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Introduction: Sweetpotato virus disease (SPVD) is widespread and causes

significant economic losses. Current diagnostic methods are either costly or

labor-intensive, limiting both efficiency and scalability.

Methods: The segmentation algorithm proposed in this study can rapidly and

accurately identify SPVD lesions from field-captured photos of sweetpotato

leaves. Two custom datasets, DS-1 and DS-2, are utilized, containing

meticulously annotated images of sweetpotato leaves affected by SPVD. DS-1

is used for training, validation, and testing the model, while DS-2 is exclusively

employed to validate the model’s reliability. This study employs a deep learning-

based semantic segmentation network, DeepLabV3+, integrated with an

Attention Pyramid Fusion (APF) module. The APF module combines a channel

attention mechanism with multi-scale feature fusion to enhance the model’s

performance in disease pixel segmentation. Additionally, a novel data

augmentation technique is utilized to improve recognition accuracy in the

edge background areas of real large images, addressing issues of poor

segmentation precision in these regions. Transfer learning is applied to

enhance the model’s generalization capabilities.

Results: The experimental results indicate that the model, with 62.57M

parameters and 253.92 Giga Floating Point Operations Per Second (GFLOPs),

achieves a mean Intersection over Union (mIoU) of 94.63% and a mean accuracy

(mAcc) of 96.99% on the DS-1 test set, and an mIoU of 78.59% and an mAcc of

79.47% on the DS-2 dataset.

Discussion: Ablation studies confirm the effectiveness of the proposed data

augmentation and APF methods, while comparative experiments demonstrate

the model’s superiority across various metrics. The proposed method also
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exhibits excellent detection results in simulated scenarios. In summary, this study

successfully deploys a deep learning framework to segment SPVD lesions from

field images of sweetpotato foliage, which will contribute to the rapid and

intelligent detection of sweetpotato diseases.
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1 Introduction

Sweetpotato (Ipomoea batatas L.) is one of the top ten food

crops in the world and an important source of nutrients for the

human body (Lee et al., 2019). Currently, China has the largest

sweetpotato planting area of about 6.6 million hm2 and an output of

about 100 million tons, accounting for roughly 80% of the world’s

total output annually (Gai et al., 2016; Zhang et al., 2019).

Sweetpotatoes are propagated through vines and tubers, making

them especially vulnerable to viral diseases that can be transmitted

from one generation to the next. This mode of transmission often

leads to the rapid degradation of new sweetpotato varieties and

significant yield losses (McGregor et al., 2009; Clark et al., 2012).

The most serious of these viral diseases is sweetpotato virus disease

(SPVD), which results from a symbiotic infection of the sweetpotato

feathery mottle virus (SPFMV) and the sweetpotato chlorotic stunt

virus (SPCSV) (Rännäli et al., 2009; Wanjala et al., 2020).

Since 2012, SPVD has rapidly spread across China, severely

affecting key sweetpotato-growing regions. The disease has a

devastating impact on sweetpotato production, causing yield

losses of 90-100% (Karyeija et al., 1998). For instance, a major

SPVD outbreak occurred in Zhanjiang City, Guangdong Province,

in early 2015, where 1,257 hectares of sweetpotato fields were

severely impacted, with an incidence rate exceeding 50% (Zhang

et al., 2019). The prevalence of SPVD in China led to a restructuring

of the sweetpotato market, making the production of virus-free

seedlings the new standard. However, the lack of efficient virus

detection technologies has hindered the supply and breeding of

detoxified seedlings. In particular, there is an urgent need for simple

and rapid detection methods for use at the grassroots level and for

timely testing of seedling quality. Therefore, developing a reliable

SPVD detection system is essential for managing the disease and

supporting the breeding of virus-free sweetpotato seedlings.

Current research on SPVD has primarily focused on defense

mechanisms, particularly virus detection and pathogenesis. The

main detection techniques for SPVD include biological, serological,

and molecular methods. Among these, enzyme-linked

immunosorbent assay (ELISA) and PCR are the most widely used

serological methods for SPVD detection (Wanjala et al., 2020;

David et al., 2022). However, both ELISA and PCR are labor-

intensive, expensive, and time-consuming. As China’s sweetpotato
02
industry has expanded, the limitations of these methods have made

it increasingly difficult to meet the growing demand for efficient

SPVD detection. Thus, there is an urgent need for new, faster, and

more efficient detection solutions, such as artificial intelligence (AI)

and deep learning technologies, to overcome the shortcomings of

manual and conventional SPVD identification methods.

The field of computer vision (CV) has achieved significant

success across various applications, particularly in the area of plant

disease detection (Srinivasu et al., 2024a; Patil and Manohar, 2022).

Recent advancements in convolutional neural networks (CNNs)

have revolutionized disease recognition, exemplified by their

application in potato disease detection using RGB images, where

high precision has been attained (Oppenheim et al., 2019). Further

illustrating the efficacy of deep learning, researchers have

successfully employed these techniques to identify northern leaf

blight in corn, achieving notable accuracy in field conditions

(DeChant et al., 2017).

Progress has been marked by a shift from basic classification

tasks to more complex challenges, such as pinpointing infected

areas and assessing disease severity (Kalaivani et al., 2020). For

instance, Zhou et al. utilized an enhanced DeepLabV3+ model for

efficient recognition of tea leaf diseases, where the integration of an

attention mechanism notably improved the model’s sensitivity to

subtle lesions (Zhou et al., 2024). Similarly, Yang et al. advanced the

detection of rice blast by adopting a U-Net architecture combined

with a multi-scale feature fusion strategy, thus improving detection

accuracy (Yang et al., 2023). Additionally, Li et al. proposed a

Transformer-based framework for the real-time monitoring of

wheat stripe rust, showcasing the capacity of deep learning for

timely disease detection in agricultural settings (Zhu et al., 2022).

Moreover, the evaluation of disease incidence on cucumber leaves

under natural conditions has been facilitated by the improved

DeepLabV3+ network, further demonstrating the robustness of

CV technologies in various crop contexts (Wang et al., 2021; Li

et al., 2022).

Despite these advancements, the application of CV technology

in sweetpotato disease detection remains underexplored. Current

research primarily focuses on other crops such as potatoes, corn,

tomatoes, rice, and wheat, leaving a gap in knowledge regarding

sweetpotato diseases. Although deep learning techniques have been

utilized for counting sweetpotato leaves (Wang et al., 2023), their
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impact on disease management and detection in practical scenarios

is limited. This is particularly critical given the lack of simple and

rapid detection methods at the grassroots level. Therefore, timely

and accurate detection of sweetpotato virus diseases is essential for

effective disease management and agricultural sustainability.

Motivated by these technical gaps and the need for efficient

SPVD detection, this study employs deep learning techniques to

identify SPVD lesions on sweetpotato leaves. RGB photos of

sweetpotato leaves from the field that showed typical SPVD

symptoms at the “branching tuber stage” were gathered, and the

DeepLabV3+ deep learning segmentation model was utilized to

precisely identify the affected regions. Data enhancement, transfer

learning, and a proposed APF module were implemented to

enhance the recognition performance. The model’s SPVD

detection efficacy was evaluated on two datasets (DS-1 and DS-2).

The proposed system aims to provide growers with an efficient,

easy-to-apply, and affordable solution for SPVD diagnosis,

facilitating SPVD management and reducing economic losses

caused by the disease.

The main contributions of this study are as follows:
Fron
• A data augmentation method is proposed to process edge

background areas through a specific strategy, which

significantly improves the model’s recognition accuracy of

edge background areas in real large images.

• The proposed attention pyramid fusion (APF) significantly

enhances the model’s features at different scales by

introducing a channel attention module and fusing multi-

scale features, thereby enhancing its performance in disease

pixel segmentation.

• Through ablation studies and comparative experiments on

a self-made SPVD dataset, the effectiveness of data

augmentation and APF methods are verified, and

excellent detection results are shown in simulated scenarios.
The rest of this paper is organized as follows: Section 2

introduces the relevant materials and methods. The materials

include the obtained datasets and how to process them, while the

methodology is a description of the details of the proposed
tiers in Plant Science 03
improved deeplabv3+. Section 3 analyzes the experimental results

and discusses the impact of the network module. Section 4 discusses

and makes suggestions for future research.
2 Materials and methods

2.1 SPVD dataset collection

Due to the lack of publicly available datasets for studying SPVD,

this study collected and constructed two distinct RGB datasets from

field environments, referred to as DS-1 and DS-2. To ensure the

representativeness of DS-1, data were gathered from a 100-acre

farmland near Maoming City, Guangdong Province, China, where

the local variety “Sweet Fragrant Potato” had been planted for 40-50

days, corresponding to the “Branching Tuber Stage.” The top leaves

of the plants were green and pointed heart-shaped, while the mature

leaves were green and heart-shaped (Figure 1A). Suspected infected

plants exhibited typical symptoms of SPVD, such as stunted

growth, twisted leaf veins, chlorosis of leaves and petiole leaflets,

as well as yellowing of leaf veins. Experts in plant diseases initially

classified these symptoms as late-stage SPVD infection, which is the

maximum degree of severity. This made it easier to gather

photographic evidence and build the study’s model.

In January 2022, 216 suspected infected plants were

photographed using a handheld SONY DSC-RX100M6 digital

camera (Sony Group Corporation, Tokyo, Japan) with close-up

and horizontal scanning perspectives under the guidance of a

photographer. To obtain detailed information about SPVD

detection, images with less obvious symptoms were removed, and

300 high-resolution RGB images in JPEG format (5472×3648

pixels) were selected. Additionally, in September 2023, virus

disease symptoms were observed in the sweetpotato resource

nursery (45 acres)in Guangzhou, China, and plant leaves with

typical SPVD symptoms were selected. Considering the reliance

of computer vision technology on visual features, two varieties with

appearances similar to “Sweet Fragrant Potato” in DS-1 were

chosen, and 12 high-resolution images were captured to
FIGURE 1

Example images in the SPVD dataset. Typical symptoms of SPVD in the late stage of infection can be identified by yellowed, veined, deformed
leaves, and dwarfed plants. (A), “Fragrant Pink Potato”; the top leaves were green pointed heart-shaped, and the mature leaves were green heart-
shaped. (B), “Guangshu 22-18”; the top leaves were green pointed heart-shaped, and the mature leaves were green heart-shaped. (C), “Guangshu
22-15”; both top and mature leaves were shallow split single notch-shaped, with the top leaves being purple and mature leaves being green.
frontiersin.org
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constitute DS-2. Among them, the variety ‘Guangshu 22-18’

comprised 8 plants, characterized by green pointed heart-shaped

top leaves and green heart-shaped mature leaves (Figure 1B); the

variety ‘Guangshu 22-15’ comprised 4 plants. The top leaf color of

the plant was purple, and the leaf shape was shallow split single

notch, while the mature leaf color was green, and the leaf shape was

shallow split single notch (Figure 1C). The variety “Guangshu 22-

18” was highly similar to “Sweet Fragrant Potato” in terms of leaf

color and shape, while the variety “Guangshu 22-15” had slight

differences in leaf shape and completely different top leaf color.

These sweetpotatoes had been planted for 50-60 days (“Branching

tuber stage “), and experts preliminarily identified them as being in

the late stage of SPVD infection. In summary, the DS-1 dataset is

used to train, validate, and test the performance of the model. The

DS-2 dataset is specifically used to test the generalization ability of

the model. Statistical details are provided in Table 1. In Section 2.3,

the DS-1 and DS-2 datasets were further preprocessed to ensure

suitability for specific task requirements. Samples collected from

both locations were promptly placed in ice chests, frozen rapidly in

liquid nitrogen, and stored in a -80°C freezer for molecular biology

identification purposes.
2.2 Materials and methods for
virus identification

Materials: Plant RNA Kit, Omega Bio-Tek, USA; EasyScript

OneStep gDNA Removal and cDNA Synthesis SuperMix Kit,

TransGen Biotech Co., Ltd., China; 2×TaqMaster Mix (With

Dye), APExBIO Technology LLC, USA; Primers synthesized by
Frontiers in Plant Science 04
Sangon Biotech (Shanghai) Co., Ltd., China; Biometra TAdvanced

PCR Instrument, Biometra GmbH, Germany; DYY-6C

Electrophoresis Apparatus, Beijing Liuyi Biotechnology Co., Ltd.,

China; Tanon 4100 Gel Imaging System, Shanghai Tianeng

Technology Co., Ltd., China.

The collected sweetpotato plant leaves were ground into powder

in liquid nitrogen. The total RNA was extracted using a Total RNA

Extraction Kit, followed by cDNA synthesis using a reverse

transcription kit. The reverse transcription reaction system was 20

mL. For the reverse transcription, 1 ug of the RNA template was

denatured at 65°C for 5 minutes and then placed in an ice bath for 2

minutes. Next, 1mL of Anchored Oligo (dT)18 Primer (0.5 mg/mL),
1mL of EasyScript® RT/RI Enzyme Mix, and 10 mL of 2×ES

Reaction Mix were added and topped up to 20 mL with RNase-

Free H2O. The process was maintained at 42°C for 15 minutes and

then 85°C for 5 seconds to complete the reverse transcription

reaction. RT-PCR amplification was performed using RNA virus-

specific primers (primer sequences listed in Table 2) (Li et al., 2012;

Pan et al., 2013). The RT-PCR reaction system (25 mL) included 2

mL of synthesized cDNA, 12.5 mL of 2×Taq Master Mix (With Dye),

1mL each of upstream and downstream primers (10 mmol/L), and

8.5 mL of ddH2O. The amplification conditions were as follows: 94°

C for 2 minutes; 30 cycles of 94°C for 30 seconds, annealing at 45°C

(temperature specified in Table 2) for 45 seconds, and extension at

68°C for 1 minute; followed by a final extension at 68°C for 10

minutes. All assays included a negative control using water as a

template. Next, the 5 mL amplified products were detected by 1%

agarose gel electrophoresis and photographed by gel imager

(Xinliang et al., 2022).
2.3 SPVD dataset process

Due to the complexity of processing high-quality initial

images and the limited GPU memory allocation, the original

photos were clipped to 512 × 512 pixels (Figures 2A, B). The

image background, such as the soil (Figure 2C) and the residual

parts (Figure 2E) were discarded. Finally, 5,723 small-sized images

containing only the diseased leaves portion (Figure 2D) were

selected. Besides, images in DS-2 underwent the same
TABLE 2 Primers used in RT-PCR for the detection of sweetpotato virusesa.

Primer Sequenceb(5’-3’) Product size/bp
Annealing

Temperature/°C
Target virus

SPF-F1 GGATTAYGGTGTTGACGACACA 589

60

SPFMV

SPC-F1 GTGAGAAAYCTATGCGCTCTGTT 836 SPVC

SPG-F5 GTATGAAGACTCTCTGACAAATTTTG 1191 SPVG

SP2-F10 CGTACATTGAAAAGAGAAACAGGATA 369 SPV2

SPFCG-R2 TCGGGACTGAARGAYACGAATTTAA – SPVG,SPVC, SPFMV, SPV2

CSV1 AGTGGTGAYGTAATAGTCGGTGG 365 61.06
SPCSV

CSV2 GCTAACGATTCACADACAGACTTCA 365 59.24
aF represents forward primer; R represents reverse primer.
bY= C or T; R=A or G.
TABLE 1 SPVD dataset information.

Dataset Subset Resolution
Number
of images

DS-1

Training

5472×3648 300Validation

Test-1

DS-2 Test-2 5472×3648 12
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processing, resulting in a total of 710 images sized at 512×512

pixels, which were not used in the model training process rather

were only used to verify the model generalization ability

and reliability.
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After the original image was segmented, the DS-1 and DS-2

images were labeled as infected or background. The leaf-diseased

area was marked with polygons using the open-source computer

vision annotation tool (CVAT). The generated images were saved in

PNG format with ground truth annotations (Figure 3A). The

ground truth labels were then divided into training, verification,

and test sets in the ratio 8.1.1 with 4578, 572, and 573 images,

respectively. To avoid over-fitting, the image augmentation method

(Zou et al., 2021) was adopted to enhance the image diversity.

Briefly, the infected area was cut out using the label as the

foreground and overlaid on the background image to create a

composite image (Figure 3B). To obtain a richer background, 165

background, and 27 foreground images were selected, generating

4455 composite images. After supplementing the training set with

the obtained composite images, 9033 images were obtained. In

addition, the process is shown in Figure 4.
2.4 Deep learning algorithm

The Efficient Channel Attention (ECA) module is a local cross-

channel interaction strategy without dimensionality reduction

(Wang et al., 2020), which can be effectively implemented by one-

dimensional (1D) convolution, and is an effective channel attention

learning method (Figure 5A). It is a lightweight general-purpose

module that can be easily embedded into any CNN framework to

achieve end-to-end training and significantly improve network

performance, and its implementation process is shown in

(Figure 5B). This method first uses global average pooling (GAP)

to obtain X0 for each feature channel of the input feature map Xinput,

then uses 1D convolution to capture local cross-channel interaction

information to obtain X1, and then uses the Sigmoid function to

generate channel weights X2, to get normalized weights between 0

and 1. Finally, the original feature image Xinput with a matrix size of

H×W×C is multiplied by the weight generated by the Sigmoid

function to obtain a new feature image Xoutput.

ResNet101 is a deep convolutional neural network architecture

that introduces skip connections, allowing gradients to flow directly

from later layers back to earlier layers during backpropagation

(Zhang, 2022). The architecture typically serves as a backbone

network for feature extraction and is composed of four stages,
FIGURE 3

Data annotation and augmentation. (A), Small-sized images and annotated images. (B), The flowchart for making a composite image.
FIGURE 2

The process of dividing the original images into smaller images.
(A), A full-sized raw image in DS-1 before segmentation. (B),
Small-size image areas to be segmented. (C), Original image
background. (D), Diseased leaf image. (E), Cut residual image.
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each containing multiple residual blocks. These stages serve as input

features for downstream tasks, denoted as Block1, Block2, Block3,

and Block4, with corresponding strides of (1, 2, 1, 1). A stride of 1

indicates that the output feature map size remains the same as the

input feature map, without downsampling; a stride of 2 indicates

that the output feature map size is half of the input feature map,

indicating downsampling. After the second stage, the feature map

size remains unchanged. Such a design helps maintain the

resolution of the feature maps, which is particularly important for

accurate segmentation in semantic segmentation tasks.

Additionally, the activation function used is ReLU.

In the process of extracting image features using deep learning,

the resolution of the image gradually decreases due to the

continuous application of deep convolution operations, resulting

in lower resolution deep features. This phenomenon is particularly

detrimental to small objects within the image, leading to recognition

errors. To address this issue, combining features from different

levels during network training can significantly enhance the

accuracy of multi-scale detection. Feature Pyramid Network (Lin

et al., 2017) is an effective feature fusion method that combines

feature maps from different layers to obtain feature representations

that reflect semantic information at various scales. Different from

FPN, the proposed attention pyramid fusion (APF) introduces a

channel attention module on features of different scales, and then

fuses the enhanced feature representations of different scales,

further enhancing the representation ability of feature maps at

different scales (Figure 5B, where (C, H, W) represents the feature

map (channels, height, width). Specifically, Feature maps generated
Frontiers in Plant Science 06
by Block1, Block2, and Block3 of the DeepLab v3+ backbone

network ResNet101 are fused. These feature maps have sizes of 1/

4, 1/8, and 1/8 of the input image, with initial channel numbers of

256, 512, and 1024, respectively. In APF, a 1×1 convolution is first

applied to the feature maps of Block1, Block2, and Block3 for

dimensionality reduction, optimizing computational efficiency and

feature representation. Specifically, the number of channels in

Block1’s feature map is reduced from 256 to 48, Block2’s feature

map from 512 to 256, and Block3’s feature map from 1024 to 256.

To unify the sizes of the feature maps, the feature maps of Block2

and Block3 are upsampled, increasing their sizes from 1/8 to 1/4 to

match the size of Block1’s feature map. Finally, these three

processed feature maps are combined to obtain the fused feature

map. This fused feature map not only contains feature information

from three different levels but also possesses richer semantic and

spatial information due to the introduction of the channel attention

module, significantly enhancing the performance of the DeepLab

v3+ network in image segmentation tasks.

The DeepLabV3+ used in this article is one of the most popular

semantic segmentation networks (Chen et al., 2018), which consists

of two parts: encoder and decoder, and uses depthwise separable

convolution (Chollet, 2017), which is more efficient. The encoder

module reduces the spatial resolution and captures semantic

information, and the decoder module recovers the spatial

information and leads to a cleaner segmentation. The flow chart

of the algorithm is shown in Figure 5, where (C, H, W) represents

the feature map (channels, height, width). First, input the 512×512

pixels picture containing part of the diseased leaves into the
FIGURE 4

Overall flowchart of the methodology.
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backbone network ResNet101 in the encoder, which can be used to

extract the diseased features, in which the representation

information is extracted in the Block 1,2,3, and the semantic

information is extracted in the Block4 (1024 channels and 1/8

input size). The Atrous Spatial Pyramid Pooling (ASPP) (Chen

et al., 2017) mechanism with different atrous rates of atrous

convolution is used in DeepLabV3+. Since the diseased area in

those small images is generally larger, a higher hole rate (rate = 12,

24, 36) is used compared to the original network (rate = 6, 12, 18).

At the same time, ASPP also contains a 1×1 dilated convolution and

an image pooling layer. After splicing the multi-scale feature maps,

use 1×1 atrous convolution to fuse information and reduce

dimensions. The processed feature map is then input to the

decoder module. The output of the encoder module is upsampled

by a factor of 2 and then fused with the multi-scale enhanced

features that have passed through the APF module. Afterwards, a

3×3 convolutional layer is used to extract features, followed by

another simple bilinear upsampling by a factor of 4. Finally, classify

each pixel to get the binarized prediction result. According to the

binarized prediction result, the diseased areas in the small-scale

image can be marked in red, which can clearly show the diseased

leaves. Moreover, to speed up the convergence process and improve

the generalization ability of the model, a transfer learning strategy

was adopted for the backbone ResNet101 parameters. Specifically,
Frontiers in Plant Science 07
the backbone parameters trained on public datasets were used as the

initial parameters of the network.
2.5 Model verification process

Model detection was verified under simulated conditions using

a 480p Guke camera with a resolution of 640×480 pixels per frame.

These frames were subsequently resized to 512×512 pixels and

input into the model for processing to obtain 512×512 pixels

binarized prediction result. According to the binarized prediction

result, the diseased areas in the small-scale image were marked in

red. Finally, the 512×512 pixels binarized prediction images were

resized to 640×480 pixels and displayed in a small window.
2.6 Training procedure and
performance evaluation

The system hardware consists of an Intel Core i9-10900X CPU,

32 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU with 24

GB of VRAM. The software environment comprises Python 3.9,

PyTorch 1.12.0, and a WSL system running on Windows 11. The

optimizer employs the SGD algorithm with a weight decay factor of
FIGURE 5

The flowchart of model. (A) The flowchart of ECA module. (B) The flowchart of APF module, (C) The flowchart of the segmentation network from
small-sized images to prediction outputs.
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0.0005 and a momentum factor of 0.9. The initial learning rate is set

to 0.01 and varies according to the poly strategy. The batch size is

set at 4, with a maximum of 20,000 iterations. The loss function is

based on cross-entropy. The paper (Srinivasu et al., 2024b)

is referenced, and some important parameters are presented

in Table 3.

To demonstrate the enhanced capabilities of the proposed SPVD

recognition model, a comprehensive comparative analysis of

pioneering and state-of-the-art deep learning architectures is

conducted. This includes: 1. Fully Convolutional Networks (FCN):

Introduced by Long et al (Long et al., 2015), FCN revolutionizes

semantic segmentation by enabling end-to-end learning without fully

connected layers, making segmentation more efficient and accurate.

2. Pyramid Scene Parsing Network (PSPNet): Developed by Zhao

et al (Zhao et al., 2017), PSPNet introduces the pyramid pooling

module, effectively aggregating context information at different scales.

This is crucial for distinguishing fine-grained categories in SPVD

recognition. 3. Segmenter Series: Specifically, Segmenter ViT-B

(Vision Transformer Base version) and Segmenter ViT-S (Vision

Transformer Small version). These models showcase the potential of

Transformer-based approaches in semantic segmentation by

modeling long-range dependencies through self-attention

mechanisms. 4. SETR ViT-L: The Segmentation Transformer with

a Large Vision Transformer variant demonstrates the power of large-

scale Vision Transformers in the field of semantic segmentation,

particularly adept at handling wide spatial variations. 5. SegFormer

MiT-B4: A combination of lightweight Transformer blocks and

multi-scale feature representations, SegFormer efficiently integrates

these components to maintain high precision while keeping

computational complexity low.

These benchmark algorithms are sourced from the

mmsegmentation library, an open-source semantic segmentation

toolbox based on PyTorch. This library provides implementations

of various semantic segmentation models and supports multiple

mainstream segmentation frameworks. The library is highly

extensible and includes many advanced technologies built-in,

which facilitate the acceleration of the development and

training processes.
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The evaluation indicators cover the number of parameters

(Params, M), number of floating-point operations (FLOPs,

GFLOPs), mean intersection over union (mIoU, %), mean

accuracy (mAcc, %), and the segmentation time (ST, ms). Among

them, Params and FLOPs are statistically analyzed. ST is calculated

by dividing the sum of processing time for all images in the test set

by their total number. mIoU is the commonly used evaluation index

in semantic segmentation methods, revealing the overlap degree

between the predicted and actual areas. The mAcc was the ratio of

the number of correctly predicted pixels to the total number of

pixels, indicating the accuracy of the prediction results.

mIoU and mAcc are calculated using formulas (1) and (2)

below, where k+1 represents the number of categories, which is set

to 2 in this case, implying that pixels in each image are classified

into two categories: SPVD-infected areas and the background. pij
represents the number of pixels of category i predicted to be

category j, pii indicates the number of pixels of category i

predicted to be category i, and pji indicates the number of pixels

of category j predicted to be class i.

mIoU =
1

k + 1o
k

i=0

pii

ok
j=0pij +ok

j=0pji − pii
(1)

mAcc =  
1

k + 1
 o

k

i=0

pii

ok
j=0pij

(2)
3 Results

3.1 RT-PCR detection results

Only a distinct band of approximately 600 bp within the 500-

750 bp range was obtained based on the multiple detections of the

four viruses, including SPVG, SPVC, SPFMV, and SPV2 using

RT-PCR (Figure 6A). According to (Li et al., 2012), only 589 bp of

SPFMV was amplified in four samples. Also, the presence of

SPVG, SPVC, SPV2 was not detected. With the additional

testing for the SPCSV virus, only a 365bp band was amplified

(Figure 6B), confirming that the virus disease infecting the

sweetpotato in the field was SPVD. Therefore, the diseased

sweetpotato samples contained only two viruses, SPFMV and

SPCSV. This, combined with the dwarfing and yellowing of

sweetpotato plants in the field, indicates that the RGB data used

for modeling analysis in this study is the sweetpotato data set

infected with SPVD.
3.2 Ablation studies

The results from the ablation study revealed that the baseline

model achieved a mIoU of 85.14% (Table 4). Compared to the

baseline, the mIoU of baseline+DA was increased by 3.04% and

mAcc by 0.45%. The mIoU of baseline+APF was 89.64%, and mAcc

was 93.49%, which was better than the former. After incorporating
TABLE 3 Training parameters used in proposed model.

Training parameters Values

Input Size (512, 512)

Learning policy Poly

Optimizer Type SGD

Learning Rate 0.01

Momentum 0.9

Weight Decay 0.0005

Loss function CrossEntropy

Batch size 4

Atrous rates [12, 24, 36]
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APF into the baseline model with data augmentation (DA), the

mIoU decreased by 0.12%. The performance improvement of

baseline+TL was the most obvious, with mIoU and mAcc of

92.05 and 94.52%, respectively. Upon adding DA to the baseline

with TL, mIoU and mAcc increased to 93.92% and 96.38%,

respectively. After adding APF to the baseline model with TL,

mIoU and mAcc increased by 2.58% and 2.47%, respectively.

By comprehensively utilizing the APF and TL methods, the

highest mIoU and mAcc scores achieved were 94.63 and 96.99%,

respectively (a portion in Figure 7A). However, when the model was

used to process pure background area, unsatisfactory performance

was observed (Figure 7B). Specifically, the segmentation

performance on the infected leaves was notably impressive,

showcasing high accuracy. However, the recognition performance

on the surrounding background was deficient, appearing as square

red areas (Figure 7C). Although the mIoU and mAcc were slightly

lower (0.2 and 0.27%, respectively) than the former after adding the

DA, the overall effect was good (Figure 7D).
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3.3 Comparison with other
segmentation methods

The mIoU and mAcc scores of the FCN, PSPNet and proposed

network under the same conditions were higher than 85 and 90%,

respectively, indicating that they can successfully complete the

recognition challenge (Table 5). Segmenter-S is lighter in terms of

parameter count and computational complexity (25.98 MB, 37.36

GFLOPs), making it suitable for deployment in resource-constrained

environments. Although its performance (87.28% mIoU, 91.12%

mAcc) is slightly lower than that of Segmenter-B (88.11% mIoU,

92.94% mAcc), it still demonstrates effective segmentation results,

proving that lightweight models can achieve high segmentation

accuracy while maintaining efficiency. SegFormer stands out with its

relatively low parameter count (64.52 MB) and exceptional

segmentation performance (91.27% mIoU, 94.45% mAcc). This is

largely due to its innovative Transformer encoder design, which

effectively leverages the self-attention mechanism to capture long-
TABLE 4 Performance comparison of different improvements on the network using the DS-1 test seta.

Methods Baseline DA APF TL mIoU(%) mAcc(%)

Baseline √ 85.14 93.39

Baseline + DA √ √ 88.18 93.84

Baseline + APF √ √ 89.64 93.49

Baseline + TL √ √ 92.05 94.52

Baseline + DA + APF √ √ √ 88.06 94.04

Baseline + DA + TL √ √ √ 93.92 96.38

Baseline + APF + TL √ √ √ 94.63 96.99

Baseline + DA + APF + TL
(Proposed)

√ √ √ √ 94.43 96.72
aWhere √ indicates the strategy was used, blank means the strategy was not used. Baseline = DeepLabV3+ network with ResNet101 backbone, DA, data augmentation; APF, APF module; and TL,
transfer learning; MIoU, mean intersection over union; MAcc, mean accuracy.
FIGURE 6

Detection results of RT-PCR. (A), Detection results of RT-PCR. 1-4: SPFMV. (B), Identification result of SPCSV. 1,3,4: SPCSV. M: DL2000 DNA maker,
CK: healthy plant control.
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range dependencies in images while reducing computational

complexity and memory consumption. SegFormer excels

particularly in capturing detailed segmentation, accurately

distinguishing between different object classes, as shown in Figure 8,

where its segmentation results are often closer to ground truth values.

While SETR (Segmentation Transformer) has the largest parameter

count (309.33 MB) and relatively high computational complexity

(367.21 GFLOPs), its segmentation performance (88.69% mIoU,

92.20% mAcc) did not reach the expected optimal levels. This may

be due to the fact that the Transformer structure requires more data to

train to fully leverage its advantages, and the training process might be

more sensitive and unstable, as evidenced by the noticeable oscillations

in the training curves. Although the proposed method shows slightly

higher ST compared to other methods, it achieves the highest

precision, exhibits stable training performance, and overall delivers

the best performance. The training loss and accuracy curves of various

semantic segmentation models are shown in Figure 9.

The comparison of segmentation details of different networks is

shown in Figure 8, including the high-resolution original image

(Figure 8A), its 512×512 pixel partial image (Figure 8B), and the

corresponding ground truth labeled region (Figure 8C). The

recognition results of FCN, PSPNet and our proposed method are

shown in Figures 8D–F, respectively. The segmentation effects of the

state-of-art models Segmenter ViT-B, Segmenter ViT-S, SegFormer

MiT-B4 and SETR ViT-L are shown in Figures 8G-J, respectively.

Among them, Segmenter ViT-B shows a certain accuracy in overall
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segmentation, but is slightly insufficient in processing details; Segmenter

ViT-S shows a certain competitiveness in segmentation results while

maintaining a relatively fast inference speed, but its segmentation

details are slightly rough in complex backgrounds. SegFormer MiT-

B4 has a very good segmentation effect. Its segmentation results are not

only highly accurate, but also have smooth edges and well-processed

details, which is close to our proposed method. Although SETR ViT-L

has a large number of model parameters and high computational

complexity, its segmentation effect does not fully meet expectations.

The segmentation results of our proposed method are the best and

closest to the ground truth.
3.4 Model generalization verification

The model’s generalization is tested on DS-2, with the results

summarized in Table 6. The mIoU and mAcc values are recorded as

78.59% and 79.47%, respectively, representing a decrease of 16.04%

and 17.52%, respectively, compared to the DS-1 test set’s metrics of

94.63% and 96.99%. The segmentation results are shown in Figure 10.

The model exhibits excellent recognition capability for disease

features such as deformity and chlorosis on green top leaves and

mature leaves, which are present in the DS-1 training set (Figure 10,

first row). However, due to the lack of visual features of SPVD on

purple top leaves in the DS-1 training set, the identification results for

purple top leaves in DS-2 are poorer. (Figure 10, second row).
TABLE 5 Comparison results of different segmentation methods under enhanced dataa.

Segmentation methods Params(M) FLOPs(GFLOPs) MIoU(%) MAcc (%) ST(ms)

FCN 68.48 275.37 86.68 90.16 33.15

PSPNet 67.95 256.13 89.90 93.84 52

Segmenter-B 102.38 126.11 88.11 92.94 33.96

Segmenter-S 25.98 37.36 87.28 91.12 26.21

SegFormer 64.52 350.12 91.27 94.45 75.86

SETR 309.33 367.21 88.69 92.20 81.06

Proposed 62.57 253.92 94.43 96.72 50.61
aParams, parameters; FLOPs, floating-point operations; MIoU, mean intersection over union; MAcc, mean accuracy; ST, segmentation time. Numbers in bold indicate the best performance.
FIGURE 7

SPVD identification performance with and without DA. (A) A raw image. (B) The selected area on the raw image. (C) Recognition result based on
baseline + APF + TL method. (D) Recognition result based on baseline + DA + APF + TL method (Proposed).
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3.5 Model application verification in
simulation scenarios

Using images collected from the field to simulate real-world

scenarios, and Figure 11 demonstrates the SPVD detection

performance of the model. In Figure 11A, labeled as Sample 1,

the manually annotated original image shows diseased areas

marked in red, with the background consisting of healthy leaves

and soil. The white solid line indicates the 480p camera’s capture

window with a resolution of 480×640 pixels. Figure 11B shows the
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inference results from the camera frame within the capture window

of Figure 11A, where the model accurately identifies the diseased

leaves, effectively distinguishing them from the background.

In Figure 11C, labeled as Sample 2, the manually annotated

original image includes no diseased leaves, and the background

consists of healthy leaves and soil. Figure 11D shows the inference

results from the camera frame within the capture window of

Figure 11C, where the model accurately avoids misclassifying the

healthy leaves in the background as diseased leaves.
4 Discussion

Computer vision and machine learning techniques have gained

significant traction in agricultural applications, particularly in plant

disease detection. However, despite advancements across various
TABLE 6 Test results of the proposed method on DS-2a.

Segmentation method MIoU(%) MAcc (%)

Proposed 78.59 79.47
aMIoU, mean intersection over union; MAcc, mean accuracy.
FIGURE 9

Training loss and accuracy curves for various semantic segmentation models. (A) Training Loss Curves (B) Training Accuracy Curves.
FIGURE 8

Segmentation results using different algorithms on DS-1. (A) Original images in DS-1 (B) The selected area (C) Ground truth (D) proposed algorithm
(E) FCN (F) PSPNet (G) Segmenter ViT-B (H) Segmenter ViT-S (I) SegFormer MiT-B4 (J) SETR ViT-L.
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crops, there remains a lack of studies specifically addressing

sweetpotato virus disease (SPVD). Considering sweetpotato’s

global significance as a food crop and the severe economic impact

of SPVD, this study evaluates the effectiveness of the DeepLabV3+
Frontiers in Plant Science 12
algorithm in accurately identifying SPVD infections on sweetpotato

leaves. The work addresses a critical need for rapid, precise disease

detection to support crucial crop management and disease

control decisions.
FIGURE 11

Model application verification under simulation scenarios. (A, C) Original images with manually annotation (B, D) Verification of the SPVD recognition
effect of the model.
FIGURE 10

Segmentation results using proposed algorithm on DS-2. (A) Original images in DS-2. (B) The selected area (C) Ground truth (D) Detection results of
proposed algorithm.
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A common challenge in processing large images for

segmentation tasks is the computational limitations that often

require either down-sampling or splitting the images into smaller

segments. While down-sampling can reduce segmentation

accuracy, splitting images can introduce irrelevant background

content, leading to data inefficiencies. Researchers such as Chang

et al. and Jiang et al. have emphasized the importance of dividing

images into smaller segments to address this issue (Chang et al.,

2024; Jiang et al., 2024). In this study, the latter approach was

adopted, with a focus on optimizing the segmentation process and

minimizing the influence of irrelevant background areas.

To simulate real-world agricultural conditions, a cost-effective

480p Guke camera with a resolution of 640×480 pixels was used.

This camera reflects the types of equipment that farmers are likely

to have access to, offering a practical scenario for evaluating the

model. Additionally, the lower resolution provides an opportunity

to test the model’s robustness in handling low-quality images,

which is crucial in field conditions where high-resolution

equipment may not always be available.

The DeepLabV3+ model was selected for its ability to capture

both global and local features through atrous spatial pyramid pooling

(ASPP). While the baseline model performed well, it encountered

limitations when processing pure background images, occasionally

failing to distinguish between diseased and healthy areas. To mitigate

this, attention mechanisms and data augmentation techniques were

introduced, significantly enhancing the model’s capacity to accurately

segment diseased regions while reducing errors in background

segmentation. Similar approaches have been noted by researchers,

who also highlighted the effectiveness of these methods in improving

segmentation performance (Qin and Hu, 2020; Yang et al., 2022).

In the ablation study, the baseline model combined with

Attention Pyramid Fusion (APF) and Transfer Learning (TL)

demonstrated the highest accuracy on the DS-1 test set. However,

since the DS-1 dataset mainly focuses on diseased areas with limited

background images, the model’s performance on pure background

images was less satisfactory, occasionally resulting in

misclassifications as square red areas. By adding data augmentation

(DA), the model’s handling of pure background images improved,

providing clearer segmentation and better overall performance,

despite a slight reduction in accuracy.

While our improved model achieves good segmentation

accuracy, there is still room for improvement, particularly in

reducing segmentation time and parameter counts. Although the

improved model performs slightly worse on DS-2 compared to DS-

1, it still effectively recognizes similar disease features in other

environments. For disease appearances not included in the DS-1

training set, particularly the purple diseased apical leaves, detection

performance remains an area for improvement. Given the

significant differences between various sweetpotato varieties, this

result is not surprising and further emphasizes that future efforts

could focus on expanding the dataset to include more growth stages

and diverse varieties (with varying leaf colors and shapes between

top and mature leaves), thereby enhancing the model’s

generalization capability. Finally, validating the model under real
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field conditions will provide a comprehensive evaluation of its

practical applicability.
5 Conclusion

By leveraging transfer learning, the improved DeepLabV3+

network’s accuracy is significantly enhanced. The incorporation of

Attention Pyramid Fusion (APF) improves semantic feature

representation, while the novel data augmentation technique

increases generalization, allowing the model to handle background

noise more effectively in large, real-world images. Achieving strong

segmentation performance on both DS-1 (mIoU: 94.63%, mAcc:

96.99%) and DS-2 (mIoU: 78.59%, mAcc: 79.47%) datasets, the

model also demonstrates robust detection in simulated field

conditions. This solution offers a practical approach to SPVD

identification, reducing the need for specialized expertise and

providing farmers with an accessible, efficient detection tool.
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