
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Khurram Bashir,
Lahore University of Management Sciences,
Pakistan

REVIEWED BY

Xuehai Zhang,
Henan Agricultural University, China
Xin Wei,
Shanghai Normal University, China

*CORRESPONDENCE

Jianguang Hu

hujianguang@gdaas.cn

Gaoke Li

ligaoke@gdaas.cn

†These authors have contributed equally to
this work

RECEIVED 22 June 2024
ACCEPTED 29 July 2024

PUBLISHED 19 August 2024

CITATION

Li K, Zeng J, Zhang N, Yu Y, Zhu W, Li G
and Hu J (2024) Multi-layer molecular
analysis reveals distinctive metabolomic
and transcriptomic profiles of
different sweet corn varieties.
Front. Plant Sci. 15:1453031.
doi: 10.3389/fpls.2024.1453031

COPYRIGHT

© 2024 Li, Zeng, Zhang, Yu, Zhu, Li and Hu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 19 August 2024

DOI 10.3389/fpls.2024.1453031
Multi-layer molecular analysis
reveals distinctive metabolomic
and transcriptomic profiles of
different sweet corn varieties
Kun Li1†, Jigang Zeng1,2†, Nan Zhang1, Yongtao Yu1,
Wenguang Zhu1, Gaoke Li1* and Jianguang Hu1,2*

1Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong
Academy of Agricultural Sciences, Guangzhou, China, 2College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei, China
In plants, sugar metabolism involves a complex interplay of genetic, molecular

and environmental factors. To better understand the molecular mechanisms

underlying these processes, we utilized a multi-layered approach that integrated

transcriptomic and metabolomic datasets generated from multiple different

varieties of sweet corn. Through this analysis, we found 2533 genes that were

differentially expressed in the immature kernel tissues of sweet corn, including

genes involved in transcriptional regulation, sugar metabolism, primary

metabolism, and other processes associated with adaptability of sweet corn.

We also detected 31 differential metabolites among the three types of sweet

corn. Utilizing an integrated approach encompassing transcriptomics and

eGWAS, we elucidated the transcriptional regulatory patterns governing these

differential metabolites. Specifically, we delved into the transcriptional

modulation of malate- and ubiquitin-associated genes across a range of sweet

corn varieties, shedding new light on the molecular mechanisms underlying their

regulation. This study provides a framework for future research aimed at

improving the current understanding of sugar metabolism and regulatory gene

networks in sweet corn, which could ultimately lead to the development of novel

strategies for crop improvement.
KEYWORDS
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1 Introduction

Sweet corn (Zea mays L.) varieties contain mutations in genes associated with

endosperm starch synthesis pathways, resulting in an abnormally high sugar

accumulation (Tracy et al., 2019). The high sugar content of sweet corn has led to its

popularity as a consumer crop (Revilla et al., 2021). Today the most common mutants used

in commercial sweet corn varieties are the recessive gene shrunken2 (sh2), followed by the
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combination of sugary1 (su1) and sugary1 enhancer1 (su1-se1)

(Nelson and Pan, 1995; Zhang et al., 2019). Sh2-based sweet corn

varieties are known as super sweet corn and accumulate

approximately six times more reducing sugars and sucrose in

immature kernels than field corn (Chhabra et al., 2019). Sweet

corn varieties based on the recessive gene su1 accumulate

approximately three times more reducing sugars and sucrose in

their kernels at the milky ripening stage but when combined with

se1, the water-soluble polysaccharides (WSP) levels are nearly as

high as those of sh2 (Tracy et al., 2019). There are also clear genetic

boundaries that distinguish the differences in sugar metabolism,

specifically, significant variations in genomic architecture among

different types of sweet corn (Hu et al., 2021b).

Starch biosynthesis in maize is carried out through a series of

enzyme reactions, with both protein metabolism and hormone

regulation playing critical roles (Revilla et al., 2021). Sucrose is

the main product derived from photosynthates that is utilized for

long-distance transport from leaf tissue to developing kernels

(Schleucher et al., 1998). In the kernel tissue, two enzymatic

pathways are known to catalyze hydrolysis of sucrose (Kang et al.,

2009). Cell wall invertase 2 (CWI2) breaks down sucrose into

glucose and fructose, while sucrose synthase (SUS) converts

sucrose to fructose and UDP-glucose, which are then used to

synthesize cell wall polysaccharides with uridine diphosphate

(UDP) (Winter and Huber, 2000; Koch, 2004). The different

flavors and textures of sweet corn varieties may therefore arise

from differences in these various sugar metabolism and

transport pathways.

The low genetic diversity within each starch mutant has

significantly hampered modern sweet corn breeding efforts

(Revilla et al., 2021). Improving the diversity of different sweet

corn varieties could therefore enable breeding efforts aimed at

improving their taste and nutritional value (Mehta et al., 2020;

Prasanna et al., 2020). For example, traditional super sweet corn

kernels are deficient in some essential amino acids such as lysine,

which could be attenuated by bringing more favorable alleles from

field corn through marker assisted selection (MAS) (Mehta et al.,

2020). A more comprehensive assessment of genetic diversity

among sweet corn varieties could dramatically accelerate this

process (Hu et al., 2021a; Xiao et al., 2022a).

Comprehensive analyses of multi-layer molecular data have

been used to elucidate molecular mechanisms of complex traits. In

recent years, applying integrated approaches using multi-omics

data, such as metabolomics and transcriptomics, to various grass

plants has proven to be an excellent method for analyzing sugar

metabolic pathways and identifying regulatory genes (Tohge et al.,

2005). For example, high temperatures have been shown to affect

the metabolism and accumulation of sugars and starches in rice

seeds, which may be related to changes in the expression of genes

associated with sucrose, starch, and respiratory chains (Yamakawa

and Hakata, 2010). A recent comparative analysis of metabolites

related to appearance and taste in various tomato varieties has led to

the identification of specific loci or genes that govern the reduction

of antinutritional compounds (Zhu et al., 2018). Omics data has

also recently been successfully applied to sweet corn research. For

example, sweet corn seed quality, folates, vitamin E and carotenoid
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accumulation in the sweet corn kernels have all been studied using

these techniques (Xiang et al., 2019; Xiao et al., 2022a, 2022b).

However, there are few reports on the comparison of different sweet

corn types at the transcriptomic and metabolomic levels, but this

approach has the potential to provide novel avenues to explore for

sweet corn improvement.

In this study, we assessed the transcriptomes and metabolomes

of immature kernel tissues (including ordinary sweet corn, super

sweet corn and enhanced sweet corn) at 15 and 20 days after

pollination (DAP). We then utilized this data to explore changes in

gene expression and metabolite profiles that were associated with

disruption of starch synthesis. We also used transcriptome data

obtained from a sweet corn population to conduct expression

GWAS (eGWAS) of key genes related to malic acid and

ubiquitin. By conducting a comparative analysis of multi-omics

data, we obtained a more complete picture of the differences among

sweet corn varieties. This understanding is crucial for the

advancement of breeding practices in sweet corn.
2 Materials and methods

2.1 Sweet corn materials

We obtained 24 different corn varieties, including 8 ordinary

sweet corn (su1), 8 enhanced sweet corn (su1-se1) and 8 super sweet

corn (sh2-R) (Xiao et al., 2022a). The sweet corn material was

planted in the experimental field of Guangdong Academy of

Agricultural Sciences (113°22'E, 23°9'N), according to randomized

block designs. All sweet corn experimental materials were self-

pollinated, and immature kernel tissues were sampled at 15 and

20 days after pollination for transcriptome sequencing and

metabolome identification, respectively. Transcriptome sequencing

was performed on the immature kernels at 15 days after pollination

(DAP), while metabolome identification was carried out on the

kernels at 20 DAP. After sampling, sweet corn kernel tissues were

frozen in liquid nitrogen immediately, then transferred to a -80°C

freezer for storage.
2.2 Transcriptome data collection and
expression assessment

Sweet corn transcriptome data of 24 samples generated in

previous studies were downloaded from the China National

GeneBank Database (CNGB, db https://db.cngb.org/, CNP0003294;

Xiao et al., 2022a; Supplementary Table S1). RNA sequencing data of

knockout lines of gene sh2, su1 and wild types have been deposited

into CNGB with the following accession number of CNP0003291. All

transcriptome data were sequenced by BGI using PE150 mode. The

transcriptomes of sweet corn were sequenced using the Illumina

HiSeq TM 2500. All raw sequencing data were evaluated for

expression abundance using the same analytical process. First,

trimmomatic (v0.39) was used to filter the raw transcriptome data,

including removing reads containing adaptors, low-quality reads, and

reads with a proportion of N greater than 10% (Bolger et al., 2014).
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All clean reads were then mapped to the B73 reference genome (AGP

v4) using HISAT2 (Version v2.2.1) (Pertea et al., 2016). After

mapping, SAMtools (Version v1.17) was used to convert and

compress the intermediate data (Li et al., 2009). Finally, the gene

expression values were quantified by the FeatureCounts tool in

Subread (Version 2.0.3) (Liao et al., 2013, 2014).
2.3 Differentially expressed
gene identification

Differentially expressed genes (DEGs) were calculated with

DESeq2 (Version 1.36.0) performed in the R (Version 4.3.0)

environment (Love et al., 2014). The raw expression count of

each gene with expression values greater than 10 were used as

inputs to DESeq2. The q-value of each gene was calculated from

corrected p-values with the Benjamini-Hochberg multiple

hypothesis test correction model. The threshold for differentially

expressed genes was q-value<0.05 and fold change greater than 2.
2.4 Metabolite extraction and GC-MS
based metabolomic analysis

Metabolomic data from 24 sweet corn lines were obtained from

our previously study (Xiao et al., 2022a). For this experiment,

immature sweet corn kernels (20 DAP) were harvested with two

biological replicates. Samples were then ground with a mill

(MM400; Retsch) in a pre-cooled environment with liquid

nitrogen. Fifty milligrams of sample powder was then utilized for

metabolite extraction, according to methods described in previous

studies (Salem et al., 2016; Wang et al., 2019). After suspension, 200

mL of the lower phase were transferred into a 1.5 mL

microcentrifuge tube, then centrifuged at 14000 rpm for 10 min

at 4°C. The samples were dried with a SpeedVac concentrator

at 25°C. Prior to GC-MS (7890A-5975C, Agilent, USA), the

samples were derivatized with N-methyl-N-(trimethylsilyl)

trifluoroacetamide, as described previously (Yan et al., 2018). One

mL of each sample was injected into the GC-MS instrument with a

DB-35MS UI (30 m × 0.25 mm, 0.25 µm) capillary column in split

mode at 270°C. The flow of helium carrier gas was set to 1 mL/min

and the mass range of samples analyzed was from m/z 85 to 700.

Agilent MassHunter Qualitative Analysis software version B06.00

and B.07.01 were jointly used for data analysis. NIST library and an

in-house database constructed with authentic standards were

utilized together for metabolite identification.
2.5 Functional enrichment analysis
and visualization

Gene Ontology analysis (GO, https://www.geneontology.org/)

and Kyoto Encyclopedia of Genes and Genomes (KEGG, https://

www.genome.jp/kegg/) pathway enrichment analysis were

conducted using the package clusterProfiler (v3.8.1) (Yu et al., 2012)
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and visualized via the package ggplot2 (v3.0.0) in the R environment.

The significantly enriched GO terms and KEGG categories were

selected with Benjamini–Hochberg adjusted P-values (FDR) <0.05.
2.6 Starch content determination

Starch can form a complex with iodine and exhibit a distinctive

color. Amylopectin forms a brown-red complex with iodine, while

amylose forms a dark blue complex with iodine. The absorption

values of amylose and amylopectin at wavelengths l1 and l2 were

determined by dual-wavelength spectrophotometry (Li et al., 2016;

Han et al., 2019). The starch content of sweet corn kernels was

calculated according to the linear relationship between DA
(DA=Al1-Al2) and starch concentration. Each sample was

ground, and 100 mg was added to 1 mL of absolute ethanol and

9 mL of 1 mol/L NaOH. The sample was then dissolved in a boiling

water bath for 10 min. The sample extract was degreased with

petroleum ether two to three times. Then, 3 mL of the degreased

sample was measured to determine the absorbance and calculate the

corresponding starch content via the standard linear equation.
2.7 Weighted gene correlation
network analysis

A weighted gene correlation network analysis (WGCNA) was

conducted based on the 2533 differentially expressed genes in the

sweet corn kernel tissues (Langfelder and Horvath, 2008). The

network was generated based on Spearman correlations among

genes and clustered into modules with a dynamic tree cut model

with a deep split level of 3 and a height of 0.25. Finally, the

eigenvector and eigengene of each module was calculated as the

representative value of the module. The correlations within

modules and between modules and phenotypes were then utilized

for downstream analyses. To validate the stability and reliability of

the network, we calculated the Zsummary, a module size-dependent

robustness parameter that considers both module density

preservation and connectivity preservation (Langfelder et al.,

2011). This was done with 20 times random resampling of the

RNA-seq datasets in each genotype. Modules with a Zsummary

greater than 10 implied strong module preservation, indicating a

high degree of confidence in the data. Modules with a Zsummary

greater than 2 were considered stable and reliably associated

with metabolites.
2.8 Expression genome-wide
association study

Gene expression genome-wide association was conducted

according to our previous reports (Xiao et al., 2022a). The

association analysis was conducted using Tassel (version 3.0) with a

mixed linear model (MLM), which controls for cofactors of

population structure (Q) and kinship matrix (K). The threshold of
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association analysis was determined with GEC (Genetic Type I error

calculator; (Li et al., 2012). Specifically, we used the formula P-value =

1/n, where n represents the effective number of independent SNPs. In

our study, 9,858,639 SNPs were used for the evaluation of the effective

number, resulting in a calculation of 1,970,123 as the effective number

of independent SNPs. Consequently, the significance threshold for

the sweet corn population was set at approximately P=5.08×10-7.

Candidate genes were selected based on the position of the lead SNP,

which was located within each significant QTL. Genes within a 500

kb region upstream or downstream of this position were considered

candidate causal genes.
3 Results

3.1 Sweet corn kernel appearances and
sugar contents

Different types of sweet corn exhibit significant differences in

kernel appearance, likely due to variations at the transcriptomic and

metabolomic levels (Figure 1A). The dry kernels of sh2 sweet corn

display shriveled and sunken features with reduced luster compared

to field corn kernels (Figure 1A). We used R software for variance

analysis and TukeyHSD multiple tests to compare the differences in

soluble sugar (including fructose, glucose, sucrose, and maltose)

and starch content in the fresh kernel tissue of sweet corn varieties

(Figures 1B–G). Although fructose and glucose exhibited a high
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degree of phenotypic variation, there were no significant differences

observed between different sweet corn varieties, possibly due to the

minimal impact of genetic background on these two

monosaccharides (Harakotr et al., 2022). Furthermore, there were

notable disparities in sucrose, maltose, and starch content, with the

most pronounced differences observed in super sweet corn (sh2)

kernels (Figures 1C, F, G). The variations between ordinary sweet

corn (su1) and enhanced sweet corn (su1-se1) kernels were

primarily attributed to differences in maltose content (Figure 1G).

The super sweet corn kernels had 1.29 and 1.20 times the level of

soluble sugar found in ordinary sweet corn and enhanced sweet

corn kernels, respectively (Figure 1B). Notably, super sweet corn

kernels had the highest sucrose content, which was 1.54 and 1.33

times that of ordinary sweet corn and enhanced sweet corn kernels,

respectively (P=2.23×10-4). There were also significant disparities in

maltose content among the three sweet corn types, with enhanced

sweet corn kernels containing 7.89 and 1.60-fold more maltose than

super sweet corn and ordinary sweet corn kernels, respectively

(Figure 1G). This indicates that the enhanced activity of starch-

degrading enzymes in enhanced sweet corn result in the breakdown

of starch into maltose (Zhang et al., 2019). Ordinary sweet corn

kernels had the highest starch levels, which were 1.59 and 1.14 times

those of super sweet corn and enhanced sweet corn kernels,

respectively (Figure 1C). The super sweet corn kernels had the

highest average amounts of soluble sugars, glucose, and sucrose,

while enhanced sweet corn kernels had the highest average

quantities for fructose and maltose.
FIGURE 1

Appearance and sugar content of sweet corn kernels. (A) Appearance of fresh and dried ears of four types of corn. (B–G) Box plots of soluble sugar,
starch, fructose, glucose, sucrose, and maltose contents of 24 sweet corn individuals, respectively. ns, not significant.
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3.2 Differentially expressed genes in sweet
corn kernels

We performed transcriptome sequencing on 24 sweet corn

kernel samples, resulting in a total of 289.2 million reads

(Supplementary Table S1). After alignment to the B73 reference

genome (v4.0), 28,698 genes were found to have detectible

expression. Differential expression analysis was carried out using

the DESeq2 package, with a threshold of |log2foldchange| > 1 and q-
Frontiers in Plant Science 05
value < 0.05. Finally, a total of 2533 differentially expressed genes

(DEGs) were identified (Figures 2A–C; Supplementary Table S2).

There were 680, 1707, and 995 DEGs identified in the comparisons

of sh2 versus su1, sh2 versus su1-se1, and su1-se1 versus su1,

respectively. Of them, a total of 285 DEGs were identified across

the comparisons between the knockout lines of sh2 and su1 and

their respective wild types (Supplementary Table S2). Among them,

the number of down-regulated DEGs in the comparison of sh2

versus su1-se1 accounted for 43.74% of the total DEGs, while the
FIGURE 2

DEGs obtained from comparisons of the three types of sweet corn kernels. (A–C) DEGs obtained from the comparison of sh2 versus su1, sh2 versus
su1-se1 and su1-se1 versus su1. (D) Venn diagram of DEGs identified from the three types of sweet corn kernels. (E) Expression levels of genes
encoding key enzymes in the starch synthesis pathway. (F) Pathways related to starch and sucrose synthesis and metabolism. (G) Expression levels of
genes related to starch synthesis and metabolism. (H) Trehalose contents of the three types of sweet corn. (I) Statistics of differentially expressed
genes of 27 transcription factor families. ns, not significant.
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number of up-regulated DEGs in the comparison of su1-se1 versus

su1 was the lowest, accounting for 11.57% of the total

DEGs (Figure 2D).

Examination of 29 genes known to be in sucrose and starch

synthesis pathways revealed the highest level of differential expression

in comparisons of super sweet corn to ordinary sweet corn or

enhanced sweet corn (Figure 2E). In super sweet corn, most DEGs

in the starch and sucrose metabolic pathways were elevated compared

to other varieties, including granule-bound starch synthase1 (Waxy1,

Zm00001d033937), AGPase small subunit glucose-1-phosphate

adenylyltransferase small subunit2 (Bt2, Zm00001d032385), starch

debranching enzyme1 (Su1, Zm00001d049753), starch branching

enzyme3 (Sbe3, Zm00001d011301), two glycoside hydrolases

glucosidase1 (Glu1, Zm00001d023994) and invertase cell wall5

(Incw5, Zm00001d025354), and one glycosyltransferase ADP

glucose pyrophosphorylase large subunit leaf1AGPL4 (Agpii1,

Zm00001d033910). Down-regulated genes included starch

debranching enzyme isoamylase-type starch debranching enzyme3

(Iso3, Zm00001d020799), which is involved in starch degradation,

and glycosyltransferase trehalose-6-phosphate synthase10 (Trps10,

Zm00001d052060), which is involved in trehalose synthesis

(Figures 2F, G). Additionally, Trps10, which is known to affect

starch content and grain weight, was found as a putative causal

gene located in a QTL for total starch content (Hu et al., 2021b).

This gene also exerts a significant effect on total trehalose

content (Figure 2H).

In addition to structural genes involved in starch and sugar

metabolic pathways, we also identified a significant number of

regulatory genes that were differentially expressed in sweet corn,

including several transcription factors. The transcription factors

identified play a diverse array of roles, including not only regulation

of sugar metabolism but also primary metabolism and stress

signaling (Figure 2I; Supplementary Table S2). For example, in

the comparison of sh2 versus su1, the MYB-related transcription

factor family had the most differential expression, with down-

regulated transcription factor MYBR13 (Zm00001d038288) being

a direct downstream gene of opaque endosperm2 (O2 ,

Zm00001d018971) (Li et al., 2015), which is known to have a

synergistic effect with NAC transcription factors 130 (ZmNAC130,

Zm00001d008403) and ZmNAC128 (Zm00001d040189) in

promoting maize endosperm filling (Chen et al., 2023). In the

comparison of sh2 versus su1-se1, the bHLH family was the most

up-regulated transcription factor family, which is known to

participate in various physiological processes that impact plant

growth and development (Zhang et al., 2018). The WRKY family

was the most downregulated transcription factor family and is

known to play a role in numerous biological processes and stress

responses in plants (Zhang et al., 2017). In the comparison of su1-

se1 versus su1, the MIKC MADS family had the most up-regulated

genes, and this gene family plays an important role in flower

meristem formation and flower organ development (Gramzow

and Theißen, 2013). The ERF family, which controls several stress

responses and plays an important role in integrating sugar, ABA

and ethylene signaling, contained five downregulated genes (Zhou

et al., 2012; Finegan et al., 2022).
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3.3 Functional enrichment analysis of
differentially expressed genes

To investigate the biological functions of differentially expressed

genes (DEGs), we conducted enrichment analysis of DEGs, including

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) enrichment analysis. In the comparison of sh2 and

su1, DEGs were enriched in 2 KEGG pathways, including starch and

sucrose metabolism, as well as degradation pathways of valine, leucine,

and isoleucine (q-value <0.05; Figure 3A; Supplementary Table S3). In

the comparison between sh2 and su1-se1, DEGs were enriched in 13

KEGG pathways, with a significant enrichment in the b-alanine
metabolism pathway (q-value <0.05; Figure 3A; Supplementary Table

S3). In the comparison between su1-se1 and su1, DEGs were enriched

in 3 KEGG pathways, including a-linolenic acid metabolism and the

linoleic acid pathway (q-value <0.05; Figure 3A; Supplementary Table

S3). These results indicate significant differences in gene transcription

regulation between different types of sweet corn, not only in sugar

metabolism-related pathways, but also in amino acid and ester

metabolism. GO analysis showed that differentially expressed genes

were significantly enriched in metabolic pathways related to sugar

metabolism, as well as other metabolic pathways, such as

photosynthesis, protein synthesis, citric acid metabolism, cellular

lipid metabolism, and organic acid biosynthesis (q-value <0.05;

Supplementary Table S4). The analysis of these regulatory patterns of

metabolic pathways provides a deeper and more comprehensive

understanding of the gene regulatory network in sweet corn.

In the sh2 versus su1-se1 comparison, DEGs involved in b-
alanine metabolism were generally down-regulated, including a

dihydropyrimidine dehydrogenase (Pco084866, Zm00001d043152),

a hydrolyase 3-hydroxyisobutyryl-CoA hydrolase1 (Chy1,

Zm00001d023779), three annotated aldehyde dehydrogenases

(Aldh13, Zm00001d004731; Aldh21, Zm00001d019054; Aldh27,

Zm00001d025958), and four oxidoreductases (Zm00001d014383;

Umc2337, Zm00001d045606; Lsd1, Zm00001d035195; Amo1,

Zm00001d025103; Acx2, Zm00001d042884) (Figure 3B). There is

evidence that b-alanine is involved in lignin biosynthesis and ethylene
production in some species (Parthasarathy et al., 2019), and there was

a significant negative correlation between alanine content and the

expression of genes in its metabolic pathway in sweet corn kernels.

The alanine content in enhanced sweet corn was significantly lower

than that in the other two types, while there was no significant

difference between ordinary sweet corn and super sweet corn

(Figures 3C, D; Supplementary Table S5). In the su1-se1 versus su1

comparison, all DEGs involved in a-linolenic acid and linoleic acid

metabolism were up-regulated, including four lipoxygenases (Lox1,

Zm00001d042541; Lox2, Zm00001d042540; Lox8, Zm00001d003533;

Lox13, Zm00001d031449), one prostaglandin synthase alternative

oxidase1 (Aox1, Zm00001d017727), one hydroperoxide lyase (Hpl1,

Zm00001d054067), one 12-oxophytodienoic acid reductase4 (Opr4,

Zm00001d011097), one acyl-CoA oxidase (Acx, Zm00001d045251),

and one peroxidase (Ay107692, Zm00001d048890) (Figure 3E). The

average expression levels of genes in the a-linolenic acid and linoleic

acid metabolic pathways of sweet corn grains of su1-se1 were higher

than other sweet corn varieties, with a resultant increase in linoleic
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acid content (Figures 3F, G). Since a-linolenic acid and linoleic acid

are polyunsaturated fatty acids, their metabolism in plants is closely

related to plant growth, development and stress response (Grechkin,

1998; Baldwin et al., 2006; Matsui, 2006; Truman et al., 2007; Borrego

and Kolomiets, 2016). This result indicates that su1-se1 sweet corn

kernels may have more active metabolic activities in these two fatty

acid synthesis pathways, leading to an increase in fatty acid content.

This finding has important implications for the regulatory

mechanisms underlying su1-se1 sweet corn phenotypes and

provides new avenues of research into other key metabolic pathways.
3.4 Metabolic profile analysis of sweet
corn kernels

We utilized chromatography-mass spectrometer (GC-MS) to

identify and quantify 223 metabolites in the kernel tissue of 24 sweet
Frontiers in Plant Science 07
corn individuals, including sugars, amino acids, lipids, flavonoids,

and other small molecules (Supplementary Table S5). Lipid

molecules mainly included isoprenoid lipids and fatty acids.

Organic acids were mainly comprised of carboxylic acids and

their derivatives, while phenylpropanoids and polyketides mainly

included flavonoids, isoflavonoids, coumarins, cinnamic acid and

their derivatives. The organic oxygen compounds identified were

primarily indoles and their derivatives.

A PCA analysis revealed that different types of sweet corn had

different metabolic profiles (Figure 4A). The metabolic profiles of

super sweet corn, ordinary sweet corn, and enhanced sweet corn

differed significantly, while the difference between the metabolic

composition of su1 and su1-se1 kernel tissues was relatively small

(Figure 4A). Replicate samples had highly similar metabolic profiles

and clustered together. PC1, PC2, and PC3 jointly accounted for

46.02% of the variance in metabolic content (Figure 4A). Further

analysis of the PCA indicated that most metabolites had a similar
FIGURE 3

Functional analysis of DEGs. (A) Sankey diagram showing KEGG enrichment of DEGs. (B) Schematic diagram of beta-alanine related pathways.
(C) Gene expression levels of key genes related to beta-alanine pathways. (D) Boxplot of beta-alanine contents of the three types of sweet corn.
(E) Schematic diagram of linoleic acid-related pathways. (F) Gene expression levels of key genes related to linoleic acid pathways. (G) Boxplot of
linoleic acid contents of the three types of sweet corn. ns, not significant.
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distribution pattern, with significant clustering (Figure 4B). PC1

and PC2 explained 98.56% of the variance, while a few substances,

such as sucrose, glucose and fructose alanine had distinct profiles in

sweet corn, resulting in a clear separation within the metabolic

grouping data (Figure 4B). Among them, sucrose had the greatest

difference in three types of sweet corn (Figure 4B).

Difference orthogonal partial least squares discriminant analysis

(OPLS-DA) has been demonstrated to be useful for the

identification of differential metabolites between different types of

sweet corn (Bylesjö et al., 2006). An analysis of differential

metabolites was carried out for three comparisons: su1-se1 versus

su1, sh2 versus su1-se1, and sh2 versus su1, resulting in the

identification of 31 differential metabolites (VIP>1, q-value<0.05).

Twenty-four metabolites were significantly changed in sh2 versus

su1, 16 in sh2 versus su1-se1, and 14 in su1-se1 versus su1

(Figure 4C; Supplementary Table S6). To further assess the

distribution of metabolites in the kernel tissues of different sweet
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corn varieties, hierarchical clustering was carried out on the 31

differential metabolites. Super sweet corn had higher levels of most

of the differential metabolites, including lysine and other

substances. However, maltose content was lowest in super sweet

corn and highest in enhanced sweet corn. Talopyranose and

galactose content was highest in ordinary sweet corn (Figure 4D).

S-plot analysis can be used to reveal the covariance between

metabolites and the predictive component as well as correlation

coefficient (Wiklund et al., 2008; Pan et al., 2021). In the

comparison of sh2 versus su1, the differential metabolites maltose

and isomaltose were positively correlated, while sucrose was

negatively correlated with these metabolites. In the comparison of

the sh2 versus su1-se1, the differential metabolites leucine and

glutamine were positively correlated, while maltose was negatively

correlated with these metabolites. In the comparison of the su1-se1

versus su1, the differential metabolites alanine and glucose-6-

phosphate were negatively correlated (Figures 4E–G). These
FIGURE 4

Identification of differentially expressed metabolites in the three types of sweet corn. (A) Principal component analysis of sweet corn individuals
based on metabolome data. (B) Principal component analysis of metabolome data. (C) Venn diagrams of differentially expressed metabolites
identified from three comparisons. (D) Cluster analysis of differentially expressed metabolites. E-G. S-plot from OPLS-DA analysis showing the
distribution of metabolites based on their covariance (x-axis) and correlation (y-axis) with the predictive component. The plot highlights metabolites
that are significantly different between the experimental groups, with red points indicating metabolites having VIP (Variable Importance in Projection)
scores greater than 1 and q-value<0.05. This analysis compared sh2 with su1, sh2 with su1-se1, and su1-se1 with su1.
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results suggest that different sweet corn varieties have different

metabolite accumulation and conversion patterns in their kernel

tissues during the milk stage (Ferguson et al., 1979; Venkatesh et al.,

2016), which may be related to differences at the transcriptional

level that affect sugar accumulation and conversion (Zhang et al.,

2019; Finegan et al., 2022; Harakotr et al., 2022).
3.5 Weighted co-expression
network analysis

We employed weighted gene co-expression network analysis to

gain insights into the transcriptional patterns of genotypes and

unravel the associations between distinct modular expression

patterns and metabolite levels. Utilizing the WGCNA package in R

software (Langfelder and Horvath, 2008), we grouped 2533 DEGs

into 11 co-expression modules, with module sizes ranging from 89 to

796 genes and averaging at 241 genes per module (Figure 5A;

Supplementary Table S7). The genes within each module displayed

robust connectivity (Z-value>2) (Langfelder et al., 2011). Correlation

analysis among modules revealed a rough segregation into two major

classes, characterized by strong positive correlations within each class

and negative correlations between classes (Figure 5B). Among the 31

differential metabolites analyzed, class 1 had a negative correlation

with the majority of the other metabolites, while class 2 exhibited a

positive correlation with most differential metabolites (Figure 5C).

Interestingly, maltose content was positively correlated with class 1
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but negatively correlated with class 2 (Figure 5C). In line with these

findings, maltose content was found to be notably elevated in

enhanced sweet corn compared to other sweet corn varieties,

whereas most differential metabolites were most enriched in super

sweet corn (Figure 5C).

Genes contained within the same regulatory network frequently

exhibited tightly correlated expression patterns, mirroring their

interconnected biological functions. For instance, the gene

ZmMAS1 (Zm00001d003247), located within module 5, encodes

malate synthase and had a marked positive correlation in expression

with the metabolite malic acid (Figure 5C). A comprehensive

genome-wide association study of expression levels of ZmMAS1

revealed that this gene was not solely influenced by its own cis-

eQTL but was also modulated by two distinct trans-eQTL loci

encoding the genes Su1 on chromosome 4 and Zm00001d023656

on chromosome 10 (Figures 6A, B). Furthermore, the ZmMAS1 locus

was found to regulate the expression of Zm00001d023656 via a trans-

eQTL (Figure 6C). These four genes, three of which were found to be

differentially expressed, are integral players in the metabolic

regulation of sweet corn (Figure 6D).

Protein ubiquitination is a ubiquitous post-translational

modification that controls the turnover of a diverse array of

proteins and serves as a pivotal regulatory mechanism for plant

biological processes. Our analysis revealed a significant correlation

in the expression levels of two homologous genes encoding

ubiquitin enzymes, Zm00001d039280 and Zm00001d049101

(Figures 7A, B). An in-depth expression-level association study
FIGURE 5

Weighted correlation network analysis of DEMs and transcriptome data. (A) DEGs distribution in the modules identified by WGCNA. (B) Correlation
analysis of modules in WGCNA. (C) Correlation analysis of DEMs and DEG modules.
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indicated that the gene Zm00001d039280 not only auto-regulates

its own expression but also modulates the expression of

Zm00001d049101 via a trans-eQTL (Figure 7C). This regulatory

interplay results in differential expression patterns across various

sweet corn varieties, ultimately influencing the development of

distinct sweet corn types.
4 Discussion

4.1 Significant variations exist in the
composition of sweet corn

Ordinary sweet corn, enhanced sweet corn and super sweet corn

kernels have been found to be composed of approximately 24%,

14% and 7% starch, respectively (Szymanek et al., 2015). In addition

to differing starch content, the three sweet corn varieties also show

variable transcriptomes, metabolomes and stress responses (Silva

et al., 2020; Stansluos et al., 2020). Genetic background, growth

environment, and artificial selection all contribute to the different

compositions of sweet corn kernels. Previous studies have shown

that sh2 is located upstream of the starch biosynthesis pathway,

while su1 works downstream of this pathway (Kramer et al., 2015).

There are significant differences in the appearance of kernels among

different types of sweet corn, with the kernels of super sweet corn

exhibiting a shrunken appearance and decreased glossiness. These

changes in appearance are likely related to the sugar accumulation

and metabolism of sweet corn (Figure 1). There are also significant
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differences in the total soluble sugar, sucrose, and maltose content

of different types of sweet corn, with sh2 having especially high

levels of soluble sugar and sucrose (Figure 1). The variance in sugar

accumulation observed among distinct varieties of sweet corn can

potentially be attributed to disparities in metabolome and

transcriptional regulation.

There have been many reports on differences in sugar-related

metabolites in different types of sweet corn, but metabolomics has

rarely been employed in this area of research (Yang et al., 2020;

Finegan et al., 2022; Rohilla and Singh, 2022). Significant differences

in taste and texture exist among different sweet corn, which cannot

be fully explained by variations in sugars alone (Tracy et al., 2019).

In this study, metabolomic analysis revealed compositional

differences among 223 metabolites in various types of sweet corn

kernels. Principal component analysis (PCA) revealed distinct

metabolite profiles among different types of sweet corn, with the

most notable differences observed between super sweet corn and

ordinary sweet corn (Figure 4A). Through DEMs analysis, we

identified metabolites with significant differential accumulation

across different sweet corn types, including glucose-6-phosphatase

(G-6-P), gentiobiose, and b-alanine. The fluctuations in these

metabolites are likely closely linked to the regulation of their gene

expression levels, and result in differences in flavor profiles among

sweet corn. Further, these differences impact a number of nutrients

and metabolites, such as vitamin E and folate (Baseggio et al., 2019;

Lv et al., 2022; Xiao et al., 2022a). These metabolites may also

influence the nutritional quality of sweet corn, potentially affecting

dietary intake of essential nutrients.
FIGURE 6

Transcriptional regulation of genes involved in malic acid pathways. (A) Expression GWAS of ZmMAS1. (B) Expression GWAS of Zm00001d023656.
(C) Correlation analysis of expression values of genes in the regulatory network of ZmMAS1. (D) Expression values of genes related to the ZmMAS1
regulatory network among three types of sweet corn (upper) and regulatory network related to ZmMAS1(lower). G656, Zm00001d023656; G682,
Zm00001d006682. ns, not significant.
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4.2 Transcriptional regulation plays a
pivotal role in the development of
sweet corn

Starch synthesis andmetabolic pathways play major roles in plant

development and any functional deficiency in these pathways can

lead to significant alterations in overall transcriptional regulation

(Finegan et al., 2022). Unsurprisingly, mutants deficient in these

pathways exhibit significant differences in physiological responses

and gene expression patterns (Figure 2). We employed transcriptome

analysis to identify a large number of DEGs when comparing the

kernels of different sweet corn types. The comparison of sh2 versus

su1se1 revealed the most significant differences, indicating that there

were complex regulatory changes occurring during the milk stage that

impacted multiple aspects of sugar metabolism, growth, development

and stress responses (Figure 2B).

Our analysis of DEGs uncovered several crucial transcription

factor families that were differentially expressed in sweet corn,

including MYB, bHLH, and WRKY, which play pivotal roles in

plant growth, development, and metabolic regulation. Among these,

genes associated with starch synthesis, such as alpha amylase3

(Amya3 , Zm00001d005890) and pullulanase type starch

debranching enzyme1 (Pul, Zm00001d004438), were significantly

downregulated in super sweet corn kernels, potentially contributing
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to the lower starch content in sh2-type sweet corn. Furthermore,

through GO and KEGG analyses we identified enrichment in genes

associated with sugar metabolism within sweet corn kernels.

Furthermore, the gene co-expression network constructed through

WGCNA facilitated the identification of key modules associated with

the quality of sweet corn. These modules encompass a range of genes

closely related to biological processes such as sugar metabolism,

growth and development. By integrating expression quantitative

trait loci (eQTL) analysis with an investigation of the genetic

regulation of malate and ubiquitin, our findings are further

reinforced that the observed transcriptional disparities among sweet

corn varieties primarily stem from differences in regulatory networks,

as opposed to the modulation of isolated genes.
4.3 Prospects for sweet corn
quality improvement

One of the significant challenges in sweet corn breeding is the

presence of genetic limitations that can restrict the improvement of

key traits such as sugar content, kernel texture, and disease resistance

(Tracy et al., 2019; Hu et al., 2021a). To address these limitations,

several innovative strategies have been proposed. A promising

approach is to identify and aggregate favorable alleles for target
FIGURE 7

Transcriptional regulation of genes related to ubiquitin. (A) Phylogenetic tree of genes related to ubiquitin. (B) Correlation analysis of expression of
genes that are homologous to Zm00001d049101. (C) Expression values of genes that are homologous to Zm00001d049101 among three types of
sweet corn (upper) and regulation network related to Zm00001d049101 (lower). G483, Zm00001d051483; G101, Zm00001d049101; G028,
Zm00001d015028; G280, Zm00001d039280. ns, not significant.
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traits within the existing sweet corn populations (Revilla et al., 2000;

Wasuwatthanakool et al., 2022). However, due to significant

differences from field corn at both the transcriptional and metabolic

levels, improvements cannot be made by simply crossing to field corn.

These problems have led to difficulties in improving the quality of

existing varieties. Although some efforts have been made to improve

sweet corn through molecular marker-assisted selection (MAS) using

key genes related to quality and nutrition identified in field corn, these

attempts have not resulted in significant improvements (Jompuk et al.,

2020; Baveja et al., 2022). Another possible strategy is the modification

of key genes using genome editing techniques such as CRISPR-Cas9

(Wang et al., 2022; Ahmar et al., 2023). Genome editing enables

precise and targeted modifications to the sweet corn genome,

providing a powerful tool for enhancing specific traits. However, it

is important to note that genome editing is a complex process that

requires a deep understanding of gene function and regulation (Zhang

et al., 2021; Wang et al., 2022). MAS can be employed to integrate

these genetic modifications into breeding programs. By combining

these approaches, it is possible to overcome genetic limitations and

achieve improvements in sweet corn quality.

The aggregation of favorable alleles and the targeted

modification of key genes using genome editing techniques,

coupled with the efficient integration of these changes through

marker-assisted selection, hold great promise for the future of sweet

corn breeding. These strategies could lead to the development of

new varieties with enhanced flavor, texture, nutritional value, and

disease resistance, meeting the growing demand for high-quality

sweet corn worldwide.
5 Conclusion

Through analysis of gene expression, metabolite composition,

and co-expression networks among different types of sweet corn, we

uncovered key differences in sugar metabolism among various

sweet corn varieties. These findings not only shed light on the

molecular mechanisms underlying variations in sweet corn quality

but also offer valuable insights for future improvement of sweet

corn. These findings have significant practical implications for the

breeding of sweet corn varieties with enhanced yield and quality.
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