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Introduction: Accurate and rapid identification of cabbage posture is crucial for

minimizing damage to cabbage heads during mechanical harvesting. However,

due to the structural complexity of cabbages, current methods encounter

challenges in detecting and segmenting the heads and roots. Therefore,

exploring efficient cabbage posture prediction methods is of great significance.

Methods: This study introduces YOLOv5-POS, an innovative cabbage posture

prediction approach. Building on the YOLOv5s backbone, this method enhances

detection and segmentation capabilities for cabbage heads and roots by

incorporating C-RepGFPN to replace the traditional Neck layer, optimizing

feature extraction and upsampling strategies, and refining the C-Seg

segmentation head. Additionally, a cabbage root growth prediction model

based on Bézier curves is proposed, using the geometric moment method for

key point identification and the anti-gravity stem-seeking principle to determine

root-head junctions. It performs precision root growth curve fitting and

prediction, effectively overcoming the challenge posed by the outer leaves

completely enclosing the cabbage root stem.

Results and discussion: YOLOv5-POS was tested on a multi-variety cabbage

dataset, achieving an F1 score of 98.8% for head and root detection, with an

instance segmentation accuracy of 93.5%. The posture recognition model

demonstrated an average absolute error of 1.38° and an average relative error

of 2.32%, while the root growth prediction model reached an accuracy of 98%.

Cabbage posture recognition was completed within 28 milliseconds, enabling

real-time harvesting. The enhanced model effectively addresses the challenges

of cabbage segmentation and posture prediction, providing a highly accurate

and efficient solution for automated harvesting, minimizing crop damage, and

improving operational efficiency.
KEYWORDS

multi-task perception network, cabbage harvest, YOLOv5-POS, Bezier curve,
posture recognition
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1 Introduction

The predominant method for cabbage harvesting today is

mechanical harvesting, which offers advantages such as high

efficiency and reduced labor costs. However, this method is also

associated with a high incidence of mechanical damage (Ogedengbe

et al., 2022). This damage primarily results from the diverse root

shapes and complex postures of cabbages, further exacerbated by

the high speed of mechanical operations. Consequently, it becomes

challenging for the harvester to swiftly and accurately identify and

assess the posture of the cabbage, and adjust the cutting position

accordingly. Moreover, collisions and transmission vibrations

among cabbage plants during the harvesting process can further

disrupt the alignment of the cutting device (Tong et al., 2023).

Therefore, achieving rapid and precision recognition of cabbage

posture during harvesting is of significant research importance

(Dongdong et al., 2015).

Detecting and localizing the cabbage root serves as a prerequisite

for recognizing its posture. In previous research, the root recognition

of conventional fruits and vegetables has typically relied on

traditional image processing methods rooted in machine learning

(Zhaoxin et al., 2022). For instance, Ying et al. (2000) proposed a

straightforward algorithm based on Fourier descriptor technology to

detect pear stems in traditional image processing. Luo et al. (2018)

employed a segmentation algorithm based on k-means clustering and

HSV color space to identify grape cluster pedicels and determine

appropriate cutting points for each cluster. Xiong et al. (2018) utilized

an improved fuzzy clustering method (FCM) and Otsu to segment

images of lychee fruits and stems, achieving accurate calculation of

the picking point for lychees during nighttime. Yamamoto et al.

(2014) focused on tomato segmentation, distinguishing fruit, leaf,

stem, and background based on pixel and blob information and

concluded by employing X-means clustering to precisely detect

individual intact tomato fruits on the plant. However, traditional

image processing methods often face limitations in extracting high-

dimensional information, making them susceptible to environmental

illumination and object occlusion. Consequently, these factors

contribute to reduced recognition accuracy when dealing with

complex scenes involving fruit and vegetable roots (Hua et al., 2023).

Compared to traditional image processing methods, deep

learning models possess enhanced capabilities in extracting high-

dimensional features and end-to-end learning. This enables them to

swiftly adapt to large-scale data, effectively addressing challenges

posed by illumination variations, complex environments, and high-

dimensional information extraction. As a result, deep learning

models can significantly enhance the accuracy and stability of

root recognition tasks (Sun et al., 2023; Roy and Bhaduri, 2022;

Yu et al., 2019). For instance, Sa et al. (2016) utilized Faster R-CNN

to integrate multi-modal (RGB and NIR) information, achieving

precision separation of leaves and stems for various fruits (such as

bell pepper, rock melon, strawberry, and apple) in complex

environments. Wu et al. (2021) employed an improved YOLOv3

model optimized through clustering. This model demonstrated
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exceptional performance in rapidly and accurately identifying

banana fruits, inflorescence axes, and flower buds, even under

different lighting conditions. Zhu et al. (2023) proposed a method

for detecting and locating tea buds based on YOLOv5s and 3D point

clouds. They reconstructed YOLOv5s using the Efficient Channel

Attention Network (ECANet) module and the Bidirectional Feature

Pyramid Network (BiFPN), and combined it with the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN)

clustering algorithm to achieve precision detection and localization

of tea buds. Although the aforementioned method performs

excellently in terms of detection accuracy, they were evaluated

under unobstructed conditions, which limits their applicability in

practical agricultural production. Therefore, the challenges of

recognition caused by occlusion remain a key issue in

current research.

According to existing reports, the combination of deep learning

with image processing or machine learning methods has shown

promising results in fruit recognition under partial occlusion. For

example, Zhao et al. (2023) proposed a single-stage instance

segmentation model that incorporates Deformable Convolutions

(DCN) and the Convolutional Block Attention Module (CBAM) to

classify peach images of nine different varieties and three maturity

stages, even under complex conditions involving leaf occlusion or

overlap. The model achieved a mean Average Precision (mAP) of

72.12%. Hussain et al. (2023) employed the Mask R-CNN algorithm

to segment apple fruits and stems and used Principal Component

Analysis (PCA) to estimate the orientations of the fruits and stems.

This method successfully identified fruits and stems partially

obscured by leaves, achieving average precision (AP) scores of

83.4% for fruits and 38.9% for stems. Sapkota et al. (2024)

successfully implemented the YOLOv8 instance segmentation

algorithm to achieve precision multi-class segmentation of trunks,

branches, and unripe green fruits in the complex environment of an

apple orchard, attaining a single-class instance segmentation mAP

of 90.2% and a multi-class instance segmentation mAP of 74%.

However, unlike the aforementioned studies, the connection point

between the cabbage head and the root is completely obscured by

outer leaves, making the root cutting position nearly impossible to

observe. Additionally, the high computational demands and lower

segmentation accuracy of existing research present difficulties in

meeting the real-time requirements for mechanical harvesting.

In conclusion, given the diversity and morphological

complexity of cabbage varieties, existing models face challenges in

identifying the cut points of cabbage roots that are completely

covered by outer leaves. Therefore, this study proposes a multi-task

perception network based on the YOLOv5s architecture, named

YOLOv5-POS, which optimizes the semantic segmentation head

and neck layers to enhance model robustness. Additionally, a root

growth prediction model based on Bézier curves was introduced to

accurately predict the tilt angle of the cabbage root. The model

achieves a mAP of 93.5% in instance segmentation, an average

absolute error of 1.38° in posture prediction, an average relative

error of 2.32°, and a detection time of 0.028 seconds. Compared
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with mainstream instance segmentation models such as YOLOv5s,

YOLOv8n, and Mask-RCNN, as well as angle prediction methods

like the minimum bounding rectangle and skeleton extraction,

YOLOv5-POS demonstrates good performance.

The primary contributions of this study can be summarized

as follows:
Fron
• Construction of a novel cabbage dataset: A comprehensive

dataset comprising images of various cabbage varieties was

meticulously curated. The root morphological structures of

these varieties were classified into three main types: curved,

short, and straight.

• Development of the YOLOv5-POS multi-task network:

Based on the YOLOv5s framework, the YOLOv5-POS

model was developed to simultaneously perform target

detection and region segmentation of cabbage heads and

roots. This was achieved by integrating the C-RepGFPN

module within the Neck layer and optimizing the

segmentation head. These enhancements enable effective

refinement and fusion of high-level semantic features with

low-level spatial features, thereby significantly enhancing

detection accuracy.

• Establishment of a cabbage pose prediction model based on

the Bezier curve: By combining the YOLOv5-POS multi-

task network with Bezier curve fitting, this model enables

precision determination of cabbage root poses and predicts

their growth paths in complex occlusion scenarios.

Additionally, the introduction of the KD-Tree algorithm

accelerates the key point search process, significantly

improving the detection speed of the model.
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2 Materials and methods

2.1 Data sources

To capture the growth variations among cabbage varieties,

plants from Kunming in Yunnan Province, Harbin in

Heilongjiang Province, and Huzhou in Zhejiang Province were

selected for this study. These plants showcased a spectrum of root

shapes, encompassing curved, short, and straight varieties, as

illustrated in Figure 1. Cabbages were secured with a clamping

device, and images were captured using a CCD camera with a

resolution of 1080×720 pixels positioned 30-40 cm from the

cabbage. The images were collected from November to December

2022, resulting in a total of 988 images in different poses.

Subsequently, the widely used annotation tool, Labelme, was

employed to manually annotate cabbage heads and roots in each

image. Target objects were delineated polygonally to exclude

irrelevant pixels from the annotations. Of the entire dataset, 837

images were designated for training and validation, while 151

images were set aside for testing purposes.
2.2 Dataset preparation

To enhance the generalization capabilities of the model for real-

world scenarios involving occlusion and low lighting conditions,

image augmentation techniques were applied using the OpenCV

library in Python. These techniques included random combinations

of rotation, translation, brightness adjustments, noise addition, and

increased occlusion, as depicted in Figure 2.
FIGURE 1

Collection locations and cabbage varieties from each region. (A) curving, (B) smallish, (C) Straight.
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Each original image produced six new images, resulting in a

total of 5022 images. However, it is important to note that data

augmentation may impact the quality of some images. Therefore, a

manual selection process was employed to retain an effective

dataset, totaling 4912 images. Among these, 3930 images were

used for training, while 982 images were allocated for validation.
2.3 Cabbage root posture and inclination
recognition method

As depicted in Figure 3, the proposed method for cabbage

posture and inclination recognition, named YOLOv5-POS, consists

of three main steps:
Frontiers in Plant Science 04
1. YOLOv5-POS Model Integration: Cabbage images are fed

into a pre-trained YOLOv5-POS model to detect and

segment cabbage heads and roots.

2. Bezier Curve and Key Point Extraction: Traditional image

processing techniques are employed to extract key points,

which are further identified using geometric moments and

the minimum bounding rectangle method. Three key

points are extracted: the centroid of the cabbage root,

the nearest point at the root break, and the centroid of the

cabbage head. These key points serve as control points for

fitting the Bezier curve, which simulates the growth

trajectory of the root. By connecting these key points on

the cabbage, the main axis of the cabbage is determined.

This method combines the precise description of
FIGURE 3

Cabbage posture prediction method based on YOLOv5-POS multi-task perception network.
FIGURE 2

Image augmentation techniques applied. (A) Original image, (B) Mirror and noise, (C) Mirror and translate, (D) Flip with occlusion, (E) Translate and
adjust brightness, (F) Mirror and flip.
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geometric moments with the smooth fitting of Bezier

curves, accurately depicting the shape and direction of

the cabbage root.

3. Posture and Inclination Calculation: Using the predicted

main axis of the cabbage, the angle between this axis and

the ground is calculated to determine the cutting angle.
2.4 YOLOv5-POS multi-task
network architecture

A multi-task learning network in deep learning refers to an

advanced neural network architecture designed to simultaneously

process and learn multiple interconnected tasks. This architecture

typically consists of a shared encoder and several task-specific

feature decoders (Lee and Seok, 2023). The shared layer,

positioned at the lowest level of the network, extracts common

features that are advantageous for all tasks. This capability enables

the network to capture shared information across different tasks,

thereby improving data utilization efficiency and the generalization

capabilities of the model.

Taking advantage of the high accuracy and real-time

performance of the YOLOv5s model, this study proposes a real-

time multi-task convolutional neural network, named YOLOv5-

POS, for the detection and segmentation of cabbage heads and

roots. The network features a shared encoder and two independent

decoders, as illustrated in Figure 4. The proposed multi-task

network uses the existing Backbone and Neck layers as the shared

encoder, while optimizing the Neck and Head layers. To minimize

computational overhead and maintain the one-stage detector

structure, redundant shared blocks between different decoders

are omitted.

2.4.1 The overall structure of YOLOv5s
The YOLO series algorithms have gained significant popularity

in the field of computer vision object detection due to their

remarkable accuracy and real-time performance. Through

continuous optimization and iteration, these algorithms have

evolved to the YOLOv10 version. However, despite the improved
tiers in Plant Science 05
performance metrics in the latest iteration, it often requires

substantial computing resources and memory, which can hinder

detection speed and model deployment.

To meet the requirements of the cabbage posture recognition,

focusing on detection speed and lightweight model deployment, this

study utilizes the YOLOv5s model as the foundation for

improvement. The model size of YOLOv5s is a mere 14.1 MB

(Liu et al., 2023; Tian et al., 2023). The YOLOv5s network structure

can be divided into three parts: backbone, neck, and head. The

backbone primarily extracts basic features from the image and

typically comprises Conv (Convolutions), C3 (Cross Stage Partial

Networks Bottleneck with 3 convolutions), and SPPF (Spatial

Pyramid Pooling – Fast). This network captures rich information

from the input image. The neck layer refines and fuses features

extracted from the backbone using a Feature Pyramid Network

(FPN) and a Path Aggregation Network (PAN), enhancing the

ability of the model to recognize objects at different scales. The head

is responsible for predicting and decoding the output from the neck

to generate the categories and location information of the targets.

Building upon the fundamental structure of YOLOv5s, this

study introduces an efficient multi-scale feature fusion module

called C-RepGFPN, which leverages multi-layer aggregation and

reparameterization techniques. This module enhances the

interaction among features of different scales to accommodate

changes in object proportions across different scenes. Moreover,

the segmentation Head (C-seg) is improved based on the original

Head layer, capitalizing on its ability to extract and fuse multi-scale

features. This enhancement improves adaptability to changes in

target scale and enhances the ability of the model to capture

intricate details. The structure of the improved model is

illustrated in Figure 5.

2.4.2 C-RepGFPN neck
To enhance the performance of the YOLOv5s model in the

cabbage segmentation task, particularly its ability to varying

cabbage sizes in different scenarios, this study introduces the C-

RepGFPN Neck. This incorporates the Efficiency-RepgFPN

architecture (Wang et al., 2023), optimizing the structure and

fusion method of the Feature Pyramid Network (FPN). This

enhancement effectively reduces redundant computing and
FIGURE 4

Multi-task architecture of YOLOv5-POS.
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memory consumption. Additionally, the introduction of the re-

parameterization mechanism and ELAN into the CSPNet branch

enhances feature interaction across different scales and improves

the quality of feature fusion. Building on these optimizations,

efficiency in feature extraction is further enhanced by integrating

a 1x1 convolution kernel into the Efficient-RepGFPN architecture.

This reduces the dimensionality of feature maps extracted by the

Backbone, facilitating streamlined CSPStage processing. These

enhancements in the C-RepGFPN Neck not only improve feature

extraction efficiency but also significantly enhance model accuracy

in segmenting cabbages of various sizes and shapes. The specific

structure and operational principles of the C-RepGFPN Neck are

illustrated in Figure 6.
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2.4.3 C-Seg segmentation head
To tackle the challenges posed by diverse backgrounds, varying

degrees of occlusion, and changes in illumination on cabbage

recognition, this study proposes the C-Seg segmentation head

model. This model combines the efficient detection capabilities of

the YOLOv5s network with the exceptional performance of the U-

Net model in image segmentation (Ronneberger et al., 2015). The

objective is to enhance the ability of the model to capture edge and

texture information of cabbage, thereby achieving more accurate

recognition and segmentation while maintaining real-

time performance.

The C-Seg segmentation head consists of two main

components: ModuleList and Proto, as depicted in Figure 7. The
FIGURE 6

Diagram of the C-RepGFPN Neck network structure.
FIGURE 5

The structure of YOLOv5-POS model.
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ModuleList performs convolution operations on feature maps of

different scales using three convolution layers, extracting and

enhancing scale-specific feature information. Conversely, the

Proto component includes a residual convolutional layer, a

convolutional layer, and a deconvolution layer. Together, these

layers facilitate feature extraction, upsampling, and the generation

of segmentation results. Notably, the residual convolutional layer

improves feature transfer through residual connections, enhancing

training stability and enabling the model to capture deeper features.

To further optimize the performance of the model, a ResConv

convolutional layer incorporating residual connections replaces the

standard convolutional layer in the original YOLOv5s segmentation

head. This substitution effectively enhances the depth and feature

expression capabilities of the network. Additionally, deconvolution

operations are employed to achieve feature map upsampling and

adjust the number of channels in the model. This strategy

substantially reduces the number of model parameters and the

consumption of computing resources, resulting in a more

lightweight network structure.
2.5 Cabbage posture prediction model
based on Bezier curve

In practical cultivation scenarios, cabbage roots often bend and

are wrapped by outer leaves (Dai et al., 2016). Figure 8A illustrates a

cabbage plant with its outer leaves removed, where the YOLOv5-

POS model effectively identifies and segments the cabbage head and
Frontiers in Plant Science 07
root. However, when a portion of the root is concealed by outer

leaves, the visible growth area of the lower root is frequently

misclassified as the actual growth direction. This results in

erroneous detection, as indicated by the red dotted line in

Figure 8B, whereas the true main axis of the cabbage root is

depicted in in Figure 8C. Thus, relying solely on YOLOv5-POS

for image recognition and segmentation does not adequately

address the challenge of cabbage pose recognition.

Furthermore, the occlusion caused by the outer leaves obscures

the connection point between the cabbage head and root after

instance segmentation, complicating the ability of harvester to

determine the precision cutting position. To tackle this issue, this

study draws inspiration from anti-gravity stem tracking root image

inpainting algorithm proposed by Mingxuan et al. (2022), originally

developed for occluded maize roots. A Bessel curve fitting method is

employed to create a prediction model that restores the integrity of

the occluded area in the root.

By combining this model with the YOLOv5-POS multi-task

network, accurate posture judgment of the cabbage root is achieved.

The specific judgment process, as depicted in Figure 9, involves four

main steps: preprocessing of multi-task network outputs based on

YOLOv5-POS, extraction of key points using the Bessel curve,

development of a principal axis prediction model, and final

posture assessment.

2.5.1 Determination of the main axis of cabbage
As illustrated in Figure 10, the YOLOv5-POS multi-task

network model determines the positions of the cabbage root and
FIGURE 7

Workflow diagram of the detection head.
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head in the image. This method employs a geometric model to

streamline the segmentation of the cabbage head and root target

regions. Utilizing the geometric moment method, the model

calculates the minimum bounding rectangle and centroid point of

the cabbage head and root, facilitating the determination of their

position and mass distribution. Subsequently, the closest breakpoint

is identified by traversing the midpoint of the root mask from the

uppermost edge of the minimum enclosing rectangle. Key points for

the Bezier curve are determined based on the centroid point of the

cabbage head, the centroid point of the cabbage root, and the closest

point. The Bezier curve is then constructed to predict the growth

path of the root. Finally, the principal axis of the cabbage is obtained

by calculating the intersection point between the curve and the

cabbage head mask, and connecting it with the centroid of the

cabbage head.

2.5.2 Determination of the Bessel curve
control point

In this study, the Bezier curve representing the posture of the

cabbage root is constructed using three key control points:

the centroid point P0 of the cabbage root, the nearest point P1 to
Frontiers in Plant Science 08
the breakpoint of the cabbage root, and the centroid point P2. The

connection between the breakpoint and the cabbage head is

determined based on the anti-gravity stem tracking principle of

the plant, making P1 an essential vertex of the Bezier curve.

The search for the point P1 significantly influences the calculation

speed of the prediction model. To expedite this search process, a KD-

Tree method is employed to establish the topological relationship

between the spline curve points and the root contour points. A KD-

Tree is a specialized data structure that organizes k-dimensional data

for rapid data retrieval. By recursively dividing the k-dimensional

space, the KD-Tree efficiently organizes and retrieves data, excelling

in tasks such as nearest neighbor search and range search for large-

scale multi-dimensional data, ensuring efficient performance (Jin

et al., 2023). Figure 11 illustrates the construction process of the

KD-Tree. Initially, a partition dimension and partition value are

selected, typically choosing the median of all data points within the

current dimension as the partition value. Subsequently, the data

points are divided into two subsets based on this split value. This

process is repeated on each subset until all data points are contained

in the leaf nodes of the tree. Consequently, each node of the binary

tree corresponds to a k-dimensional hyperrectangular region,
FIGURE 9

Flowchart of cabbage pose prediction model based on Bezier curve.
FIGURE 8

Schematic diagram of cabbage root inclination recognition error. (A) YOLOv5-POS recognition and segmentation results, (B) Mismeasurement
results due to occlusion of outsourced leaves, (C) Actual measurement results.
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effectively capturing the distribution and relationship of the data

points in the k-dimensional space. The time complexity of the KD-

Tree is as follows:

T(n)
O(1);  n ¼ 1

O(n)þ2 · T ½2n�
� �

; n>1

(
(2:1)

Bezier curves can be recursively generated and are defined by n

+1 control points and n interpolation points for a Bezier curve of

degree n. The first and last control points represent the starting and

ending points of the curve, while the remaining control points are

responsible for shaping the curve. The interpolation points serve to

connect adjacent control points, creating a smooth and continuous

curve. To calculate a point P(t) on a Bezier curve of degree n, the

following formula is utilized:

P(t) = (1� t)n � P0þC(n; 1)� t� (1� t)(n�1) � P1

+⋯þC(n; n� 1)� t(n�1) � (1� t)� P(n�1)þtn � Pn

(2:2)
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Where t is a parameter ranging from 0 to 1, denoting the

position along the curve. P0, P1, ⋯, Pn represent the n+1 control

points, and C(n; i) denotes the binomial coefficient, given by
n!

(i!�  (n�i)). Although this equation can be employed to compute

points on the curve, the computational complexity is substantial,

particularly for higher-order curves. Hence, the De Casteljau

algorithm (Sanchez-Reyes, 2020) is utilized to calculate each

linear combination through multiple recursive steps, ultimately

yielding the desired points on the curve.

This relationship is depicted in Figure 12, where the line P4P5P3
represents the tangent to the curve P0P5P2, with P5 serving as the

tangent point. To compute the points on the second-order Bezier

curve using the De Casteljau algorithm, a recursive approach is

employed, incorporating the parameter k. The algorithm is outlined

as follows:

Q0  ¼  (1 �  t)� P0 þ  t� P1 (2:3)

Q1  ¼  (1 �  t)� P1 þ  t� P2 (2:4)
FIGURE 11

KD-Tree building process.
FIGURE 10

Flowchart of cabbage pose prediction model based on Bezier curve.
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Q0 and Q1 are linear interpolation points,

B(t)¼  (1 �  t)� Q0 þ  t� Q1 (2:5)

When t ∈ [0,1], it represents a quadratic Bezier curve P0, P1, P2
defined by the 3−vertices P0P2.

2.5.3 Cabbage posture judgment
In accordance with the conveying structure of the clamping

conveying device on the cabbage harvester, its primary function is to

facilitate the seamless transportation of cabbage to the cutting device.

Throughout the conveying process, it is imperative to maintain the

cabbage in a relatively immobile state, in perfect alignment with the

clamping conveyor belt, thereby enabling the root cutting device to

effectively sever the cabbage root. In order to ensure the precision of the

root cutting process, it is vital to keep the cabbage root at an optimal

angle within the designated cutting range. Any deviation beyond this

range is deemed an oblique state. Consequently, the point of intersection

between the projected root growth path, as determined by the Bezier

curve, and the cabbage head mask, is denoted as P3(x3;  y3). The

midpoint directly above it is denoted as P2(x2,  y2), as visually

depicted in Figure 10G. The slope formula is expressed as follows:

q = tan−1 y2−y3
x2−x3

� ���� ��� (2:6)

Compare the obtained q with the cutting threshold Angle b to

determine the cabbage pose:

cabbage posture
Stay vertical;   q ≤ b

Tilt of attitude;   q>b

(
(2:7)
2.6 Model performance evaluation and
experimental environment

2.6.1 Model performance evaluation
This study conducts ablation experiments on multi-task

networks and compares them with various commonly used multi-
Frontiers in Plant Science 10
task networks and instance segmentation models to assess the

performance of the YOLOv5-POS model. The primary evaluation

metrics for the detection model include Recall, Precision, and mean

Average Precision (mAP). Precision denotes the ratio of correctly

identified targets to the total detected targets, while recall represents

the proportion of true targets that are successfully detected. The F1

score, a harmonic mean of precision and recall, serves as an

indicator of the overall stability and robustness of the model. A

higher F1 score typically implies greater reliability. The F1 score is

calculated using the following formula:

Recall ¼ TP
TPþFN (2:8)

Precision ¼ TP
TPþFP (2:9)

F1 ¼ 2�Recall�Precision
Recall þ Precision   (2:10)

The calculation of the F1 score involves the utilization of TP

(true positives), FP (false positives), and FN (false negatives).

Specifically, TP represents the count of correctly identified

examples, FP denotes the count of incorrectly identified positive

examples, and FN signifies the count of missed positive examples.

In the context of evaluating instance segmentation models,

the primary metric employed is the mAP. This metric is computed

as follows:

AP =
Z 1

0
P(R)dR (2:11)

mAP = 1
no

n
AP (2:12)

In the formula for mAP, P represents Precision and R represents

Recall. Intersection over Union (IoU) is a measure of how well the

predicted bounding box aligns with the ground truth bounding box,

where larger values indicate more accurate predictions.

mAP provides a comprehensive assessment of the detection

performance across various IoU thresholds. mAP@0.5 specifically

emphasizes the approximate accuracy, while mAP@0.5:0.95

requires the model to perform well across multiple IoU

thresholds. Additionally, the Frame rate (FPS) reflects the

detection speed of the model.
2.6.2 Test results evaluation metrics
In this study, three evaluation metrics were employed to

compare the computational measurements of angles: Mean

Absolute Error (MAE), Mean Squared Error (MSE), and Root

Mean Squared Error (RMSE). Both MSE and MAE quantify the

discrepancy between predicted and true values. MSE is the average

of the squared differences between predictions and true values,

whereas MAE is the average of the absolute differences. RMSE,

derived as the square root of MSE, normalizes the squared errors to

the same scale as the original values, offering a more interpretable

measure of the prediction error. Its formula is as follows:

MAE ¼ 1
non

i¼1 yr�yp
�� �� (2:13)
FIGURE 12

Bezier key point determination curve.
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MSE ¼ 1
non

i¼1(yr�yp)
2 (2:14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i¼1(yr�yp)
2

q
(2:15)

Where, yr represents the true value, yp represents the predicted

value, and n represents the number of samples.

2.6.3 Experimental environment
and configuration

The Autodl server serves as the foundational platform for

establishing the training environment, operating primarily on

Ubuntu 20.04. PyTorch serves as the deep learning framework of

choice for conducting a series of experiments. Hardware

experiments were performed using an NVIDIA GeForce RTX

2080Ti, complemented by a cloud server with 11GB of memory.

For the initial training, YOLOv5-POS utilizes the model

parameters outlined in Table 1. To expedite the training process,

a pre-trained model from the YOLOv5 project is employed for

transfer learning. Throughout training iterations, the network

continually saves parameters associated with the highest

accuracy achieved.

Furthermore, the MMDetection open-source object detection

toolbox is utilized to compare the implementation of various object

detection model algorithms, such as Mask R-CNN, Cascade R-

CNN, SOLOv2, HTC, among others. All networks adhere to the

same training environment settings and datasets, employing their

default initialization parameters and pre-trained weights to ensure

optimal network performance.
3 Analysis and results

3.1 Model training

For a comprehensive comparison, all enhanced models

underwent training and validation using the same datasets. As

depicted in Figure 13, the training loss steadily decreases with

increasing iterations. Initially, training commenced with the

provided weight file YOLOv5s.pt. Notably, the training loss curve

exhibits rapid convergence within the first 20 iterations.

Subsequently, the rate of loss reduction gradually diminishes,
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reaching a plateau around 60 iterations. Beyond approximately

100 iterations, both loss values and accuracy stabilize, displaying

minimal fluctuations.
3.2 Ablation experiments

The efficacy of the model improvement was evaluated through

ablation experiments to determine the impact of the enhanced

components on the performance of the model. Building upon the

original YOLOv5s algorithm, an improved method was

incorporated at each stage, resulting in four sets of experimental

comparisons. The outcomes are presented in Table 2.

The results presented in Table 2 show that YOLOv5s-C-FGPN

enhances accuracy, recall rate, and mAP@0.5 indicators for object

detection and instance segmentation, with F1 showing a 0.4%

improvement. The Mask segment shows a 0.2% increase in

mAP@0.5:0.95, enabling superior image feature extraction and

enhancing model accuracy and recall. However, the increased

accuracy comes with a rise in model parameters, with GFPLOPs

increasing from 25.7 to 29.5.

In contrast, the Box target detection and Mask image

segmentation components of YOLOv5-C-Seg exhibit slight

decreases in accuracy and mAP@0.5, with F1 and mAP@0.5:0.95

declining by 0.3% and 1.4% respectively. However, model recall

improves by 0.4% and 0.9%, indicating better detection of true

targets. Notably, YOLOv5-Seg reduces the number of parameters,

with GFLOPs decreasing from 25.7 to 21.5, thus improving

computational efficiency.

Regarding the YOLOv5-POS model, it exhibits an increase of

0.3 percentage points in mAP for object detection and 0.8

percentage points in image segmentation, signifying enhanced

accuracy. Despite the increase in model parameters, the proposed

model effectively reduces GFLOPs while optimizing calculations,

showcasing improved computational optimization capabilities.

To further evaluate the performance of the model, this study

assessed the trained model on a test set. Figure 14 illustrates the
TABLE 1 The parameter setting of the YOLOv5-POS.

Parameters Value

Learning rate 0.01

Momentum 0.937

Weight decay 0.0005

Epoch 100

Batch-size 8

Optimizer 98.4%
FIGURE 13

Model loss results.
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comparison of algorithm performance before and after

enhancement. Figure 14A shows the detection results of the

baseline YOLOv5s model, where certain areas exhibit significant

false detections. In contrast, Figure 14B displays the detection

results of the YOLOv5s-POS model, where the same areas show a

marked reduction in false detections. The results indicate the

YOLOv5s-POS model achieves higher detection accuracy and

significantly reduces false detections.
3.3 Comparison of different
detection algorithms

To further validate the effectiveness of the proposed model,

several mainstream multi-task network and instance segmentation

models were trained and evaluated using consistent training and

validation datasets. The models considered for comparison

encompass multi-task networks such as YOLOv5s, Mask-RCNN,

Cascade-Mask-RCNN, and HTC, alongside instance segmentation
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models like SOLOv2 and YOLOv5-POS. The experimental results

are presented in Table 3.

Table 3 presents a comparative analysis of various models based on

multiple metrics, including model size and frames per second (FPS).

The YOLOv5s and YOLOv8n models stand out for their compact size

and high processing speed, though their accuracy falls short compared

to the YOLOv5-POS model. In contrast, models like Mask-RCNN,

Cascade-Mask-RCNN, HTC, and SOLOv2 exhibit inferior

performance in terms of model size, processing speed, and detection

rates when compared to YOLOv5-POS. Although YOLOv8s achieves a

marginally higher accuracy (0.3%) than YOLOv5-POS, it comes with a

20% increase in model weight. In the Box (mAP@50) and Box (mAP@

50:95) metrics, YOLOv5-POS attained impressive scores of 93.5% and

81.4%, respectively, and excelled in the Mask (mAP@50) and Mask

(mAP@50:95) metrics with scores of 93.3% and 80.1%, respectively.

Consequently, the YOLOv5-POS model demonstrates superior

performance in practical deployment scenarios.

The experimental findings underscore the substantial

enhancement in accuracy achieved by the YOLOv5-POS model
TABLE 2 The results of the YOLOv5-POS on the Ablation studies.

Model

Box Mask

Parameters GFLOPs
Precision Recall mAP@0.5 F1 Precision Recall mAP@0.5

mAP@0.5:
0.95

YOLOv5s 98.2% 89.7% 93.0% 98.4% 98.4% 89.4% 92.7% 79.9% 7.06 25.7

+C-
RepGFPN

98.8% 89.8% 93.5% 98.8% 98.8% 89.7% 93.0% 80.1% 9.18 29.5

+C-Seg 97.9% 90.1% 92.7% 98.1% 98.1% 90.3% 92.7% 78.5% 6.98 21.5

YOLOv5-
POS

97.5% 90.1% 93.5% 98.8% 98.8% 90.7% 93.3% 80.1% 9.10 25.1
FIGURE 14

Comparison of model detection results before and after algorithm improvement. (A) YOLOv5s detection result, (B) YOLOv5-POS detection result.
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for object detection and instance segmentation tasks. Specifically

tailored for detecting cabbage heads and roots, the YOLOv5-POS

model effectively rectifies misidentifications that were evident in the

original YOLOv5s model. This improvement is pivotal for accurate

cabbage pose recognition predictions. Despite an increase in the

number of model parameters, this study demonstrates that the

proposed model not only enhances accuracy but also optimizes

computational efficiency by reducing GFLOPs during the

calculation process. Consequently, the model achieves efficient

computations, crucial for real-time applications. Moreover, the

YOLOv5-POS model boasts a compact size of 19.4 MB and a

high processing speed of 263 FPS, striking an optimal balance

between model size and speed. These attributes collectively

contribute to delivering precise and reliable detection results.
3.4 Comparison of different
measurement methods

To verify the accuracy and reliability of the proposed method in

this study, a comparative experiment was conducted with other

traditional image processing methods. The experiment utilized 138

images of three different cabbage varieties. The dataset included

challenging samples with occluded, severely tilted, short, distorted,

and damaged cabbage roots.

Prior to computer-based image measurements, actual angles

were measured using an electronic angle measuring instrument for
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testing and comparison purposes. The results are presented in

Table 4 and Figure 15. The test accuracy of the proposed

YOLOv5-POS method surpasses that of the YOLOv5-MER and

YOLOv5-SE methods across the Kunming-cabbage, Harbin-

cabbage, and Huzhou-cabbage datasets. Specifically, on the

Harbin-cabbage dataset, the YOLOv5-POS method achieves an

RMAE (Root Mean Absolute Error) of only 0.63°, indicating the

highest test accuracy among the methods evaluated. On the

Kunming-Cabbage dataset, although the RMAE is 2.65°, it

significantly outperforms the 8.09° of the YOLOv5-MER method

and the 17.50° of the YOLOv5-SE method. When considering the

aggregate results across all datasets, the YOLOv5-POS method

achieves a total RMAE of 1.38° and a total RMSE (Root Mean

Squared Error) of 2.32, both metrics significantly better than those

of the other two methods. Specifically, YOLOv5-MER records a

total RMAE of 9.95° and a total RMSE of 13.32, while YOLOv5-SE

records a total RMAE of 14.4° and a total RMSE of 15.2. These

findings underscore the superior test accuracy of the YOLOv5-POS

method when evaluated across all test datasets.
4 Discussion

In addition to the proposed method, two techniques from other

fields were selected for comparison based on their similarity to the

technical processing object and the morphological structure of

cabbage roots. These techniques include the minimum bounding
TABLE 3 Comparison of detection models.

Model
Box Mask

Size (MB) FPS
mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95

YOLOv5s 93.0% 81.1% 92.7% 79.9% 15.1 286

Mask-Rcnn 89.6% 77.2% 87.9% 70.9% 343 17

Cascade-Mask-Rcnn 88.0% 72.6% 89.6% 73.5% 588 14

HTC 88.9% 74.3% 90.1% 75.2% 589 9

SOLOv2 – – 89.5% 74.8% 353 16

YOLOv8n 92.2% 76.9% 92.6% 76.7% 6.8 322

YOLOv8s 93.8 84.4 93.6 82.6 23.8 258

YOLOv5-POS 93.5% 81.4% 93.3% 80.1% 19.4 263
TABLE 4 Comparison table of different measurement methods.

Species
Methods

Kunming-cabbage Harbin-cabbage Huzhou-cabbage Sum

RMAE (°) RMSE (°) RMAE (°) RMSE (°) RMAE (°) RMSE (°) RMAE (°) RMSE (°)

YOLOv5-POS 2.65 4.75 0.63 1.04 0.85 1.16 1.38 2.32 YOLOv5-POS

YOLOv5-ME 8.09 9.95 8.84 13.43 12.94 16.59 9.95 13.32 YOLOv5-ME

YOLOv5-SE 17.50 10.57 10.95 15.92 14.77 19.12 14.4 15.2 YOLOv5-SE
YOLOv5-POS is the method proposed in this study. YOLOv5-MER combined with minimum external rectangle and YOLOv5-SE combined with skeleton extraction.
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rectangle method used by Guo et al. (2020) for cluster pepper

identification and the skeleton extraction method used by Qi et al.

(2022) for litchi trunk identification.

As shown in Figure 16, when external leaf occlusion is absent,

the traditional skeleton extraction and bounding box approaches

exhibit root tilt prediction performance comparable to the method

proposed in this study. However, the limitations of these
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conventional methods become evident under conditions of

external leaf occlusion. The skeleton extraction method is

particularly vulnerable to noise interference and has high

computational complexity, hindering its ability to accurately

capture the true root structure. Similarly, the bounding box

method struggles with the complex shapes and varying postures

of cabbage roots, failing to fully represent the internal structure,
FIGURE 15

Comparison of pose angle predictions under different methods for various varieties and conditions. YOLOv5-POS is the method proposed in this
study (The blue circle represents the maximum contour, and the purple circle represents the minimum contour). YOLOv5-MER combined with
minimum external rectangle and YOLOv5-SE combined with skeleton extraction.
FIGURE 16

Calculation of tilt values of cabbage by different image processing methods. (A) Minimum enclosing rectangle, (B) Skeleton extraction.
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which results in a significant decline in detection accuracy. In

contrast, the method proposed in this study demonstrates

enhanced robustness and accuracy in the presence of external leaf

occlusion. By integrating key point localization with Bezier curve

modeling, it effectively addresses the challenges posed by partially

occluded roots, achieving more precise measurement of root tilt

angles. As shown in Figure 17, experimental results indicate that

YOLOv5-POS achieves an absolute error of approximately 1° in

root angle prediction, with an accuracy rate of 98%. Compared to

other methods, the approach proposed in this study exhibits

superior performance in prediction root posture.

Moreover, the prediction model integrates the KD-Tree

algorithm to enhance its prediction speed. To comprehensively

assess the efficacy of the KD-Tree algorithm, this study conducts

comparative experiments. The KD-Tree algorithm is employed

during the search for nearest neighbor points to optimize search

efficiency. The comparison results reveal a reduction in test time

from 111 milliseconds to 28 milliseconds following the integration

of the KD-Tree algorithm, resulting in a nearly fourfold increase

in speed.

While the prediction method proposed in this study has

achieved notable accuracy, it still has inherent limitations. The

current dataset, though encompassing images with varying

illumination levels, lacks samples under high lighting conditions.

This limitation reduces the adaptability of the model to different

cabbage varieties and real-world scenarios. In high-light

environments, overexposure can lead to detail loss, impairing root

recognition and angle prediction. Additionally, the increase in

parameters and weights required for enhanced model accuracy

complicates its deployment and application. Future research

should focus on acquiring image data of Chinese cabbage at

different growth stages, captured from multiple angles and under

diverse lighting conditions. An expanded dataset will improve the

robustness of the model against environmental interference,

enhance its generalization ability, and support the design of an

effective light-shielding structure to mitigate the effects of exposure
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during imaging. Furthermore, the application of lightweight

techniques such as pruning and distillation will aid in optimizing

the model to better meet the demands of complex and

sophisticated applications.
5 Conclusion

To effectively address the challenges of cabbage pose

recognition in complex environments, this study introduces an

innovative YOLOv5-POS model. Based on YOLOv5s, the model

focuses on the precision detection and segmentation of cabbage

heads and roots. By optimizing the segmentation head module

and incorporating an improved C-RepGFPN model to replace

the traditional Neck layer, the study significantly enhances the

detection accuracy and efficiency of the model. Additionally, the

study creatively applies the Bezier curve construction method for

predicting the posture of cabbage root, achieving precision

predictions even under completely leaf occlusions. The

experimental results validate the good performance of the

YOLOv5-POS model. The model achieves a detection accuracy of

93.3% and an F1 score of 98.8% across various cabbage varieties. In

segmentation tasks, it reaches scores of 93.5% and 81.4% for mAP@

0.5 and mAP@0.5:0.95, respectively. These results demonstrate the

advantages of theYOLOv5-POS model in accuracy and reliability.

By accurately locating key points and applying Bezier curves, the

model can precisely predict the growth path of cabbage root

systems, with a root angle testing accuracy of 98% and a feature

extraction to decision processing time of just 28 milliseconds, fully

meeting real-time detection requirements. Furthermore, the

YOLOv5-POS model proposed in this study significantly

outperforms existing mainstream segmentation detection models

and measurement methods in balancing accuracy and deployment

efficiency. It demonstrates exceptional real-time detection and

deployment capabilities on mobile devices, providing robust

technical support for cabbage harvest decisions.
FIGURE 17

The linear regression analysis results of the different methods. (A) YOLOv5-POS, (B) Hough Transform.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1455687
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2024.1455687
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

XS: Investigation, Software, Writing – original draft. CS: Data

curation, Software, Writing – original draft. DC: Investigation,

Writing – review & editing. CZ: Conceptualization, Funding

acquisition, Supervision, Writing – review & editing. LY:

Methodology, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by CZ.
Frontiers in Plant Science 16
Acknowledgments

The authors thank all those who helped in the course of

this research.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: object detection via region-based fully
convolutional networks. Adv. Neural Inf. Process. systems. 29. doi: 10.48550/
arXiv.1605.06409

Dongdong, D., Jun, W., and Shanshan, Q. (2015). Analysis and test of splitting failure
in the cutting process of cabbage root. Int. J. Agric. Biol. Engineering. 8, 27–34.
doi: 10.3965/j.ijabe.20150804.1723

Guo, Y., Zhang, Y., Chen, Z., and Li, F. (2020). Cluster prickly ash image recognition
and picking point location based on multistage image transformation and growth
characteristics. Int. J. Res. Agric. Forestry. 7, 28–34.

Hua, X., Li, H., Zeng, J., Han, C., Chen, T., Tang, L., et al. (2023). A review of target
recognition technology for fruit picking robots: from digital image processing to deep
learning. Appl. Sci. 13, 4160. doi: 10.3390/app13074160

Hussain, M., He, L., Schupp, J., Lyons, D., and Heinemann, P. (2023). Green fruit
segmentation and orientation estimation for robotic green fruit thinning of apples.
Comput. Electron. Agriculture. 207, 107734. doi: 10.1016/j.compag.2023.107734

Jin, X., Yang, H., He, X., Liu, G., Yan, Z., and Wang, Q. (2023). Robust lidar-based
vehicle detection for on-road autonomous driving, Vol. 15. Remote Sensing (Basel,
Switzerland: MDPI).

Lee, T., and Seok, J. (2023). “Multi task learning: A survey and future directions,” in
2023 International Conference on Artificial Intelligence in Information and
Communication (ICAIIC). (Bali, Indonesia: IEEE), 232–235. doi: 10.1109/
ICAIIC57133.2023.10067098

Liu, Q., Gong, X., Li, J., Wang, H., Liu, R., Liu, D., et al. (2023). A multitask model for
realtime fish detection and segmentation based on yolov5. PeerJ Comput. Sci. 9, e1262.
doi: 10.7717/peerj-cs.1262

Luo, L., Tang, Y., Lu, Q., Chen, X., Zhang, P., and Zou, X. (2018). A vision
methodology for harvesting robot to detect cutting points on peduncles of double
overlapping grape clusters in a vineyard. Comput. industry. 99, 130–139. doi: 10.1016/
j.compind.2018.03.017

Mingxuan, Z., Wei, L., Hui, L., Ruinan, Z., and Yiming, D. (2022). Anti-gravity stem-
seeking restoration algorithm for maize seed root image phenotype detection. Comput.
Electron. Agriculture. 202, 107337. doi: 10.1016/j.compag.2022.107337

Ogedengbe, T. C., Malomo, O. J., and Akanji, N. E. (2022). Post-harvest losses and
reduction techniques in crop production: A review. Int. J. Of Agric. Science Res. And Technol.
In Extension And Educ. Systems. 12, 225–233. doi: 20.1001.1.22517588.2022.12.4.5.0

Qi, X., Dong, J., Lan, Y., and Zhu, H. (2022). Method for identifying litchi picking
position based on yolov5 and pspnet. Remote Sensing. 14, 2004. doi: 10.3390/
rs14092004

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks for
biomedical image segmentation,” in Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18. (Cham: Springer), 234–241.
Roy, A. M., and Bhaduri, J. (2022). Real-time growth stage detection model for high
degree of occultation using densenet-fused yolov4. Comput. Electron. Agriculture. 193,
106694. doi: 10.1016/j.compag.2022.106694

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., andMccool, C. (2016). Deepfruits: A fruit
detection system using deep neural networks. Sensors. 16 (8), 1222. doi: 10.3390/s16081222

Sanchez-Reyes, J. (2020). Comment on “Defining a curve as a bezier curve. J. Taibah
Univ. Science. 14, 849–850. doi: 10.1080/16583655.2020.1780057

Sapkota, R., Ahmed, D., and Karkee, M. (2024). Comparing yolov8 and mask R-cnn
for instance segmentation in complex orchard environments. Artif. Intell. Agriculture.
13, 84–99. doi: 10.1016/j.aiia.2024.07.001

Sun, T., Zhang, W., Miao, Z., Zhang, Z., and Li, N. (2023). Object localization
methodology in occluded agricultural environments through deep learning and active
sensing. Comput. Electron. Agriculture. 212, 108141. doi: 10.1016/j.compag.2023.
108141

Tian, F., Hu, G., Yu, S., Wang, R., Song, Z., Yan, Y., et al. (2023). An efficient multi-
task convolutional neural network for dairy farm object detection and segmentation.
Comput. Electron. Agriculture. 211, 108000. doi: 10.1016/j.compag.2023.108000

Tong, W., Zhang, J., Cao, G., Song, Z., and Ning, X. (2023). Design and experiment of
a low-loss harvesting test platform for cabbage. Agriculture. 13, 1204. doi: 10.3390/
agriculture13061204

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). “Yolov7: trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. (Vancouver, BC,
Canada: IEEE), 7464–7475.

Wu, F., Duan, J., Chen, S., Ye, Y., Ai, P., and Yang, Z. (2021). Multi-target recognition
of bananas and automatic positioning for the inflorescence axis cutting point. Front.
Plant Sci. 12. doi: 10.3389/fpls.2021.705021

Xiong, J., Lin, R., Liu, Z., He, Z., Tang, L., Yang, Z., et al. (2018). The recognition of
litchi clusters and the calculation of picking point in a nocturnal natural environment.
Biosyst. Engineering. 166, 44–57. doi: 10.1016/j.biosystemseng.2017.11.005

Yamamoto, K., Guo, W., Yoshioka, Y., and Ninomiya, S. (2014). On plant detection
of intact tomato fruits using image analysis and machine learning methods. Sensors. 14,
12191–12206. doi: 10.3390/s140712191

Ying, Y., Jing, H., Tao, Y., Jin, J., Ibarra, J. G., and Chen, Z. (2000). Application of
machine vision in inspecting stem and shape of fruits. Biol. Qual. Precis. Agric. II. 4203,
122–130. doi: 10.1117/12.411746

Yu, Y., Zhang, K., Yang, L., and Zhang, D. (2019). Fruit detection for strawberry
harvesting robot in non-structural environment based on mask-rcnn. Comput.
Electron. Agriculture. 163, 104846. doi: 10.1016/j.compag.2019.06.001

Zhao, Z., Hicks, Y., Sun, X., and Luo, C. (2023). Peach ripeness classification based on
a new one-stage instance segmentation model. Comput. Electron. Agriculture. 214,
108369. doi: 10.1016/j.compag.2023.108369
frontiersin.org

https://doi.org/10.48550/arXiv.1605.06409
https://doi.org/10.48550/arXiv.1605.06409
https://doi.org/10.3965/j.ijabe.20150804.1723
https://doi.org/10.3390/app13074160
https://doi.org/10.1016/j.compag.2023.107734
https://doi.org/10.1109/ICAIIC57133.2023.10067098
https://doi.org/10.1109/ICAIIC57133.2023.10067098
https://doi.org/10.7717/peerj-cs.1262
https://doi.org/10.1016/j.compind.2018.03.017
https://doi.org/10.1016/j.compind.2018.03.017
https://doi.org/10.1016/j.compag.2022.107337
https://doi.org/20.1001.1.22517588.2022.12.4.5.0
https://doi.org/10.3390/rs14092004
https://doi.org/10.3390/rs14092004
https://doi.org/10.1016/j.compag.2022.106694
https://doi.org/10.3390/s16081222
https://doi.org/10.1080/16583655.2020.1780057
https://doi.org/10.1016/j.aiia.2024.07.001
https://doi.org/10.1016/j.compag.2023.108141
https://doi.org/10.1016/j.compag.2023.108141
https://doi.org/10.1016/j.compag.2023.108000
https://doi.org/10.3390/agriculture13061204
https://doi.org/10.3390/agriculture13061204
https://doi.org/10.3389/fpls.2021.705021
https://doi.org/10.1016/j.biosystemseng.2017.11.005
https://doi.org/10.3390/s140712191
https://doi.org/10.1117/12.411746
https://doi.org/10.1016/j.compag.2019.06.001
https://doi.org/10.1016/j.compag.2023.108369
https://doi.org/10.3389/fpls.2024.1455687
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2024.1455687
Zhaoxin, G., Han, L., Zhijiang, Z., and Libo, P. (2022). Design a robot system for
tomato picking based on yolo V5. IFAC-PapersOnLine. 55, 166–171. doi: 10.1016/
j.ifacol.2022.05.029
Frontiers in Plant Science 17
Zhu, L., Zhang, Z., Lin, G., Chen, P., Li, X., and Zhang, S. (2023). Detection and
localization of tea bud based on improved yolov5s and 3d point cloud processing.
Agronomy. 13, 2412. doi: 10.3390/agronomy13092412
frontiersin.org

https://doi.org/10.1016/j.ifacol.2022.05.029
https://doi.org/10.1016/j.ifacol.2022.05.029
https://doi.org/10.3390/agronomy13092412
https://doi.org/10.3389/fpls.2024.1455687
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	YOLOv5-POS: research on cabbage pose prediction method based on multi-task perception technology
	1 Introduction
	2 Materials and methods
	2.1 Data sources
	2.2 Dataset preparation
	2.3 Cabbage root posture and inclination recognition method
	2.4 YOLOv5-POS multi-task network architecture
	2.4.1 The overall structure of YOLOv5s
	2.4.2 C-RepGFPN neck
	2.4.3 C-Seg segmentation head

	2.5 Cabbage posture prediction model based on Bezier curve
	2.5.1 Determination of the main axis of cabbage
	2.5.2 Determination of the Bessel curve control point
	2.5.3 Cabbage posture judgment

	2.6 Model performance evaluation and experimental environment
	2.6.1 Model performance evaluation
	2.6.2 Test results evaluation metrics
	2.6.3 Experimental environment and configuration


	3 Analysis and results
	3.1 Model training
	3.2 Ablation experiments
	3.3 Comparison of different detection algorithms
	3.4 Comparison of different measurement methods

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


