Sun*

College of Information Science and Engineering, Shandong Agricultural University, Tai’an, China
Introduction: Efficiently and precisely identifying tomatoes amidst intricate

surroundings is essential for advancing the automation of tomato harvesting.

Current object detection algorithms are slow and have low recognition accuracy

for occluded and small tomatoes.

Methods: To enhance the detection of tomatoes in complex environments, a

lightweight greenhouse tomato object detection model named S-YOLO is

proposed, based on YOLOv8s with several key improvements: (1) A lightweight

GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed,

significantly reducing model parameters to optimize the model neck for lightweight

model acquisition. (2) An improved version of the a-SimSPPF structure was

designed, effectively enhancing the detection accuracy of tomatoes. (3) An

enhanced version of the b-SIoU algorithm was proposed to optimize the training

process and improve the accuracy of overlapping tomato recognition. (4) The SE

attention module is integrated to enable the model to capture more representative

greenhouse tomato features, thereby enhancing detection accuracy.

Results: Experimental results demonstrate that the enhanced S-YOLO model

significantly improves detection accuracy, achieves lightweight model design,

and exhibits fast detection speeds. Experimental results demonstrate that the S-

YOLO model significantly enhances detection accuracy, achieving 96.60%

accuracy, 92.46% average precision (mAP), and a detection speed of 74.05

FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over

the original model. With model parameters at only 9.11M, the S-YOLO

outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m,

YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of

occluded and small tomatoes.

Discussion: The lightweight characteristics of the S-YOLO model make it

suitable for the visual system of tomato-picking robots, providing technical

support for robot target recognition and harvesting operations in facility

environments based on mobile edge computing.
KEYWORDS

greenhouse tomatoes, YOLOv8, object detection, deep learning, high accuracy, fast
detection, lightweight, computer vision
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1 Introduction

Tomatoes are one of the most extensively cultivated vegetables

in Chinese agriculture. China not only leads globally in tomato

production but also serves as a major exporter (Huo, 2016). Manual

tomato harvesting requires a significant amount of labor and time.

Mechanized harvesting not only cuts down on labor expenses but

also boosts efficiency in the harvesting process (Li et al., 2021).

Harvesting robots initially utilize computer vision systems for fruit

detection, followed by guiding mechanical arms based on the

detection results for harvesting operations. Therefore, fruit

detection stands as a pivotal aspect throughout the entire

harvesting process, with its accuracy and speed directly

influencing the efficiency of harvesting robots. However, tomato

fruits exhibit diverse growth postures, overlap with each other, and

are heavily obscured by leaves, branches, and stems, presenting

certain challenges for robot recognition. Rapid and precise

identification of tomato fruits in complex greenhouse

environments is a pressing issue in the development of tomato

harvesting robots (Liu, 2017). Moreover, deploying models with

excessively high complexity proves challenging in practical

scenarios. Thus, enhancing fruit detection accuracy, speed, and

lightweight improvements are crucial for bolstering the

performance of harvesting robots.

Traditional methods for tomato fruit recognition in greenhouse

environments rely on extracting and analyzing information based

on color and shape features. Feng et al. (2015) extracted the color

features of red ripe tomato fruits using the 2R-G-B color difference

model and identified red ripe tomato fruits using dynamic threshold

segmentation. However, this method is time-consuming and does

not consider factors such as leaf occlusion in complex environments

during tomato fruit recognition. Ma et al. (2016)) introduced a

technique for recognizing objects by combining saliency detection

with the circular random Hough transform, achieving a correct

recognition rate of 77.6% for immature tomato fruits. Despite the

achievements in feature design in the above studies, they suffer from

slow recognition speed, low detection accuracy, and poor

robustness of traditional machine vision algorithms in complex

scenes, making them difficult to meet practical requirements.

Although these studies have achieved certain success in feature

design and tomato recognition to some extent, their slow

recognition speed, low detection accuracy, and poor robustness in

complex scenes cannot meet practical requirements. Additionally,

they often depend on static color characteristics to recognize desired

fruits. This reliance can make them less adaptable to variations in

lighting and color discrepancies, resulting in reduced effectiveness

when dealing with unstable color conditions. In summary,

traditional methods for tomato fruit recognition fail to meet the

requirements of high accuracy and real-time performance.

Additionally, most of the above studies have not considered the

influencing factors in complex greenhouse environments, lack

robustness to diverse feature changes, and therefore, are unable to

meet practical requirements.
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In recent times, deep convolutional neural networks have

emerged as a pivotal domain within deep learning research,

attracting considerable interest. Their increasing utilization in

greenhouse settings for tomato recognition has offered novel

perspectives on tomato fruit identification. The detection methods

of deep convolutional neural networks can be divided into two

types: single-stage and two-stage detection. Region-based methods,

the first type, create a set of candidate boxes and subsequently

classify the targets contained within these boxes. Representative

models include RCNN (Girshick et al., 2014), Fast-RCNN

(Girshick, 2015), and Faster-RCNN (Ren et al., 2016). Although

these methods exhibit excellent recognition accuracy with relatively

low error rates and miss rates, their complex processing leads to

slow detection speeds, making it difficult to meet real-time detection

requirements. The second type is regression-based methods, where

targets are directly classified while being located. The YOLO series

networks (Redmon et al., 2016; Redmon and Farhadi, 2018; Ge

et al., 2021) are typical representatives of this category. These

methods have the advantage of fast recognition speed, meeting

real-time requirements, and achieving accuracy levels close to the

first type of methods. Given their strong real-time performance, the

second type of object detection methods is beneficial for improving

the efficiency of harvesting robots and monitoring devices, suitable

for real-time target detection in complex environments. (Su et al.

(2022)) used a lightweight YOLOv3 model in greenhouse

environments, combined with lightweight networks, successfully

applied it to classify tomato ripeness, achieving a 97.5% mAP.

However, the model still had a large volume, making deployment

challenging. Liu et al. (2020) proposed an improved tomato

detection model, YOLO-Tomato, based on YOLOv3, achieving

good performance. Nevertheless, the YOLOv3 model they used

was large. Appe et al. (2023)) introduced a tomato detection model

based on YOLOv5, which incorporates the CBAM attention

mechanism into the network architecture, effectively detecting

overlapping small tomatoes with an average precision of 88.1%.

However, this study also faced issues with low detection accuracy.

Tian et al. (2024)) proposed the TF-YOLOv5s model for detecting

tomato flowers and fruits in natural environments, replacing the

complete intersection over union (CIoU) loss with the efficient

intersection over union (EIoU) loss and incorporating the SE

attention module. Bai et al. (2024)) improved the YOLOv7 model

to accurately identify strawberry seedling flowers and fruits by

addressing issues such as small size, similar colors, and

overlapping occlusion. They also applied the GSConv structure to

optimize the model neck, achieving a 92.1% mAP with a frame rate

of 45 frames per second, meeting real-time detection requirements.

Li (Li et al., 2024) et al. proposed a lightweight improved YOLOv5s

model for detecting dragon fruit in illuminated environments

during both day and night. Meng (Meng et al., 2023) et al.

proposed a spatiotemporal convolutional neural network model

that utilizes a shifted window Transformer to integrate a regional

convolutional neural network model for detecting pineapple fruits.

Chen (Chen et al., 2024) et al. proposed a set of visual algorithms for
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https://doi.org/10.3389/fpls.2024.1451018
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun 10.3389/fpls.2024.1451018
motion target estimation, real-time self-localization, and dynamic

harvesting. They also established a reliable coordination mechanism

for continuous movement and picking actions. This study, inspired

by previous research, addresses issues such as large model volumes,

low accuracy, and difficulty in deploying actual robot vision

systems. It proposes a lightweight and accurate S-YOLO model,

considering tomato recognition in complex environments.

Establishing a high-performance, lightweight target detection

model suitable for tomato harvesting robot vision systems

remains a significant challenge.

In actual greenhouse environments, tomato fruits often overlap

and are heavily occluded, varying in sparsity and size, posing

challenges for rapid and accurate tomato fruit recognition.

Therefore, this paper introduces a novel S-YOLO model to

address the aforementioned issues. This model can rapidly and

accurately identify greenhouse tomato fruits while maintaining

lightweight characteristics, addressing some of the limitations

faced by current research and providing new technical support

for the visual systems of tomato harvesting robots. This study

focuses on the target detection problem for automated tomato

harvesting in greenhouse environments. The core of the research

is to develop and optimize a lightweight tomato target detection

model, S-YOLO, aimed at enhancing the accuracy of tomato

detection in complex environments. The model features high

precision, a lightweight design, and rapid detection capabilities.

However, the cost-effectiveness of model deployment and its

practical impact on agricultural production require further

discussion and analysis in future research to provide more robust

support for agricultural production. This paper makes the following

key contributions:
Fron
1. Introducing a S-YOLO model suitable for complex

environment tomato detection, characterized by high

accuracy, lightweight design, and fast speed, suitable for

the visual systems of tomato harvesting robots.

2. Constructing a lightweight GSConv_SlimNeck structure

suitable for YOLOv8s to optimize the model’s neck

section, thereby improving model performance.

3. Creating an enhanced version of the a-SimSPPPF structure

to optimize the network architecture, effectively improving

detection accuracy with better performance.

4. Proposing a new enhanced version of the b-SIoU loss

function, optimizing the training process, and improving

tomato recognition accuracy.

5. Integrating the SE attention module into the network

structure for more effective tomato feature extraction.
The paper’s structure is as follows: Section 2 covers dataset

acquisition and processing. Section 3 outlines the principles of the

proposed S-YOLO network structure and details improvement

methods for each module. In Section 4, experimental setups are

explained, and the performance of each enhanced module is

thoroughly analyzed, evaluating and comparing results with other

mainstream models. Finally, Sections 5 and 6 discuss and

summarize the paper’s findings.
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2 Experimental data and
processing methods

2.1 Datasets

The dataset utilized in this research was originally obtained from

the Kaggle platform, which provides resources for developers and

data scientists to participate in machine learning competitions, host

databases, and write and share code. The tomato dataset used in this

study consists of images collected by the authors from the glass

greenhouse at the National Engineering Research Center for Facility

Agriculture in Chongming Base (Li et al., 2019). All images were

captured in real agricultural environments, not under laboratory

conditions, thus exhibiting complex backgrounds and varying

brightness. The dataset comprises a total of 895 image samples.

Example images from the tomato dataset in complex environments

are shown in Figure 1, which mainly include large tomato targets,

small tomato targets, occluded tomatoes, and clustered tomatoes.
2.2 Data preprocessing

For deep learning tasks, dataset annotation is crucial. In the case

of complex greenhouse tomato images, variations in lighting

conditions due to different weather and angles result in significant

color differences in the collected tomato fruit images. Additionally,

the diverse growth postures and severe overlapping and occlusion of

greenhouse tomato fruits make it challenging to extract shape

features. In this study, the LabelImg tool was used for manual

annotation of tomato images, and the annotation data for each

image was stored in the form of Extensible Markup Language files,

following the VOC format (Everingham et al., 2010). To meet the

training requirements of the detection model, the images were resized

to a uniform size of 640×640 pixels and converted to RGB three-

channel images. Since the YOLOv8 network incorporates online data

augmentation during the training process, including techniques such

as Mosaic and Mixup augmentation, and given that the dataset is not

particularly small, additional offline data augmentation is generally

unnecessary to save training time. Therefore, this study did not

perform additional offline data augmentation.

To facilitate subsequent model training, 80% of the original 895

tomato images were allocated to the training set, 10% to the

validation set, and 10% to the test set. The specific distribution is

shown in Table 1. Finally, these datasets were utilized for training

the network models, followed by additional Mixup and Mosaic

data augmentation.
3 Methods

3.1 Proposed S-YOLO object
detection model

Figure 2 illustrates the architecture of YOLOv8 (Reis et al.,

2023). The neck and backbone parts of YOLOv8 may have drawn
frontiersin.org
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inspiration from the ELAN module in YOLOv7 (Wang et al., 2023).

It utilizes the C2f structure to replace the C3 structure in YOLOv5

while adjusting the number of channels for various scale models.

This meticulous adjustment of the model structure significantly

enhances its performance. The head part adopts the current

mainstream decoupled head structure, separating the classification

and detection heads. It also transitions from Anchor-Based to

Anchor-Free. Although the YOLOv8s model shows significant

improvements, it still involves substantial computational

complexity. Moreover, accurately detecting tomato fruits in

complex environments remains a huge challenge.

This study introduces a novel lightweight network, termed S-

YOLO, which is built upon the enhancements made to the YOLOv8s

architecture. This entails a meticulous optimization of the model

architecture to strike a delicate balance between model complexity

and performance metrics. This also involves optimizing the

architecture while maximizing the model’s capability to accurately
Frontiers in Plant Science 04
identify objects in real-time scenarios. To achieve this, four key

strategies are employed. Firstly, we utilize the GSConv_SlimNeck

structure to optimize the model’s neck section, effectively reducing

the parameter count while ensuring performance remains intact.

Secondly, we replace the original SPPF module with the newly

proposed a-SimSPPF module, enhancing the model’s capabilities.

Thirdly, a novel loss function, b-SIoU, is introduced to refine the

training process and enhance overall model performance. Lastly, the

integration of the SE attention module into the YOLOv8s’ neck

network facilitates better focus on crucial features, thereby further

improving the accuracy of tomato fruit target identification. Figure 3

illustrates the architecture of the S-YOLO model proposed in

this study.
3.2 The GSConv_SlimNeck design
for YOLOv8s

GSConv (Li et al., 2022) is a novel lightweight convolutional

operation designed to reduce model complexity while maintaining

accuracy. The structure of GSConv is shown in Figure 4. The

computational cost of GSConv is approximately 60% to 70% of that

of standard convolution (SC), while its contribution to model

learning ability is comparable to SC. By leveraging GSConv, we

can effectively utilize the advantages of Depthwise Separable

Convolution (DSC) while mitigating its drawbacks on the model.
TABLE 1 Tomato images.

Dataset Number

training 724

validation 81

test 90

total 895
FIGURE 1

Tomato datasets. (A) Big tomatoes, (B) Small tomatoes, (C) Occlusion, (D) Clusters of tomatoes.
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FIGURE 3

The proposed S-YOLO algorithm model. The red dashed line represents the added improvement module.
FIGURE 2

YOLOv8 algorithm model.
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SlimNeck is a design paradigm aimed at achieving higher cost-

effectiveness for detectors. The core idea of SlimNeck is to use

GSConv in the Neck part of the detector while maintaining a

standard Backbone, which maximally reduces the impact of DSC

drawbacks on the model while maintaining high accuracy.

SlimNeck also introduces other modules, such as GSbottleneck

and VoVGSCSP, to further improve model performance.

The original Neck structure of YOLOv8s is not sufficiently

lightweight, so this paper proposes a lightweight structure,

GSConv_SlimNeck, suitable for the YOLOv8s model. The

construction process is as follows: Firstly, the conventional Conv

structure in the Neck component is substituted with the GSConv

structure. Subsequently, the terminal C2f structure within the Neck is

substituted with the VoVGSCSP structure. With these two

improvements, we successfully construct a lightweight

GSConv_SlimNeck structure suitable for YOLOv8s, making the model

more lightweight while maintaining higher detection performance.
3.3 The improved a-SimSPPF structure

SimSPPF is an improved spatial pyramid pooling method

proposed in YOLOv6 (Li et al., 2022), which is an upgraded

version of SPPF. SPPF (Spatial Pyramid Pooling Function) is a

technique used for feature map pooling, commonly employed in

Convolutional Neural Networks (CNNs), to pool features at

different scales, thereby better capturing spatial information in

images. It solves the multi-scale problem by extracting features

using pooling kernels of different sizes at different scales. The

fundamental concept behind SPPF involves parallel processing of

the input through multiple MaxPool layers of varying sizes,

followed by fusion to enhance the detector’s performance. In

YOLOv5, SPPF is used to achieve feature-level fusion of local and

global features. SimSPPF is an improved version of SPPF.

Compared to SPPF, SimSPPF can improve the performance of

the detector without increasing computational cost. SimSPPF uses

ReLU activation function, while SPPF uses SiLU activation

function. Structurally, SimSPPF maintains the original parallel

structure of SPPF but with higher computational efficiency.

The SimSPPF structure was enhanced in this study by

substituting the Conv structure with the more lightweight
Frontiers in Plant Science 06
GSConv structure, resulting in an improved version termed a-
SimSPPF. Compared to both the SPPF structure and SimSPPF, a-
SimSPPF boasts higher detection accuracy with fewer parameters.
3.4 The enhanced b-SIoU algorithm

YOLOv8 by default utilizes the CIoU (Qiu et al., 2022) loss

function, which introduces additional calculations for the distance

between center points and diagonal distances. Therefore, compared

to traditional IoU, the computational complexity increases,

potentially adding some computational cost. CIoU’s computation

method is relatively complex, requiring more processing and

calculation of bounding box coordinates. Traditional methods like

CIoU, DIoU (Zheng et al., 2020), etc., match IoU, center point

distance, aspect ratio, etc., between real and predicted boxes but do

not consider the mismatched orientation between them. This

inadequacy results in slow convergence and lower efficiency,

ultimately leading to poorer models.

Gevorgyan (2022) proposed the SIoU loss function, which

incorporates angle considerations and scale sensitivity,

introducing a more complex bounding box regression method to

address the limitations of previous loss functions. By integrating

these aspects, better training speed and prediction accuracy can be

achieved. The aim of the SIoU is to reduce the gap between

predicted and actual bounding boxes, accounting for variations in

shape and angle. The SIoU schematic is shown in Figure 5.

The process of angle loss calculation is as follows:

AngleLoss = 1 − 2 ∗ sin2(arcsin (
ch
d
) −

p
4
) (1)

DistanceLoss = 2 − e−g px − e−g py (2)

px = (
cw
Cw

)2 (3)

py = (
ch
Ch

)2 (4)

g = 2 − AngleLoss (5)
FIGURE 4

The structure of the GSConv module.
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In this equation, “cw” represents the disparity in width between

the centers of the two bounding boxes, and “Ch” represents the

height of the minimum bounding rectangle of the ground truth

bounding box, while “Cw” represents the width of the minimum

bounding rectangle of the predicted bounding box. The calculation

process for shape loss is as follows:

ShapeLoss = (1 − e−Ww )q + (1 − e−Wh )q (6)

Ww =
w − wgtj j

max(w,wgt)
(7)

Wh =
h − hgtj j

max (h, hgt)
(8)

In this equation, “w”, “h”, “wgt”, and “hgt” respectively represent

the width and height of the predicted bounding box and the true

bounding box. q controls the emphasis on shape loss. To avoid

overly focusing on shape loss and thus reducing the movement of

the predicted bounding box, the authors used a genetic algorithm to

compute a value close to 4. The calculation process for IoU loss is as

follows:

IoU =
A ∩ B
A ∪ B

(9)

Where A∩B represents the intersection of the predicted

bounding box and the ground truth bounding box, and A∪B
represents the union of the predicted bounding box and the

ground truth bounding box. The SIoU can be expressed using the

following formula:

SIoULoss = 1 − IoU +
DistanceLoss + ShapeLoss

2
(10)

He et al. (2022) proposed the a-IoU method, which enhances

bounding box regression by incorporating a power transformation

into the conventional IoU loss function. Inspired by this, to bolster

the robustness of SIoU towards bounding boxes and attain higher

accuracy in the regression of overlapping bounding boxes, this

study enhances SIoU by introducing a power of 1.5 to each of its

terms. We refer to this enhanced version as b-SIoU, and its
Frontiers in Plant Science 07
effectiveness will be demonstrated through experiments in Section

4.3.5. The computation formula is shown as follows:

b − SIoULoss = 1 − IoU1:5 + (
DistanceLoss + ShapeLoss

2
)1:5 (11)
3.5 SE attention module

Attention mechanisms facilitate models in comprehensively

grasping the structure and attributes of input data, thus

advancing the precision and efficiency of object detection.

Attention mechanisms empower the model to discern the

significance of diverse local details in the image, allowing it to

concentrate more effectively on crucial features and thereby

enhance the accuracy of tomato fruit detection.

The SE (Squeeze-and-Excitation) attention mechanism (Hu

et al., 2018) enhances model performance by modeling the

correlation between different channels. Channel-wise attention

assigns different weights to different channels, focusing on

channels that are crucial for recognizing specific objects. The SE

module captures channel relationships through Squeeze and

Excitation operations. In the Squeeze phase, it condenses the

output feature map from the convolutional layer into a feature

vector via global average pooling. This vector captures

comprehensive statistical data from the entire feature map.

During the Excitation phase, the SE module employs a fully

connected layer and a nonlinear activation function to determine

the significance of each channel by learning their respective weights.

By incorporating Squeeze and Excitation operations, the model

autonomously learns the weight and significance of individual

channels, enhancing the network’s expressive power and

performance. By automatically learning the weight and

significance of individual channels, the network can prioritize

crucial feature channels, enhancing overall model performance.

After comparing different attention mechanisms, this study

selected the SE attention module with the highest accuracy and

incorporated it into the model’s neck. The SE attention structure is

shown in Figure 6.
FIGURE 5

The SIoU loss function (A) and the IoU loss function (B).
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4 Experimental design and
results analysis

4.1 Experimental environment and
parameter setting

The experiments were conducted using PyTorch as the deep

learning framework. Table 2 provides a detailed description of the

experimental setup. To optimize model training, cosine annealing

was employed to update the learning rate and network weight

parameters. The entire process comprised 300 iterations. The

momentum factor was set at 0.937 to effectively smooth gradient

updates, facilitating faster convergence and stabilizing the training

process. The weight decay was set at 0.0005 to help limit the model’s

complexity, prevent overfitting on the training data, and enhance

the model’s generalization ability to new data. The initial learning

rate was set at 0.01 to quickly reduce the loss function during the

initial training phase while avoiding excessively large steps that

could lead to an unstable training process. The SGD optimizer was

employed, which is suitable for large deep learning models. Using

the SGD optimizer simplifies the computation process, and

combined with the momentum factor, effectively speeds up

convergence. During the first 50 iterations, the training of the

backbone network was frozen, with a batch size of 8. Freezing the

backbone network’s training leverages the general features extracted

by the pretrained model. This approach helps to quickly train the

model with fewer computational resources and prevents disruption

of the existing feature extraction capabilities. Setting the batch size

to 8 improves training parallelism and efficiency within the limits of

GPU memory. In the subsequent 250 iterations, the backbone

network was unfrozen for training, and the batch size was

adjusted to 4. Unfreezing the backbone network in the later

training stage allows fine-tuning of the entire model to better

adapt to the specific task’s data distribution. Adjusting the batch

size to 4 helps maintain training stability and efficiency as the model

complexity increases. Freezing the training is also a concept in

transfer learning, as the features extracted by the neural network

backbone are general. Freezing the backbone during training can

accelerate the training process and prevent the weights from

being disrupted.
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4.2 Evaluation indicators

This research selected mean Average Precision (mAP), Average

Precision (AP), precision, recall, F1 score, GFLOPs, model

parameters, and frames per second (FPS) as performance metrics

for evaluating the deep-learning model. The evaluation metrics

were calculated using the formulas below.

Precision =
TP

TP + FN
� 100% (12)

Recall =
TP

TP + FP
� 100% (13)

F1 =
2� Precision� Recall
Precision + Recall

� 100% (14)

AP =
Z 1

0
P(R)dR (15)

mAP = o
n
i=1APi
n

(16)

FPS = 1=T (17)

Where TP represents the number of images where tomato fruit

targets were correctly detected by the model, FP represents the

number of images where non-tomato fruit targets were incorrectly

detected by the model, and FN represents the number of images

where tomato fruit targets were missed by the model. Precision
TABLE 2 Hardware and software environment.

Configuration Item Value

CPU Intel i9-12900H

GPU NVIDIA GeForce RTX 3060

CUDA 12.0

Memory 32GB

Operating system Windows11×64

Deep learning frame PyTorch
FIGURE 6

The structure of the SE attention.
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indicates the precision rate, while Recall represents the recall rate.

F1-score serves as a means to strike a balance between precision and

recall. Precision and recall values are utilized to construct the

precision-recall curve (PR curve), with the area under this curve

denoted as AP (Average Precision). The mAP refers to the average

AP. T denotes the detection time for a single image. FPS represents

the number of images detected per second. The model parameters

were calculated considering the input and output channel counts

along with the convolutional kernel sizes, aiding in estimating the

model’s size. GFLOPs are used to measure model complexity.
4.3 Results and analysis

4.3.1 Training and validation of the S-
YOLO algorithm

Figure 7A displays the training loss progression of the S-YOLO

algorithm. During the initial training phase, the model exhibits

relatively high learning efficiency, as indicated by the rapid decline

in the training loss curve, suggesting that the model is quickly

learning new features. As training progresses, the rate of decrease in

the loss curve gradually slows down, implying that the model is

gradually stabilizing and approaching convergence. Throughout

this process, both the training and validation set losses fluctuate

but eventually stabilize, indicating that the model has reached the

expected stable state.

In Figure 7B, the fluctuation of the mean Average Precision

(mAP) throughout each training epoch is depicted. It can be

observed that mAP rapidly increases at the beginning of training,

corresponding to the rapid decline in the training loss curve. As

training continues, the change in mAP stabilizes, indicating a

continuous improvement in the model’s accuracy. At the 150th

training epoch, mAP reaches its peak, indicating that the model is

very close to its optimal performance at this point. These two figures

together depict the training process of the model, from rapid

learning to eventual convergence, demonstrating the effectiveness

and stability of the S-YOLO model.
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4.3.2 Ablation experiments
We conducted ablation experiments on the tomato dataset to

evaluate the performance of GSConv_SlimNeck, a-SimSPPF, b-
SIoU, and SE components integrated into the model. Based on

YOLOv8s, the subsequent models progressively integrated the

improved modules. Model1 optimized the model’s neck structure

using the GSConv_SlimNeck architecture. Model2 replaced the

original SPPF structure with the enhanced version of a-SimSPPF

based on Model1. Model3 introduced the proposed b-SIoU loss

function on top of Model2. Ultimately, the SE attention module was

embedded within the network’s neck in Model3, leading to the

formulation of the S-YOLO model.

As shown in Table 3, based on YOLOv8s, Model1 achieved

improvements in several metrics by introducing the

GSConv_SlimNeck structure. Precision, mAP@0.5, and FPS increased

by 0.86%, 0.86%, and 2.81FPS, respectively, while model complexity

and parameters decreased by 3.35G and 1.78M. The addition of the a-
SimSPPF module further improved model accuracy and mAP@0.5,

while reducing computational overhead. However, this improvement

also slightly decreased detection speed by 0.33FPS. After adding b-SIoU
to Model2, the detection rate increased by 0.45FPS compared to

Model2 and exceeded YOLOv8s and Model1, compensating for the

shortcomings of a-SimSPPF. This indicates a noticeable improvement

in model performance with the enhanced b-SIoU loss function. The

introduction of the SE attention module further improved precision,

mAP@0.5, and FPS by 1.92%, 0.48%, and 0.56FPS, respectively,

compared to Model3, despite a slight increase of 0.04M in model

parameters. This suggests the effectiveness of the attention mechanism

in extracting features relevant to tomato detection. Figure 8 shows the

experimental curves and bar charts for different models.

In summary, the lightweight S-YOLO model surpasses the

original YOLOv8s model significantly. Not only does it achieve

model lightweighting, but it also maximizes the enhancement in

detection accuracy. The model exhibits improvements across

various metrics: precision, mAP@0.5, and FPS see increases of

5.25%, 2.1%, and 3.49FPS, respectively. Furthermore, the model

complexity (measured in GFLOPs) and parameters are reduced by
FIGURE 7

The training loss curve variation (A) and mAP training variation (B).
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3.6G and 2.06M, respectively, showcasing its efficiency and

effectiveness in practical applications.

4.3.3 Comparison of different
lightweight modules

In constructing the lightweight structure GSConv_SlimNeck, both

GSConv and GhostConv (Han et al., 2020) modules were compared

and analyzed to validate their effectiveness. The experimental results in

Table 4 show that both GSConv and GhostConv modules contribute

equally to model lightweighting, resulting in a reduction of model

complexity and parameters by 3.35G and 1.78M, respectively.

However, utilizing the GSConv module to build the

GSConv_SlimNeck structure exhibits superior model performance

compared to using the GhostConv module. Although there is a

slight decrease in recall, precision, and F1 score experience

significant improvements. Specifically, compared to using

GhostConv, using GSConv increases precision by 0.84%, mAP by

0.12%. Overall, the GSConv_SlimNeck structure built using

GSConv demonstrates superior performance.

4.3.4 Comparison of SPPF, SimSPPF, and
a-SimSPPF

To verify the efficacy of the proposed a-SimSPPF structure, this

study conducted a comparative analysis involving SPPF, SimSPPF,

and a-SimSPPF. These three modules were placed at the same

position in the model and trained accordingly. Table 5 presents the

experimental results. From various metrics, it is evident that the

performance of SimSPPF is significantly lower than that of the SPPF

module. However, following the enhancement from SimSPPF to a-
SimSPPF, the model’s performance saw significant improvement. In

comparison to the SPPF module, precision increased by 0.65% and

mAP@0.5 increased by 0.48%. Additionally, the model complexity

and parameters were reduced by 0.25G and 0.32M, respectively.
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Although using the a-SimSPPF structure resulted in a slight

decrease of 0.33FPS in detection speed compared to using the SPPF

structure, the accuracy and mAP@0.5 were significantly improved.

Moreover, the model complexity was lower, and the model

parameters were reduced, aligning with the research goal of this

study. a-SimSPPF demonstrated superior performance on the

dataset used in this study, with higher accuracy and lighter

model, making it more suitable for tomato fruit detection and

deployment in tomato harvesting robot visual systems.

4.3.5 Comparison of different IoU loss functions
This study delved deeper into the influence of integrating the b-

SIoU algorithm on the model’s performance, with a primary focus

on comparing CIoU, DIoU, SIoU, and the b-SIoU algorithm. As

shown in Table 6, compared to CIoU, DIoU achieved higher

precision but slightly decreased mAP@0.5, while increasing the

inference speed by 0.25FPS. SIoU resulted in varying degrees of

decrease in precision, mAP@0.5, and FPS. However, the proposed

b-SIoU algorithm demonstrated improvements across all metrics.

Among all these algorithms, Model3 stood out in multiple key

metrics, particularly in precision, mAP, and processing speed.

Compared to CIoU, DIoU, and SIoU, precision increased by 1.82%,

1.25%, and 2.16%, respectively, while mAP@0.5 increased by 0.28%,

0.69%, and 1.15%, respectively. Detection speed also increased by

0.45FPS, 0.2FPS, and 2.22FPS, respectively. These improvements

significantly enhance model performance, making it suitable for

handling overlapping and densely packed tomato objects, as well as

deployment in tomato harvesting robot visual systems. Figure 9

illustrates the experimental curves for different loss functions.

In addition, this study explored the optimal loss function for the

dataset by examining different exponent values for individual terms

in SIoU. As shown in Table 7, varying the exponent values for

individual terms in SIoU had no impact on the model’s complexity.
FIGURE 8

Experimental curves for different models.
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When the exponent value for individual terms in SIoU was set to

1.5, precision reached 94.68%, mAP@0.5 reached 91.98%, and the

detection rate reached 73.49FPS. When each exponent in

the SIoU function is set to 1.5, the model demonstrates its

optimal performance.

4.3.6 Comparison of different attention modules
To delve deeper into the influence of the SE attention module

and its placement within the model architecture, this study explored

inserting various attention mechanisms, including ECA (Wang

et al., 2020), CBAM (Woo et al., 2018), CA (Hou et al., 2021),

SimAM (Yang et al., 2021), GAM (Liu et al., 2021), Shuffle (Zhang

and Yang, 2021), and EMA (Ouyang et al., 2023), at the same

position. Additionally, three SE attention modules were inserted
T
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into the backbone network after the third, fourth, and fifth

Conv structures.

As shown in Table 8, adding any attention mechanism led to an

improvement in accuracy. However, except for the SE attention

module, which increased mAP@0.5, the other attention modules

resulted in varying degrees of decrease in mAP@0.5. This suggests

that the SE attentionmodule is most suitable for incorporation into this

model structure. The decrease in mAP@0.5 when adding other

attention mechanisms may be due to model overfitting or neglect of

certain features of tomato fruits. The SE attention module significantly

improved model performance, with accuracy and mAP@0.5 increasing

by 1.92% and 0.48%, respectively, compared to Model3. Moreover, the

detection rate increased by 0.56FPS. Compared to Model3, adding the

GAM attention module not only increased the model complexity by
TABLE 5 Experimental results of SPPF, SimSPPF, and a-SimSPPF.

Model Precision Recall F1-Score mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

Model1+SPPF
Model1+ SimSPPF

Model1+a-
SimSPPF (Model2)

92.21 81.51 0.87 91.22 25.47 9.39 73.37

91.35 81.72 0.86 91.14 25.47 9.39 72.77

92.86 81.08 0.87 91.70 25.22 9.07 73.04
Bold values represent the best experimental results compared to other models.
ABLE 6 Comparison of different loss functions.

Model Precision mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

Model2 + CIoU 92.86 91.70 25.22 9.07 73.04

Model2 + DIoU 93.43 91.29 25.22 9.07 73.29

Model2 + SIoU 92.52 90.83 25.22 9.07 71.27

Model2 + b-SIoU(Model3) 94.68 91.98 25.22 9.07 73.49
Bold values represent the best experimental results compared to other models.
TABLE 3 Ablation experiments on the proposed S-YOLO algorithm.

Model
GSConv_
SlimNeck

a-
SimSPPF

b-SIoU SE Precision mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

YOLOv8s
Model1

√ 91.35
92.21

90.36
91.22

28.82
25.47

11.17
9.39

70.56
73.37

Model2 √ √ 92.86 91.70 25.22 9.07 73.04

Model3 √ √ √ 94.68 91.98 25.22 9.07 73.49

S-YOLO √ √ √ √ 96.60 92.46 25.22 9.11 74.05
Bold values represent the best experimental results compared to other models.
TABLE 4 Experimental results for the lightweight modules.

Model Precision Recall F1-Score mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

YOLOv8s 91.35 81.72 0.86 90.36 28.82 11.17 70.56

YOLOv8s +
GhostConv_SlimNeck

YOLOv8s
+ GSConv_SlimNeck

91.37
92.21

81.94
81.51

0.86
0.87

91.10
91.22

25.47
25.47

9.39
9.39

72.86
73.37
Bold values represent the best experimental results compared to other models.
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15.74G and the model parameter quantity by 8.6M but also decreased

mAP@0.5 and the detection rate by 1.36% and 21.51FPS, respectively,

severely reducing model performance. Although the EMA attention

module achieved 97.31% accuracy, both mAP@0.5 and the detection

rate were significantly lower than those with the SE attention

mechanism. In general, the SE attention module exhibited the most

impressive performance, leading to the most substantial enhancement

in the S-YOLO model’s performance.

As demonstrated in Table 9, incorporating the SE attention module

into the backbone network resulted in a decline in model evaluation

metrics. In comparison to models lacking attention mechanisms,

integrating the SE attention module into the backbone network led to

reductions of 0.14% and 2.15% in accuracy and mAP@0.5, respectively.

However, when employing the SE attentionmodule at themodel’s neck,

the accuracy and mAP@0.5 increased by 2.06% and 2.63%, respectively,

compared to inserting it into the backbone network. The performance

decrease resulting from inserting themodule into the backbone network

may be attributed to the compression of spatial and channel dimensions

of the feature maps caused by introducing attention mechanisms in the

backbone network. Attention mechanisms typically selectively
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emphasize certain features, which may lead to the neglect of other

features, resulting in the loss of semantic information. This loss of

information could weaken the model’s feature extraction ability. After

inserting SE into the backbone network, the model’s detection speed

decreased by 0.06 FPS compared toModel3, and the decrease was more

significant when compared to inserting it into the neck network,

reaching 0.62 FPS. Figure 10 displays the experimental curves and bar

charts for different attention modules.

4.3.7 Comparative analysis of various object-
detection models’ performance

To further substantiate the model’s effectiveness, this study

conducted an extensive comparison between the S-YOLO model

and other prominent convolutional neural network object detection

models, including the two-stage object detection model Faster

RCNN, as well as the single-stage object detection algorithms

CenterNet (Duan et al., 2019), YOLOv3 (Tian et al., 2019),

YOLOv4 (Bochkovskiy et al., 2020), YOLOv5m (Yang et al.,

2023), YOLOv7, YOLOv7x, YOLOv8m, and YOLOv8s. The

experimental results are presented in Table 10.
FIGURE 9

Experimental curves for different loss functions.
TABLE 7 Experimental results for different exponential powers of SIoU.

Model Exponent mAP@0.5 GFLOPs (G) Parameters (M) FPS

Model2+SIoU

0.5 91.89 25.22 9.07 71.37

1.0 90.83 25.22 9.07 71.27

1.5 91.98 25.22 9.07 73.49

2.0 91.23 25.22 9.07 72.03

2.5 91.29 25.22 9.07 71.66

3.0 90.97 25.22 9.07 72.62
Bold values represent the best experimental results compared to other models.
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Faster RCNN is a typical two-stage object detection algorithm,

but its model size is large, with model complexity and parameters

much higher than other single-stage object detection algorithms. Its

detection speed is only 10.57 FPS, which is only 14.27% of S-

YOLO’s. The model complexity is as high as 370.21G, about 15

times that of S-YOLO, and the model parameters are as high as

137.10M, about 14 times that of S-YOLO. S-YOLO’s accuracy,

mAP@0.5, and FPS are 45.18%, 14.04%, and 63.48FPS higher than
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Faster RCNN, respectively. Overall, the performance of the S-

YOLO model far exceeds that of Faster RCNN.

In comparison to other models, S-YOLO outperforms other

models across all metrics. The model accuracy, mAP@0.5, and

detection speed are 96.60%, 92.46%, and 74.05FPS, respectively, with

model complexity and parameters of only 25.22G and 9.11M.

Compared to CenterNet, the S-YOLO model shows advantages in

mAP@0.5, model complexity, model parameters, and FPS, withmAP@
TABLE 8 Comparison of different attention models’ performance.

Model Precision mAP@0.5 GFLOPs (G) Parameters (M) FPS

Model3 94.68 91.98 25.22 9.07 73.49

Model3 + ECA 96.10 90.94 25.22 9.07 69.30

Model3 + CBAM 95.56 91.91 25.22 9.16 69.06

Model3 + CA 95.05 90.71 25.22 9.13 73.33

Model3 + SimAM 96.01 90.83 25.22 9.07 73.62

Model3 + GAM 95.03 90.62 40.96 17.67 51.98

Model3 + Shuffle 96.67 87.17 25.22 9.07 71.47

Model3 + EMA 97.31 88.17 25.22 9.07 73.19

Model3 + SE(S-YOLO) 96.60 92.46 25.22 9.11 74.05
Bold values represent the best experimental results compared to other models.
TABLE 9 Experimental results on the effects of inserting attention modules at different positions.

Model
Embedding
position

Precision GFLOPs (G)
Parameters

(M)
mAP@0.5 FPS

Model3 \ 94.68 25.22 9.07 91.98 73.49

Model3 + SE Backbone 94.54 25.22 9.07 89.83 73.43

Model3 + SE
(S-YOLO)

Neck 96.60 25.22 9.07 92.46 74.05
Bold values represent the best experimental results compared to other models.
FIGURE 10

Experimental curves for different attention mechanisms.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1451018
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun 10.3389/fpls.2024.1451018
0.5 7.32% higher, FPS 4.28FPS higher, and model complexity and

parameters only 35.91% and 27.88% of CenterNet, respectively.

YOLOv3 and YOLOv5m have similar model complexities and

detection speeds, but their overall performance is much lower than

S-YOLO. YOLOv4 has the lowest accuracy and mAP@0.5 among all

models. Due to the higher model complexity of YOLOv7, YOLOv7x,

and YOLOv8m, they also have a certain impact on detection speed,

which is 45.66FPS, 56.11FPS, and 36.48FPS lower than S-YOLO,
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respectively, indicating that the lightweight improvements of S-

YOLO have a certain effect on improving detection speed.

Compared to the YOLOv8s model, the S-YOLO model has higher

accuracy by 5.25%, mAP@0.5 by 2.1%, and FPS by 3.49FPS, with

model complexity and parameters reduced by 3.6G and 2.06M,

respectively, indicating that the improved S-YOLO model has

improved in all indicators, and the model performance has been

significantly improved. The following Figure 8 provides a more
TABLE 10 Comparison of different mainstream object detection models.

Model Precision mAP@0.5 GFLOPs (G) Parameters (M) FPS

Faster-RCNN
CenterNet

51.42
95.88

78.42
85.14

370.21
70.22

137.10
32.67

10.57
69.77

YOLOv3 87.62 86.55 66.17 61.95 46.42

YOLOv4 66.96 72.63 60.53 64.36 36.93

YOLOv5m 88.30 86.69 51.62 21.38 44.84

YOLOv7 87.20 89.61 106.47 37.62 28.39

YOLOv7x 91.56 88.84 190.58 71.34 17.94

YOLOv8m 93.19 91.69 79.32 25.90 37.57

YOLOv8s 91.35 90.36 28.82 11.17 70.56

S-YOLO 96.60 92.46 25.22 9.11 74.05
Bold values represent the best experimental results compared to other models.
FIGURE 11

Scatter plots of the experiments for different models. (A) FPS-Parameters, (B) FPS-GFLOPs, (C) Precision-FPS, (D) mAP@0.5-FPS.
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intuitive illustration of the unique advantages of S-YOLO compared to

other models, achieving the optimal balance between model detection

speed, lightweight, and accuracy. Figure 11 illustrates that the S-YOLO

model excels over other models in various aspects.

In summary, the S-YOLO model performs significantly better

than current mainstream object detection models, with high

accuracy while being lightweight, providing technical references

for the deployment of tomato harvesting robot vision systems.
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4.3.8 Model visualization results
The detection performance of CenterNet, YOLOv4, YOLOv5m,

YOLOv7, YOLOv7x, YOLOv8s, and S-YOLO models is illustrated

in Figure 12. For the YOLOv4 model, there are numerous detection

errors, incorrectly identifying tomato leaves and other objects as

tomato fruits. The YOLOv5m model exhibits poor detection

performance for occluded tomatoes, resulting in missed

detections and overall poor recognition. YOLOv7x also struggles
FIGURE 12

Visual detection comparison results of different models. (A) CenterNet, (B) YOLOv4, (C) YOLOv5m, (D) YOLOv7, (E) YOLOv7x, (F) YOLOv8s,
(G) S-YOLO.
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with accurately detecting occluded tomatoes. The overall detection

accuracy of CenterNet, YOLOv7, and YOLOv8s is lower than that

of the S-YOLO model, with S-YOLO achieving higher accuracy

overall. In summary, the S-YOLO model not only achieves

lightweight design but also significantly outperforms other models

in tomato fruit detection.
5 Discussion

This study investigates an improved lightweight S-YOLOmodel

designed for accurately detecting tomato fruits in greenhouse

environments, including occluded and small target tomatoes. It

provides a technical reference for the visual system of tomato

harvesting robots, addressing issues such as low detection

efficiency and accuracy, thus holding considerable practical value.

Previous research has shown limitations in terms of accuracy,

lightweight design, or detection speed. In this work, a lightweight

GSConv_SlimNeck structure is constructed to optimize the model’s

neck region. To enhance detection accuracy, the a-SimSPPF

structure and b-SIoU loss function are proposed. Additionally,

the incorporation of the SE attention module enhances the

accuracy of the model. By implementing these enhancements, the

proposed S-YOLO model significantly outperforms other object

detection models, achieving substantially improved accuracy in

tomato detection while maintaining lightweight characteristics.

Ultimately, the S-YOLO model achieves 96.60% accuracy, 92.46%

mAP@0.5, with a parameter count of only 9.11M and a detection

speed of 74.05FPS, demonstrating excellent detection performance.

While this study has made progress in tomato detection in

greenhouse environments, there are still limitations to address. For

instance, the proposed model may face significant limitations in

detection speed when running on low-cost devices. Considering the

cost limitations of harvesting robot hardware and the pressing need

for real-time detection, future studies should prioritize further size

reduction of the model to expedite its processing speed. This will

ensure real-time tomato detection and enhance its suitability for

integration into the visual systems of tomato harvesting robots.
6 Conclusions

This study introduces a novel model named S-YOLO,

characterized by its lightweight design and exceptional accuracy.

It effectively addresses the low accuracy in detecting occluded and

small tomatoes, providing technical guidance for the visual systems

of tomato harvesting robots. Through experimental research and

result analysis, the main contributions can be summarized

as follows:
Fron
1. Lightweight Design: A GSConv_SlimNeck structure suitable

for YOLOv8s is constructed to optimize the model’s neck

region, achieving model lightweightness.

2. Accuracy Improvement: The substitution of the SPPF

module with the upgraded a-SimSPPF structure and the

replacement of the CIoU loss function with the enhanced b-
tiers in Plant Science 16
SIoU loss function contributed to the improved accuracy of

the model’s detection capabilities.

3. Effective Feature Extraction: Additional SE attention module is

introduced to focus on crucial information, further enhancing

feature extraction for occluded and small target tomatoes.
Compared to traditional object detection algorithms, S-YOLO

demonstrates robustness, lightweight design, and outstanding

detection performance, providing technical support for efficiently

identifying tomato fruits in tomato harvesting robots. In the future,

more tomato fruit images captured in greenhouse environments

will be collected, and the model will be further improved in a more

lightweight manner to provide stronger technical support for the

visual systems of tomato robots.
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