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Introduction

Viral movement proteins (MPs) are essential for cell-to-cell transport of plant virus

genomes through plasmodesmata (PD) that connect neighboring cells in plant tissues

(Lucas, 2006; Tee and Faulkner, 2024). MPs encoded by viruses of distant taxonomic

groups can be unrelated in sequence, and even the number of dedicated MPs in these

viruses can vary (Heinlein, 2015; Kumar and Dasgupta, 2021). Conceivably, dissimilar viral

transport systems may use different mechanisms to translocate the viral genome through

PD (Solovyev et al., 2022).

The Tobacco mosaic virus (TMV) transport system consists of a single 30-kDa MP,

which was the first MP discovered and is now the best studied and considered to be the

propotypic plant virus MP (Citovsky, 1999). TMV MP has several transport-related

activities that enable intracellular transport of virus genome to PD and further

trafficking to neighboring cells through PD. First, TMV MP binds RNA in a sequence-

nonspecific manner in vitro and is hypothesized to interact with viral genomic RNA in vivo

to form complexes (ribonucleoproteins, RNPs) competent for cell-to-cell transport

(Citovsky, 1999). Further studies have shown that TMV MP is associated with viral

replication compartments (VRCs) (Heinlein, 2015), possibly due to its RNA binding

function. Second, TMV MP interacts peripherally with ER membranes and enables the

transport of VRCs along the ER-actin network towards PD (Heinlein, 2015). Third, TMV

MP increases the PD conductivity, or size exclusion limit (SEL), by one or more

mechanisms, including (1) remodeling the internal structure of the PD channel, possibly

by interacting with the PD-resident protein SYT1 (Levy et al., 2015), (2) reducing the SEL-

decreasing callose depositions at the PD neck regions by activating callose-degrading

enzymes (Epel, 2009), and (3) suppressing signaling that is activated in response to virus

infection and leads to enhanced callose deposition (Huang et al., 2023). Intriguingly, TMV

MP is also able to form tubules on the surface of MP-expressing protoplasts (Heinlein et al.,

1998; Takahashi et al., 1999), reminiscent of structures typical of another class of MPs that

specify a virus transport mechanism that is supposed to be fundamentally different from

that of TMVMP, involving the formation of hollow tubules composed of MP subunits that

replace the PD internal structure and penetrate into neighboring cells, thus serving as
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conduits for intercellular transport of virions (Tilsner et al., 2014).

However, the functional significance of this TMV MP activity

remains unknown. Importantly, the characteristic activities of

TMV MP, in particular the abilities to bind RNA and to increase

the PD SEL, are found in MPs of many virus transport systems

unrelated to that of TMV, and can therefore be considered universal

for diverse virus cell-to-cell transport mechanisms, the fine details

of which remain obscure.

In recent decades, it has been well documented that cell-to-cell

transport of a movement-deficient plant virus can be

complemented by a heterologous, unrelated viral MP. These

studies involved plant viruses of different genera, including

potexviruses, hordeiviruses, tobraviruses, and carmoviruses

(Atabekov et al., 1999; Latham and Wilson, 2008). Such trans-

complementation of virus movement can be demonstrated using

several experimental approaches, including (1) double infection

with movement-competent and movement-deficient viruses; (2)

inoculation of a movement-deficient virus onto transgenic plants

expressing a functional MP of heterologous virus; (3)

complementation in cis that occurs upon insertion of

heterologous functional MP gene into a virus genome instead of

cognate MP gene; (4) co-bombardment of plant tissues with

infectious cDNA clone of a dependent virus genome and

heterologous individual MP gene; (5) agroinoculation of a MP-

defective virus genome construct and heterologous individual MP

construct (Atabekov et al., 1999; Latham and Wilson, 2008; Zhou

et al., 2019; Lazareva et al., 2022). Since at least two functions, the

RNA binding and the PD SEL increase, are conserved in different

MPs, complementation of viral transport can be viewed as a result

of the provision of one or both of these functions by a heterologous

MP. Here, we discuss recent complementation studies that may

shed light on possible mechanisms of virus cell-to-cell

transport complementation.
Trans-complementation of potyvirus
cell-to-cell movement by MP of plant
DNA virus

Potyviruses (genus Potyvirus, family Potyviridae) have a

multicomponent transport system. Potyvirus genomes encode a

polyprotein precursor that is autocatalytically processed into ten

mature polypeptides, several of which (CI, P3N-PIPO, HC-Pro,

VPg, 6K2 and CP) are involved in viral cell-to-cell movement

(Solovyev et al., 2022; Xue et al., 2023). The potyvirus cell-to-cell

movement depends on the P3N-PIPO protein, which, like typical

MPs, localizes to PD, increases the PD SEL, and enables its own

transport through PD (Wei et al., 2010; Vijayapalani et al., 2012).

P3N-PIPO interacts with CI, thereby providing a mechanism for

docking of a CI-containing virus transport form, either ER-derived

vesicles induced by the 6K2 protein and containing replicating virus

genomes and viral proteins including CI (Xue et al., 2023), or,

according to another view, modified virions with one terminus

bound to HC-Pro and CI (Torrance et al., 2006; Gabrenaite-

Verkhovskaya et al., 2008). Further potyviral transport through
Frontiers in Plant Science 02
the PD channels requires the PD SEL increase, which can be

induced by P3N-PIPO. P3N-PIPO is targeted to PD and directs

PCaP1, a cellular Ca2+ cation-binding protein that normally

interacts with the PM via myristoylation, to PD, where the Ca2

+-dependent actin filament-severing activity of PCaP1 enables the

SEL increase either by affecting local callose deposition (Cheng

et al., 2020) and/or by disrupting actin filaments in the PD channels

(Schreiber et al., 2024). Thus, P3N-PIPO is the key component of

the potyviral viral transport machinery operating at PD.

A single amino acid substitution (K15E) in P3N-PIPO results in

defective virus cell-to-cell movement (Gong et al., 2022). Strikingly,

this deficiency can be partially complemented by a plant DNA virus

MP coexpressed in trans. This relatively small MP (67 aa in length),

designated C5, is encoded by the genome of monopartite

begomovirus Tomato yellow leaf curl virus (family Geminiviridae)

(Zhao et al., 2023). The GFP-fused C5 protein localizes to PD and

can move between cells through PD (Zhao et al., 2023). The C5

protein can target V2, another virus protein, which is associated

with the ER and localized to the nucleus when expressed alone, to

PD. Since V2 interacts with the viral capsid protein, one of the

functions of V2 has been proposed to be an adaptor protein in the

C5-mediated targeting of virions to PD (Zhao et al., 2023). Similar

to the begomovirus C5 protein, a P3 protein encoded by Diaporthe

sojae circular DNA virus 1, an ssDNA fungal virus that infects

plants, localizes to PD in plant tissues and can complement the cell-

to-cell movement of a P3N-PIPO-deficient potyvirus (Wang et al.,

2024). It should be noted, however, that the geminivirus C5 and the

putat ive MP of the fungal virus have no significant

sequence similarity.

The ability of the two proteins, geminivirus C5 and P3 of the

fungal virus, both encoded by DNA viruses, to complement RNA

virus transport cannot be explained by their possible ability to bind

potyvirus genomic RNA and thus form a transport-competent

entity. First, the potyvirus transport form is not MP-coated RNA,

but rather modified virions or membrane vesicles (see above).

Second, it is very unlikely that DNA virus-specific MPs, which

are dedicated to cell-to-cell transport of DNA genomes, have RNA

binding activity. On the other hand, both the C5 and P3 proteins

complement the functions of P3N-PIPO, which is known to be

local ized to PD and function at PD. Therefore , the

complementation of P3N-PIPO functions by the C5 and P3

proteins, which are both found in PD, can be explained by the

PD modification by these proteins, likely as a result of interaction

with PCaP1, remorin, or other PD-resident polypeptides, leading to

actin remodeling and/or inhibition of callose deposition. Therefore,

we assume that the complementation of heterologous virus

movement by the C5 and P3 proteins can be based solely on their

ability to modify PD.
Trans-complementation of viroid cell-
to-cell movement by plant virus MP

Viroids are small infectious circular ssRNAs that infect a wide

range of plants (Ortolá and Daròs, 2023; Zhang et al., 2024). Since
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viroids are non-coding RNAs, their cell-to-cell and long-distance

movement depends on cell proteins and specific signals in viroid

RNA that can be recognized by these proteins (Tolstyko et al.,

2020). In a similar manner, trafficking of two phloem-limited

umbravirus-like viruses (ULVs) that do not encode MPs involves

phloem proteins such as PP2, which binds ULV RNA (Ying et al.,

2024). The circular RNA genome of Potato spindle tuber viroid

(PSTVd) folds into a rigid secondary structure composed of stem-

loops (Ding, 2009). These secondary structure elements involve

non-canonical base pairs and other non-Watson-Crick nucleotide

interactions that form structurally unique three-dimensional motifs

that are specifically recognized by cell proteins involved in PSTVd

replication and trafficking (Tolstyko et al., 2020). Indeed, mutations

in several structural elements of the viroid RNA are found to inhibit

its transport between plant cells (Ma et al., 2023; Zhang et al., 2024).

In particular, a mutation in loop 27 of the PSTVd RNA blocks

viroid transport from epidermal to palisade mesophyll cells (Takeda

et al., 2011). Strikingly, the transport of the mutant between these

cell types can be complemented by the Tobacco mosaic virus (TMV)

MP (Wu and Bisaro, 2022). At first glance, this observation might

indicate the functional replacement of a plant RNA-binding protein

that specifically interacts with the PSTVd loop 27 by the viral MP.

However, this interpretation is difficult to correlate with the fact

that TMV MP does not selectively bind PSTVd RNA compared to

ssRNA and DNA (Wu and Bisaro, 2022). On the other hand, since

the TMV MP increases the SEL of PD between mesophyll cells in

mature tobacco leaves (Wolf et al., 1989; Deom et al., 1990), it can

be proposed that PD modification is the primary mechanism

underlying the ability of TMV MP to complement viroid

movement. Consistent with this suggestion, the earlier

observations that TMV MP can increase the SEL of PD between

mesophyll and bundle sheath cells, but not between bundle sheath

and phloem parenchyma cells (Ding et al., 1992), correlate with the

inability of TMV MP to mediate phloem entry of the 76AU and

156AU PSTVd mutants (Wu and Bisaro, 2022). Thus, the available

data suggest that TMV MP complements PSTVd transport by

modulating the conductivity of the PD channels.
Specificity of transport through PD

In the examples discussed above, the viral MPs capable of

complementing cell-to-cell transport of heterologous virus or

even viroid genomes appear to act in a non-specific manner, i.e.,

without any specific interactions with proteins of the complemented

virus or virus/viroid RNA, most likely solely by PD modification

and the PD SEL increase. Since viral cell-to-cell transport is

considered to be a more complex process than a simple genome

“snaking” through the open PD gate, it remains unclear how a

change in the PD conductivity can be sufficient for transport

complementation. Therefore, the studies discussed in this paper

reopen the long-debated question of how viral MPs provide
Frontiers in Plant Science 03
selective intercellular transport for cognate viral RNA genomes.

Selectivity may depend on specific binding of viral RNA by MPs;

however, where experimental data are available, MPs have been

shown to bind RNA non-specifically. Another apparent way to

provide the transport specificity is coupling of viral RNA replication

with virus transport. In this model, viral replication compartments

are located in close vicinity of PD, and nascent RNA progeny is

forwarded by MPs directly to the PD channels (Tilsner et al., 2013).

In addition, a certain level of selectivity may be provided by specific

interaction of MPs with viral replicative proteins leading to the

targeting of replicative compartments to PD (Wu et al., 2019).

These mechanisms imply the incorporation of MPs into viral

replicative compartments that is often observed in natural

infection and is not the case in the complementation studies

discussed above, especially in the movement complementation of

viroid, which does not form replication compartments at the PD

entrance and is replicated in the nucleus by cell proteins (Zhang

et al., 2024). Thus, the above discussed examples of viral movement

complementation between distant RNA and DNA infectious agents

prompt researchers to identify the mechanism of specificity of MP

functions in virus cell-to-cell transport.
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