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The detection of apple leaf diseases plays a crucial role in ensuring crop health

and yield. However, due to variations in lighting and shadow, as well as the

complex relationships between perceptual fields and target scales, current

detection methods face significant challenges. To address these issues, we

propose a new model called YOLO-Leaf. Specifically, YOLO-Leaf utilizes

Dynamic Snake Convolution (DSConv) for robust feature extraction, employs

BiFormer to enhance the attention mechanism, and introduces IF-CIoU to

improve bounding box regression for increased detection accuracy and

generalization ability. Experimental results on the FGVC7 and FGVC8 datasets

show that YOLO-Leaf significantly outperforms existing models in terms of

detection accuracy, achieving mAP50 scores of 93.88% and 95.69%,

respectively. This advancement not only validates the effectiveness of our

approach but also highlights its practical application potential in agricultural

disease detection.
KEYWORDS

apple leaf disease, dynamic snake convolution, BiFormer, IF-CIOU, YOLOv8
1 Introduction

In the process of apple growth, the impact of diseases on yield and quality is crucial

(Yao and Liu, 2024). The presence of diseases not only reduces the yield of apples but also

diminishes their quality, leading to economic losses (Li J. et al., 2022; Wang et al., 2022).

Therefore, accurate diagnosis of diseases and timely implementation of effective control

measures are essential for the development of the apple industry. Leaf diseases are more

common on apple trees, and their characteristics are usually more pronounced, making

them easier to observe and diagnose. This makes leaf diseases one of the key concerns for

fruit growers. By promptly identifying and taking corresponding measures, fruit growers

can effectively control the spread of diseases and minimize losses (Bonkra et al., 2021; Chau

et al., 2022). The continuous development of target detection technology provides new
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opportunities for the diagnosis and monitoring of apple diseases.

With advanced image processing algorithms and deep learning

models, automatic detection and identification of apple diseases can

be achieved, thereby improving the accuracy and efficiency of

diagnosis. However, in practical applications, there are still

challenges in achieving accurate detection of multi-scale diseases

by detection networks in unconstrained environments. Therefore,

further research and improvement of detection algorithms are

needed to enhance their applicability and accuracy, thereby better

serving the development of the apple cultivation industry (Ren and

Wang, 2024).

In the field of disease diagnosis, traditional methods primarily

rely on the expertise of agricultural experts and disease atlases.

While these methods may offer effective diagnostic results to some

extent, they exhibit strong subjectivity in terms of reliability and

timeliness. Such subjectivity may lead to inconsistent diagnostic

outcomes, thus impacting the effective control and prevention of

diseases (Zhong and Zhao, 2020). To address these issues,

researchers have turned to using deep learning visual processing

techniques. Among these, SSD (Single Shot Multibox Detector)

(Sun et al., 2021) is a commonly used target detection algorithm.

This algorithm achieves efficient detection speed and accuracy by

performing target detection within a single neural network

structure. In apple disease detection, SSD can rapidly and

accurately identify disease areas on leaves, providing precise

localization information. Another commonly used target

detect ion algorithm is Faster R-CNN (Faster Region

Convolutional Neural Network) (Gong and Zhang, 2023).

Compared to SSD, Faster R-CNN (Gao et al., 2020)employs a

two-stage detection strategy, which better captures target features

and achieves more accurate detection results. In apple disease

detection, Faster R-CNN can effectively distinguish between

different types of diseases and provide more detailed diagnostic

results. Additionally, YOLOv5 (Li J. et al., 2022)is an emerging

target detection algorithm with simple and efficient characteristics.

This algorithm achieves target detection through a single neural

network structure, enabling rapid and accurate identification of

diseases on apple leaves and providing timely and effective

prevention and control advice for farmers. Furthermore, the

YOLOv8 algorithm has also demonstrated good performance in

apple disease detection (Wang et al., 2022). By introducing deeper

network structures and more effective feature extraction methods,

these algorithms further enhance their performance in apple disease

detection tasks, providing more reliable diagnostic tools for farmers.

Although these target detection algorithms have achieved

significant effectiveness in apple disease detection, there are some

limitations. Firstly, detection networks are typically trained using

sample data collected under constrained conditions, which may lack

unconstrained environmental factors such as changes in lighting

and shadows, specular reflection of leaves, and interference from

similar targets in the background. The lack of consideration for

these factors may affect the generalization ability and robustness of

detection networks in real-world scenarios. Secondly, due to the

complex relationship between the perceptual field and target scale,

detection networks designed to detect multi-scale targets may
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exhibit differences in their ability to detect large and small lesions

(Sun et al., 2021; Yu et al., 2022). This difference may lead to

instability in performance when identifying lesions of different

scales, thus affecting the accuracy and reliability of detection.

Additionally, in the YOLO series, traditional Intersection over

Union (IoU) methods may not accurately identify the position

parameters of lesions. Due to the limitations of IoU methods in

terms of bounding box size and position, they may fail to accurately

identify the position information of lesions in cases where the lesion

boundaries are blurred or partially occluded (Hameed Al-bayati

and Üstündağ, 2020; Gargade and Khandekar, 2021). Therefore,

further research and improvement of identification algorithms are

needed to enhance the accuracy and reliability of lesion

position parameters.

Drawing from the identified shortcomings, we introduce

YOLO-Leaf, a novel network architecture, as an extensive

upgrade to YOLOv8. Specifically, dynamic snake convolution is

integrated, enabling adaptive adjustment of convolution kernel

shape and size during network training to enhance adaptability

across diverse target scales and shapes, thereby bolstering detection

performance amidst complex environmental conditions.

Additionally, a BiFormer structure is introduced to address multi-

scale target detection challenges, featuring two parallel attention

modules for processing feature maps of varying scales, facilitating

simultaneous attention and fusion of multi-scale feature

information, thus enhancing detection accuracy. Furthermore, the

IF-CIoU method is proposed for precise localization of diseased leaf

positions, leveraging a scale factor, r, to optimize auxiliary bounding

box generation, ensuring improved alignment with leaf disease

target dimensions, thereby augmenting detection performance

and expediting model convergence. This holistic integration of

methodological refinements equips YOLO-Leaf with superior

performance and utility in apple disease detection.

Our contributions are as follows:
• The contribution of this paper lies in the introduction of a

novel network architecture named YOLO-Leaf, which

integrates dynamic snake convolution and BiFormer

attention structure techniques.

• The IF-CIoU loss is proposed for accurately identifying the

position information of diseased leaves. By optimizing the

generation of auxiliary bounding boxes, this method

enhances detection performance and accelerates model

convergence speed, providing more reliable technical

support for apple disease detection.

• On the dataset of leaf diseases, our method surpasses

current approaches.
The structure of this paper is as follows. In the second section,

we introduce related work on plant leaf diseases. In the third

section, we provide a detailed explanation of the technical

implementation of YOLO-Leaf. In the fourth section, we present

comparative analyses, wherein the ablation studies substantiate the

efficacy of YOLO-Leaf. Finally, in the conclusion section, we discuss

the limitations and future prospects.
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2 Related work

2.1 Machine learning in plant disease
diagnosis research

In the field of plant disease diagnosis, the application of

machine learning methods is increasingly becoming a key

technology for improving diagnostic accuracy and efficiency

(Chen et al., 2023; Wang J. et al., 2024). Common machine

learning models such as Support Vector Machines (SVM), k-

Means Clustering (KMC), Decision Trees (DT), and Random

Forests (RF) have been proven effective in simulating human

diagnostic processes, and handling and analyzing complex

physiological and pathological data of plants (Li et al., 2021;

Zhang et al., 2022). For instance, Kapil Prashar and Rajneesh

Talwar developed a method for identifying cotton leaf diseases

using visual features. They combined MLP with overlapping

pooling, as well as k-Nearest Neighbors (kNN) and Support

Vector Machines (SVM) for precise classification, achieving an

accuracy rate exceeding 96% (Prashar et al., 2019). In another

study, Wang and others employed Principal Component Analysis

(PCA) to effectively reduce the dimensionality of plant disease data

and further enhanced the recognition accuracy for grape and wheat

diseases by integrating Back Propagation Neural Networks (BPNN)

(Xing et al., 2023). This method enabled them to more effectively

identify and classify plant diseases, showcasing the practical value of

PCA and BPNN in this domain. Liaghat and his team applied

machine learning techniques to detect fatal fungal diseases

(Ganoderma) in oil palm plantations, achieving up to 97%

accuracy in recognition. This research not only improved the

accuracy of disease diagnosis but also demonstrated the potential

of machine learning techniques in managing specific types of

diseases. Furthermore, studies involving the use of hyperspectral

imaging technology combined with SVM also show promise

(Omrani et al., 2014). Thomas and colleagues used hyperspectral

imaging data combined with SVM for a detailed analysis, effectively

detecting late blight in potatoes. This technique not only improved

the efficiency of image data usage but also provided a new method

for early diagnosis of potato diseases. These studies further confirm

that combining traditional machine learning models with advanced

imaging technologies can significantly enhance the diagnostic

accuracy and operational efficiency for plant disease diagnosis,

providing new perspectives and tools for future agricultural

disease management.
2.2 Deep learning in plant disease
diagnosis research

In the field of plant disease diagnosis, the application of deep

learning has become a key technology for enhancing detection

accuracy and efficiency (Zhang X. et al., 2023; Li et al., 2024).

Particularly, Convolutional Neural Networks (CNN), as one of the

mainstream models in deep learning, are widely used for processing

and analyzing complex plant data. Well-known CNN architectures

such as AlexNet, VGG, GoogLeNet, and ResNet have proven their
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effectiveness in visual recognition tasks (Eunice et al., 2022; Fan

et al., 2022). Despite this, the detection of apple leaf diseases in

practical applications still faces challenges. Typically, the image

datasets used for classification are collected in controlled

environments, lacking the complexity of real-world settings,

which limits the generalization ability of the models. Additionally,

conventional image classification techniques often fail to provide

detailed information about the type and precise location of diseases

(Zhang et al., 2024). To address these issues, researchers have

developed real-time detection models suitable for mobile devices.

For example, Mobile End AppleNet-SSD (Gong and Zhang, 2023),

based on the SSD framework, can automatically detect multiple

types of apple leaf diseases in real-time. Similarly, the lightweight

Mobile Ghost Attention-YOLO model has been developed for real-

time monitoring (Sun et al., 2021). Furthermore, a novel real-time

detection framework combining MASK R-CNN (Li H. et al., 2022)

and transfer learning has been introduced to enhance the accuracy

and practicality of detection. In broader plant disease classification,

an attention mechanism module based on CoAtNet (Gao et al.,

2023) has been used, achieving an accuracy rate of up to 95.95% in

grape leaf disease classification. Other studies, such as the use of a

dual-channel residual network with attention mechanisms, have

also demonstrated efficient recognition capabilities in strawberry

disease detection (Tian et al., 2021; Pal and Kumar, 2023). In other

related research, the introduction of multi-level feature fusion in an

improved EfficientNet network, as well as the incorporation of

Effective Channel Attention (ECA) and dilated convolution in

MobilenetV3, have significantly enhanced the performance and

speed of disease recognition (Ajra et al., 2020; Wani et al., 2022).
3 Method

3.1 Overview of our network

In this study, we developed a novel deep learning architecture

named YOLO-Leaf, which enhances the existing YOLOv8 model

for the detection of apple leaf diseases. YOLO-Leaf utilizes a series

of innovative technologies to significantly improve the accuracy and

efficiency of disease detection in apple leaves. First, we incorporated

the Dynamic Snake Convolution developed by Qi et al (Qi et al.,

2023), a convolutional mechanism well-suited for handling the

twisted and elongated structures found in nature, such as leaves.

By adaptively adjusting the shape of the convolutional kernels, it

can more precisely capture the detailed changes in critical areas

such as leaf veins and edges, thereby enhancing the model’s ability

to recognize characteristics of leaf diseases. Secondly, we employed

the dual-routing attention structure, Biformer, developed by Zhu

et al (Zhu et al., 2023)., which processes feature information from

different levels through two parallel attention modules, effectively

enhancing the model’s sensitivity and discriminative power at

various stages of leaf disease. Additionally, we introduced a new

loss function, IF-CIoU, which optimizes the generation of auxiliary

bounding boxes through a scaling factor r, taking into account the

adaptability of the target frame size to improve the match between

the bounding box and the actual leaf targets. These improvements
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not only enhance the accuracy of object detection but also accelerate

the convergence speed of the model, enabling it to respond more

quickly and handle the task of detecting leaf diseases. YOLO-Leaf

integrates multiple advanced technologies to form an efficient and

precise apple leaf disease detection system that provides reliable

support in complex agricultural environments, assisting agricultural

producers in timely and accurate diagnosis and management of leaf

diseases. The overall network diagram proposed in this paper is

shown in Figure 1.
3.2 YOLOv8 network structure

YOLOv8, developed by Ultralytics, represents the latest

advancement in the YOLO series of object detection models.

(Jocher et al., 2023). This version not only inherits the advantages

of its predecessors but also introduces multiple innovations aimed at

further enhancing the accuracy, flexibility, and speed of detection.

The model is particularly suitable for performing complex real-time

visual recognition tasks. In terms ofmodel architecture, the backbone

of YOLOv8 adopts the novel C2f structure, an optimization over the

C3 structure used in YOLOv5. The C2f structure utilizes a dual-filter

cross-convolution method to enhance feature extraction efficiency

and precision. At the end of the backbone, YOLOv8 integrates the

SPPF (Spatial Pyramid Pooling Fast) module, which extracts multi-

level features through various scales of pooling windows,

significantly improving the model’s ability to recognize targets of

varying sizes. SPPF optimizes themodel’s adaptability and stability to

changes in target sizes by integrating features from different regions.

In the neck part of the model, YOLOv8 uses Concatenation

technology to merge feature maps from different scales, a strategy
Frontiers in Plant Science 04
that helps restore spatial resolution that may be lost during

downsampling while maintaining important semantic information

crucial for precise localization and classification of targets. In the

head part, YOLOv8 transitions from a traditional anchor-based

design to an anchor-free design, simplifying the model structure,

reducing preset parameters, and enhancing the model ’s

generalization capability and flexibility in new scenarios. The

overall network structure of YOLOv8 is illustrated in Figure 2.
3.3 Dynamic snake convolution

In this study, we introduce an innovative convolutional

structure named Dynamic Snake Convolution (Qi et al., 2023),

proposed by Qi et al., as shown in Figure 3. This structure is

specifically designed to identify and process complex forms in

nature, particularly suited for capturing slender and winding

objects such as blood vessels and plant vines. Dynamic Snake

Convolution dynamically adjusts the shape and size of the

convolution kernels, allowing it to more flexibly adapt to the local

features of the target shapes, thereby enhancing the model’s

accuracy and efficiency in capturing these complex structures.

In this section, we will discuss in detail how to extract local

features of leaf-like structures using Dynamic Snake Convolution.

Dynamic Snake Convolution adjusts traditional 2D convolution

kernels to better adapt to the curves and twisted forms of the target

objects. First, we define a standard 2D convolution kernel K, with

the center coordinate given by Ki =  (xi, yi). The formula is

summarized as follows:

K = (x − 1, y − 1), (x − 1, y),…, (x + 1, y + 1)f g (1)
FIGURE 1

Overall network architecture diagram of YOLO-Leaf.
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In DSConv, the standard convolution kernel is extended along

both axes. For a kernel of size 9, we define the positions within the

kernel K on the x-axis as follows:

Ki±c = (xi±c , yi±c) (2)

where c indicates the horizontal distances from the center,

ranging from {0,1,2,3,4}. The arrangement of each grid in K

follows an iterative process, beginning at the central grid Ki. The

position of each subsequent grid relative to Ki is determined by a

sequential increment:

D = d jd ∈ ½−1, 1�f g (3)
Frontiers in Plant Science 05
This process necessitates a cumulative adjustment S to maintain

alignment and consistency across the kernel. The resultant

modification on the x-axis is presented as follows:

Ki±c =
(xi+c, yi+c) = (xi + c, yi +oi+c

i=0Dyi),

(xi−c, yi−c) = (xi − c, yi +oi−c
i=0Dyi)

(
(4)

The final change on the y-axis is:

Kj±c =
(xi+c, yi+c) = (xj +oi+c

j=iDxj, yj + c),

(xi−c, yi−c) = (xj +oi
j=i−cDxj, yj − c)

8<
: (5)
FIGURE 3

Dynamic snake convolution network architecture diagram (Qi et al., 2023).
FIGURE 2

YOLOv8 network architecture diagram (Jocher et al., 2023).
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3.4 IF-CIoU

To address the issues of poor generalization and slow

convergence speed exhibited by existing IOU loss in various

detection tasks, this study proposes an innovative method called

IF-CIoU (Inner-Focused Complete Intersection over Union). This

method improves upon the concept of Inner IOU by using a scaling

factor r to adjust the size of the auxiliary box. The expression for

Inner IOU is as follows:

xgt1inner = xgtc −
(xgt2 − xgt1 )

2 *r (6)

xgt2inner = xgtc +
(xgt2 − xgt1 )

2 *r (7)

ygt1inner = ygtc +
(ygt1 − ygt2 )

2 *r (8)

ygt2inner = ygtc −
(ygt1 − ygt2 )

2 *r (9)

xp1inner = xpc −
(xp2 − xp1)

2 *r (10)

xp2inner = xpc +
(xp2 − xp1)

2 *r (11)

yp1inner = ypc +
(yp1 − yp2)

2 *r (12)

yp2inner = ypc −
(yp1 − yp2)

2 *r (13)

We found that for high IOU samples, the absolute IOU gradient

of smaller auxiliary boxes exceeded that of the ground truth IOU

gradient (Zhang H. et al., 2023). Based on this observation, using

smaller auxiliary boxes for IOU loss calculation can enhance the

regression of high IOU samples. Conversely, using larger auxiliary

boxes for IOU loss calculation can accelerate the regression process

of low IOU samples. The definition is as follows:

winner
inner = max  min (xgt2inner , x

p
2inner

) −max (xgt1inner , x
p
1inner

)
� �

, 0
� �

(14)

hinnerinner = max  min (ygt1inner , y
p
1inner

) −max (ygt2inner , y
p
2inner

)
� �

, 0
� �

(15)

interinnerinner = winner
inner � hinnerinner (16)

gtunioninnerinner = (xgt2inner − xgt1inner )� (ygt1inner − ygt2inner ) (17)

punioninnerinner = (xp2inner − xp1inner )� (yp1inner − yp2inner ) (18)

unioninnerinner = gtunioninnerinner + punioninnerinner − interinnerinner (19)
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Given the high proportion of high IoU samples in the leaf

disease dataset, this study specifically set r=0.6. With this

configuration, the absolute IoU gradient values for smaller

auxiliary boxes exceed those at the ground truth boxes. This

particular setup helps accelerate the model’s convergence speed,

ultimately enhancing its detection performance.

This study introduces IF-CIoU, an innovative loss function for

object detection designed to enhance the generalization

performance of detection algorithms across various tasks. By

incorporating an additional parameter r, it allows flexible

adjustment within a specified range. The inclusion of a weighted

combination in the traditional IOU calculation enables the loss

function to be adaptively adjusted. This approach allows the model

to better accommodate the scale and shape of objects. The

expression of IF-CIoU is as follows:

LIF−CIoU = 1 − (IOUinner)
r +

r2

C2

� �r

+ r2vð Þr (20)

r =
v

1 − IOU + v
(21)

v =
4
p2 arctan 

wg

hg
− arctan 

wp

hp

 !2

(22)

Where v represents the difference in aspect ratio between the

predicted and the actual bounding boxes, calculated by scaling the

square of the difference between the arctan values of their width-to-

height ratios, ensuring that v ranges from 0 (indicating no

difference) to 1 (indicating the maximum difference). This

influences the loss adjustment in the IF-CIoU formula by

reflecting shape disparities. r serves as a weighting factor within

the IF-CIoU loss, adjusting how the aspect ratio differences affect

the overall loss calculation, allowing the model to prioritize or

reduce the importance of shape alignment depending on the specific

detection needs. r denotes the Euclidean distance between the

centers of the predicted and actual bounding boxes, which is

crucial for evaluating the positional accuracy of the detection. C

acts as a normalization factor, often the diagonal length of the

bounding box, used to normalize r, ensuring fair comparisons

across different object sizes and avoiding biases towards larger or

smaller objects. Together, these variables integrate to finely tune the

IF-CIoU loss function for improved object detection performance.
3.5 BiFormer structure

In this study, we introduce a dual-layer routing attention

mechanism based on the vision Transformer model, BiFormer

(Zhu et al . , 2023). This mechanism enhances feature

representation through the interaction between global and local

attention layers. The global attention layer captures the overall

structure and semantics of the image, while the local attention layer

focuses on detailed and localized features. The global attention layer

effectively identifies the overall damage and widespread distribution
frontiersin.org
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of diseases on apple leaves. This is crucial for assessing leaf health

and understanding the extent of disease spread. By weighting each

pixel in the image, the global attention layer enables the model to

focus on the overall morphology and distribution of the disease. On

the other hand, the local attention layer is dedicated to detecting

small disease spots and their specific characteristics on the leaves.

With higher resolution, the local attention layer captures image

details, allowing the model to identify small but critical diseased

areas. This detailed capture capability is essential for early detection

and diagnosis of diseases. The interaction between global and local

attention layers allows the dual-layer routing attention mechanism

to effectively integrate global and local information at different

scales. This enhances the accuracy and robustness of the apple leaf

disease detection model. By combining global and local features, the

model can quickly identify obvious disease areas and detect subtle

lesions, providing farmers with comprehensive and accurate

diagnostic information. The BiFormer network structure is shown

in Figure 4.
4 Experiments

4.1 Datasets

In this experiment, we used two public Kaggle competition

datasets, namely Plant Pathology 2020-FGVC7 (FGVC7) (Thapa

et al., 2020) and Plant Pathology 2021-FGVC8 (FGVC8) (Ait

Nasser and Akhloufi, 2024).

Plant Pathology 2020-FGVC7(FGVC7). This study leverages

the FGVC7 dataset (Thapa et al., 2020), consisting of a total of 3642

images. Of these, 2549 images are designated for training, while the
Frontiers in Plant Science 07
test and validation sets each comprise 546 images. The dataset

classifies apple leaves into four distinct categories: healthy, apple

rust, apple scab, and multiple diseases. Figure 5 presents exemplars

of these classifications, illustrating healthy leaves, leaves afflicted

with apple rust, leaves exhibiting apple scab, and leaves manifesting

multiple pathogenic conditions.

Plant Pathology 2021-FGVC8(FGVC8). The FGVC8 dataset

(Ait Nasser and Akhloufi, 2024) encompasses a total of 4182

images, stratified into 2927 for training, and 627 each for testing

and validation. This dataset characterizes five prevalent apple

diseases: black rot, frog eye leaf spot, rust, powdery mildew, and

mosaic. Figure 6 illustrates instances of these five foliar conditions.

Given that multiple diseases can manifest on a single leaf, this

dataset is particularly well-suited for the simultaneous detection of

various pathologies on individual leaves.

We used the LabelImg tool for dataset annotation, saving the

results as PASCAL VOC XML files. Agricultural experts manually

annotated and verified all images for accuracy. For model training,

all images were resized to 640 × 480. Table 1 shows the specific

dataset divisions.
4.2 Implementation details

Data Analysis. In apple leaf disease detection, color

information is crucial for identifying disease types. Different

diseases often exhibit distinct color patterns and characteristics on

the leaves, making the study and analysis of color space vital for

enhancing detection accuracy and robustness. By exploring the

RGB distribution in the color space, we can better understand the

color characteristics of various diseases, providing valuable insights
FIGURE 4

BiFormer network architecture (Zhu et al., 2023).
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for model training and optimization. As shown in Figure 7, we

present the RGB distribution of two datasets. For example, in

Figure 7B, the red channel exhibits positive skewness, meaning

values are more concentrated at intensities below the mean. The

green channel shows negative skewness, indicating values are more

concentrated at intensities above the mean, making the green

channel more prominent in the sample images compared to the

red channel. Similarly, the blue channel has slight positive skewness

and is well-distributed. These skewness characteristics of the color

channels reveal the significance and differences of each channel in

the sample images, laying the foundation for further color

space analysis.

Data Preprocessing. In the context of apple leaf disease

detection, our experimental dataset comprises numerous noisy

images, which can potentially impair the detection model’s

accuracy. To ameliorate noise, we initially employed Gaussian

blur, which serves effectively in mitigating minor noise

perturbations but shows limitations against more substantial

noise. Consequently, a more sophisticated denoising approach

was necessitated. In this study, we implemented the Non-Local

Means Denoising technique, renowned for its efficacy in noise

reduction within images. Specifically, this technique evaluates a

small window within the image (e.g., a 5x5 window) and identifies

similar patches located elsewhere, potentially within a proximate

neighborhood. By averaging these identified similar patches, a

superior denoised image can be realized. This approach not only

capitalizes on spatial neighborhood similarity but also harnesses
Frontiers in Plant Science 08
resemblance across the entire image, thereby augmenting the

denoising effect. Such preprocessing culminates in cleaner images,

furnishing higher quality input data for the subsequent apple leaf

disease detection phase. Figure 8 illustrates the denoising

process’s effectiveness.

Model Parameters. Our parameter settings are summarized as

follows: the learning rate is set to 0.001, batch size is 8, weight decay

is 0.0002, and the number of epochs is 1000. The network consists

of 255 layers and has a total of 11,236,528 parameters, as shown

in Table 2.

Experimental Setup. The experiment was conducted with the

following hardware and software configurations: the operating

system was Windows 10, the CPU was Intel(R) Core (TM) i9-

12950HX, and the GPU was NVIDIA GeForce RTX 3090 with 24G

of display memory. CUDA 11.2 and CUDNN V8.0.5 were used for

acceleration. The deep learning framework was Pytorch 1.11, the

Python version was 3.8, and the development environment was

PyCharm 2021. The specific settings are shown in Table 3:
4.3 Metrics

In this experiment, our method evaluates the performance of

the model using the following metrics: Precision (PR), Recall (RE),

Sensitivity, Specificity, Accuracy, F1-Score, and mAP50.

Precision (PR): Precision is the ratio of correctly predicted

positive observations to the total predicted positives.
FIGURE 6

Sample display. (A) Mosaic disease. (B) Powdery mildew. (C) Rust. (D) Frog eye leaf spot. (E) Scab.
FIGURE 5

Sample display. (A) Healthy. (B) Scab.(C) Rust. (D) multiple diseases.
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PR =
TP

TP + FP
(23)

Recall (RE): Recall is the ratio of correctly predicted positive

observations to all observations in actual class.

RE =
TP

TP + FN
(24)

Sensitivity: Sensitivity is another term for recall, which is the

true positive rate.

Sensitivity =
TP

TP + FN
(25)

Specificity: Specificity is the ratio of correctly predicted negative

observations to all observations in actual negative class.

Specificity =
TN

TN + FP
(26)

Accuracy: Accuracy is the ratio of correctly predicted

observations to the total observations.
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Accuracy =
TP + TN

TP + TN + FP + FN
(27)

F1-Score: F1-Score is the weighted average of Precision and

Recall.

F1 − Score = 2� PR� RE
PR + RE

(28)

mAP50 (mean Average Precision at IoU=0.5): mAP50 is the

mean of the average precision values for each class, where average

precision is computed as the area under the precision-recall curve.

mAP50 =
1
No

N

i=1
APi

50 (29)

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives, FN is the number

of false negatives, N is the number of classes, and AP50 is the average

precision at IoU=0.5 for class i.
FIGURE 7

RGB Distribution of the Datasets. (A) Plant Pathology 2020-FGVC. (B) Plant Pathology 2021-FGVC.
TABLE 1 Dataset division details.

Dataset Total Images Training Set Test Set Validation Set

FGVC7 3642 2549 546 546

FGVC8 4182 2927 627 627
FIGURE 8

Effect of non-local means denoising on apple leaf images. (A) Original noisy image. (B) Denoised image.
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4.4 Model training

Training Results. Figure 9 illustrates the changes in the loss

function and evaluation metrics during the training and validation
Frontiers in Plant Science 10
phases of the YOLO-Leaf model. The figure shows the bounding

box loss, classification loss, and dynamic convolution loss for both

the training and validation datasets. From the graph, it can be

observed that our model gradually optimizes during training and

consistently improves its performance on the validation set. As

training progresses, the loss function exhibits a downward trend,

indicating that the model is gradually converging. Additionally, the

improvement in evaluation metrics demonstrates the model’s

effectiveness in feature learning and target recognition.
4.5 Result

Comparison to PriorWork. As shown in Table 4, the

performance comparison of different models on the FGVC7 and

FGVC8 datasets demonstrates the significant advantages of our

method. By analyzing the evaluation metrics in the table, it is clear

that our method outperforms other models across all indicators,

indicating its superior performance in the task of apple leaf disease

detection. On the FGVC7 dataset, our method achieved 93.88% in

mAP50, 93.84% in Precision (PR), 93.89% in Accuracy (AC), and

93.80% in F1-Score, significantly higher than YOLOv8. Particularly

in the mAP50 metric, our method exceeded YOLOv8 by nearly 1.79

percentage points, demonstrating higher detection accuracy. On the

FGVC8 dataset, our method also performed exceptionally well,

achieving 95.69% in mAP50, 95.65% in Precision, 95.68% in

Accuracy, and 95.62% in F1-Score, again far surpassing YOLOv8.

With an increase of 1.80 percentage points in mAP50 over

YOLOv8, our method further proves its superiority. It is worth

mentioning that YOLOv10 did not achieve high performance in this

experiment’s leaf disease detection. These results indicate that our

method has higher robustness and generalizability in complex
FIGURE 9

The results of the proposed model.
TABLE 2 Training parameters.

Parameter Value

Learning Rate 0.001

Batch Size 8

Weight Decay 0.0002

Epochs 1000

Layers 255

Parameters 11,236,528
TABLE 3 Software and hardware configuration.

Software and Hardware Version or Model

Operating system Windows 10

CPU Intel(R) Core (TM) i9-12950HX

GPU NVIDIA GeForce RTX 3090

Display memory 24G

CUDA 11.2

CUDNN V8.0.5

Pytorch version 1.11

Python version 3.8

Software PyCharm 2021
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agricultural environments. It not only enhances the accuracy of

disease detection but also effectively handles multiple types of

diseases, providing more reliable technological support for

agricultural producers.

Parameter Comparisons. As shown in Table 5, the comparison

of model parameters (PARAMS) and floating point operations

(FLOPs) highlights the performance differences of various models

on the FGVC7 and FGVC8 datasets. By analyzing the table, it is

evident that our method maintains efficient performance while

keeping the parameters and computational load relatively low. In

the FGVC7 dataset, our method’s parameters (PARAMS) are 5.68M

and the floating point operations (FLOPs) are 10.03B, whereas

YOLOv5 has 6.65M parameters and 12.03B FLOPs. Compared to

YOLOv5, our method reduces the parameters by 0.97M and the

FLOPs by 1.99B, demonstrating an advantage in resource usage.

Similarly, in the FGVC8 dataset, our method’s parameters and

FLOPs are 5.65M and 9.67B, respectively, while YOLOv8’s

parameters and FLOPs are 10.23M and 10.18B. Compared to

YOLOv8, our method reduces the parameters by 4.58M and the
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FLOPs by 0.51B, further proving the efficiency and lightweight

nature of our approach. These specific numerical comparisons

highlight the advantages of our method, showing that we achieve

high performance while significantly reducing the demand for

computational resources. Figure 10 visualizes the content of the

table, further illustrating the benefits of our method.
4.6 Qualitative analysis

Figure 11 visualizes the detection results of our model. From the

images, it is evident that our model effectively identifies and

classifies different types of leaf diseases, including (a) leaf blotch,

(b) leaf rust, and (c) leaf scab. The clear and accurate detections

across these various conditions highlight the robustness and

precision of our model in detecting apple leaf diseases.

We validated our model on a field dataset that contains a

significant amount of powdery mildew. Figure 12 shows the

detection results of our model, demonstrating its effectiveness and

generalization capability in real-world conditions.
4.7 Ablation study

As shown in Table 6, the results of the ablation experiments

demonstrate the contribution of each component to the overall

performance of our method. By analyzing the table, it is clear that

the inclusion of DSCon, BiFormer, and IF-CIoU individually and in

combination significantly impacts the mAP50 and mAP50-95

metrics. For instance, the baseline model YOLOv8n, which does

not include any of these components, achieves an mAP50 of 83.26%

and mAP50-95 of 85.37%. When DSCon is added (YOLOv8n-a),

the mAP50 slightly decreases to 82.32%, and mAP50-95 drops to

84.33%, suggesting that DSCon alone does not significantly improve

performance. On the other hand, adding BiFormer (YOLOv8n-b)

results in an mAP50 of 81.26% and mAP50-95 of 85.67%, showing a
TABLE 4 Comparison of model performance on Roboflow and Br35H datasets.

Models FGVC7 FGVC8

mAP50
(%)

PR
(%)

AC
(%)

F1-
Score (%)

mAP50
(%)

PR
(%)

AC
(%)

F1-
Score (%)

YOLOv3 (Tian et al., 2019) 90.08 89.84 90.04 89.20 91.50 91.64 91.82 92.02

YOLOv4 (Xinming et al., 2023) 90.64 90.54 90.72 90.85 92.42 92.34 92.51 92.59

YOLOv5 (Li J. et al., 2022) 92.02 91.62 90.94 91.11 93.11 92.41 92.71 92.95

YOLOv6 (Krishnarji and Riyazuddin, 2024) 91.14 90.71 90.84 90.34 92.88 92.52 92.65 93.09

YOLOv7 (Ma et al., 2023) 91.84 91.74 92.04 91.94 93.62 93.52 93.80 93.70

YOLOv8 (BalaChandralekha and
Thangakumar, 2024)

92.09 91.93 92.24 92.24 93.89 93.73 93.99 93.99

YOLOv10 (Wang A. et al., 2024) 91.05 90.25 90.23 90.14 91.65 90.73 91.55 90.39

Ours 93.88 93.84 93.89 93.80 95.69 95.65 95.68 95.62
TABLE 5 Comparison of model parameters (PARAMS) and floating point
operations (FLOPs) on Roboflow and Br35H datasets.

Model FGVC7 FGVC8

PARAMS FLOPs PARAMS FLOPs

YOLOv3 4.38 M 6.01 B 3.86 M 5.67 B

YOLOv4 3.35 M 4.72 B 2.98 M 4.73 B

YOLOv5 6.65 M 12.03 B 6.65 M 10.78 B

YOLOv6 8.07 M 11.03 B 7.56 M 10.11 B

YOLOv7 9.66 M 11.34 B 10.51 M 10.52 B

YOLOv8 8.45 M 12.02 B 10.23 M 10.18 B

Ours 5.68 M 10.03 B 5.65 M 9.67 B
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slight improvement in mAP50-95 but a decrease in mAP50.

Adding IF-CIoU (YOLOv8n-c) increases the mAP50 to 85.34%

but reduces mAP50-95 to 82.15%. When DSCon and BiFormer are

combined (YOLOv8n-d), the performance significantly improves,

with mAP50 reaching 90.75% and mAP50-95 at 87.66%. Similarly,

the combination of BiFormer and IF-CIoU (YOLOv8n-e) further

enhances the results to an mAP50 of 91.33% and mAP50-95

of 90.15%.

Our method, which integrates all three components (DSCon,

BiFormer, and IF-CIoU), achieves the highest performance with an

mAP50 of 93.81% and mAP50-95 of 95.69%. This comprehensive

combination demonstrates the significant advantage of using all

components together.
Frontiers in Plant Science 12
5 Conclusion

In this paper, we propose a novel apple leaf disease detection

model, YOLO-Leaf, which integrates three key technologies:

DSConv, BiFormer, and IF-CIoU. These technologies work in

close synergy to effectively address the detection challenges posed

by different apple leaf diseases. Specifically, the combination of

DSConv, BiFormer, and IF-CIoU allows the model to better identify

the dispersed lesions of rust disease on leaf surfaces and accurately

capture the changes along the edges and veins in scab disease. IF-

CIoU further optimizes the alignment between bounding boxes and

actual lesion areas, particularly excelling in handling the variable

shapes and sizes of spots in leaf spot disease. Experimental results
FIGURE 10

Different model parameter comparisons.
FIGURE 11

YOLO-Leaf detection results. (A) leaf Powdery, (B) leaf rust, (C) leaf scab.
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demonstrate that YOLO-Leaf outperforms existing models like

YOLOv3, YOLOv4, and YOLOv8 across multiple evaluation

metrics, fully validating the effectiveness and advancement of

our approach.

Despite YOLO-Leaf’s excellent performance across various

metrics, the model still has some limitations. First, when

processing images with complex backgrounds, the detection

accuracy of YOLO-Leaf decreases. This is mainly because

complex backgrounds may interfere with the identification of

disease regions, leading to false positives or missed detections.

Second, the performance of YOLO-Leaf in detecting small disease

spots still needs improvement. Although we introduced dynamic

snake convolution and a dual-layer routing attention mechanism to

enhance feature extraction capabilities, recognizing extremely small

disease spots remains challenging, which limits the model’s
Frontiers in Plant Science 13
application scope to some extent. In the future, we plan to

improve the model in the following aspects. First, we will further

optimize YOLO-Leaf’s feature extraction module, particularly

focusing on detecting complex backgrounds and small disease

spots, exploring more effective feature extraction methods.

Second, we will expand the dataset’s size and diversity, including

introducing more field-captured images and different types of

disease images, to enhance the model’s generalization ability.

Additionally, we will explore multimodal data fusion techniques,

combining image data with other types of data (such as

temperature, humidity, etc.) to improve the accuracy and

robustness of disease detection. This study not only provides an

efficient solution for apple leaf disease detection but also offers new

ideas and methods for research and applications in the field of

agricultural disease detection.
FIGURE 12

Performance of the YOLO-Leaf model on powdery mildew.
TABLE 6 Experiment results for each component.

Method DSCon BiFormer IF-CIoU mAP50 mAP50-95

YOLOv8n ✗ ✗ ✗ 83.26 85.37

YOLOv8n-a ✓ ✗ ✗ 82.32 84.33

YOLOv8n-b ✗ ✓ ✗ 81.26 85.67

YOLOv8n-c ✗ ✗ ✓ 85.34 82.15

YOLOv8n-d ✓ ✓ ✗ 90.75 87.66

YOLOv8n-e ✗ ✓ ✓ 91.33 90.15

Ours ✓ ✓ ✓ 93.88 95.69
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