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DFMA: an improved DeepLabv3+
based on FasterNet, multi-
receptive field, and attention
mechanism for high-throughput
phenotyping of seedlings
Liangquan Jia1†, Tao Wang1†, Xiangge Li1, Lu Gao1*,
Qiangguo Yu2, Xincheng Zhang3 and Shanlin Ma3*

1School of Information Engineering, Huzhou University, Huzhou, China, 2School of Electronic
Information Engineering, Huzhou College, Huzhou, China, 3Institute of Crop Science, Huzhou
Academy of Agriculture Sciences, Huzhou, China
With the rapid advancement of plant phenotyping research, understanding plant

genetic information and growth trends has become crucial. Measuring seedling

length is a key criterion for assessing seed viability, but traditional ruler-based

methods are time-consuming and labor-intensive. To address these limitations,

we propose an efficient deep learning approach to enhance plant seedling

phenotyping analysis. We improved the DeepLabv3+ model, naming it DFMA,

and introduced a novel ASPP structure, PSPA-ASPP. On our self-constructed rice

seedling dataset, the model achieved a mean Intersection over Union (mIoU) of

81.72%. On publicly available datasets, including Arabidopsis thaliana,

Brachypodium distachyon, and Sinapis alba, detection scores reached 87.69%,

91.07%, and 66.44%, respectively, outperforming existing models. The model

generates detailed segmentation masks, capturing structures such as the

embryonic shoot, axis, and root, while a seedling length measurement

algorithm provides precise parameters for component development. This

approach offers a comprehensive, automated solution, improving phenotyping

analysis efficiency and addressing the challenges of traditional methods.
KEYWORDS

plant seedlings, deep learning, plant seedling phenotyping analysis, DeepLabv3+, DFMA
1 Introduction

“High-Throughput Phenotyping” is a method for rapidly and automatically acquiring

and analyzing large volumes of phenotypic data from plant or biological samples. This

approach utilizes imaging technology, sensors, computer vision, and machine learning to

collect extensive data without disrupting sample growth, thus revealing growth
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characteristics, health status, and physiological changes of the

organisms. This technique is particularly applicable in agriculture

and plant sciences, enabling efficient evaluation of different

genotypes under various environmental conditions, and providing

essential data to support crop improvement and breeding programs.

In recent years, plant phenotyping has emerged as a rapidly

advancing, data-intensive field (Zhao et al., 2019; Yang et al.,

2020). Studying plant phenotypes allows for a deeper

understanding of genetic information (Richard et al., 2015;

Holman et al., 2016) and the growth trends of plants. When it

comes to monitoring the growth of plant seedlings, phenotypic

analysis of seedlings becomes particularly crucial. Assessing various

aspects of seedling development often requires the measurement of

specific physical dimensions, with the length of the hypocotyl being

a key phenotypic trait for monitoring and quantifying different

responses (Dobos et al., 2019). Hypocotyl cells are formed during

embryogenesis and undergo several rounds of cell division to

develop. During seedling growth, the length of the hypocotyl is

no longer determined by cell division but rather by the elongation of

hypocotyl cells (Gendreau et al., 1997). Phenotypic analysis of the

root system, known as Root System Architecture (RSA), is also a

vital indicator for assessing seedling development. RSA refers to the

spatial arrangement of the root system and its components (Lynch,

1995), and its functions include water and nutrient absorption,

storage, as well as anchoring and facilitation of plant-microbe

interactions, such as nodule formation in nitrogen-fixing crops.

Although these features may not be readily apparent during plant

growth, they have a crucial impact on overall plant performance,

particularly for non-tuberous or rhizomatous crops (York et al.,

2015). Root system architecture is closely related to a plant’s

competitive advantage in the environment, including nutrient

acquisition (Lynch, 1995; MansChadi et al., 2014), drought

tolerance (Ribaut, 2006; Comas et al., 2013; Fenta et al., 2014;

Wade et al., 2015), waterlogging tolerance (VanToai et al., 2001),

and lodging resistance (Guingo et al., 1998).

In the field of seedling phenotypic analysis, seed viability

testing, and seed germination experiments, parameters such as

germination rate, seedling length, and growth rate are frequently

measured. For instance, Wang Binbin et al. (Wang and Wu, 2022)

conducted a study on the impact of extracellular polysaccharides

from lactic acid bacteria on the germination and stress tolerance of

japonica rice seeds. They performed statistical analysis on

parameters such as germination potential, germination rate, root

length, and shoot length of japonica rice seeds incubated in different

culture solutions at a constant temperature for 7 days. However, this

process required a significant amount of manual measurements.

Similarly, Jiang Yuting et al. (Jiang et al., 2022) investigated the

effects of different particle sizes and concentrations of polystyrene

microplastics (PS-MPs) on the germination and seedling growth of

sorghum seeds to understand the material’s impact on plants. These

experiments also necessitated accurate measurements of

germination, root length, and shoot length. Nevertheless,

traditional manual measurement methods are no longer adequate

to meet the demands of modern agriculture for efficient, precise,
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and automated measurements. Particularly in seed germination

experiments, accurately measuring shoot length has become an

urgent issue. Currently, there is a relatively limited body of research

on methods for measuring shoot length during the seed

germination stage, and there is no widely accepted automated

detection method for measuring root or shoot length during

seed germination.

In recent years, with the continuous progress of artificial

intelligence, computer vision, and other technologies, more and

more researchers have begun to explore how to utilize advanced

technologies such as deep learning to solve problems in the field of

agricultural detection. These studies have proposed a series of deep

learning-based methods for image semantic segmentation and

target detection to address the needs of modern agriculture. For

example, Marset et al. (Marset et al., 2021) proposed a grape bud

detection method based on the Fully Convolutional Network

Mobile Network architecture (FCN-MN), which achieved

improvements in segmentation, correspondence recognition, and

localization, and realized the detection of the number of grape buds,

bud area, and internode length. On the other hand, Yaying Shi et al.

(Shi et al., 2022) achieved significant performance based on the

YOLOv5 family of networks trained on a barley seed dataset, with

the trained YOLOv5x6 model achieving a mean accuracy (mAP) of

97.5% in the recognition of barley seeds of different varieties. The

development and application of these techniques provide new ideas

and solutions to address automated seedling phenotyping, which is

expected to play an important role in modern agriculture.

Considering the need for non-destructive, efficient, accurate,

and consistent measurements for phenotyping rice seedlings,

DeepLabv3+ (Chen et al., 2017) was used in this study as a

baseline model for pixel-level segmentation of seedling images to

extract the seedling’s shoot, radicle, and seed parts. Subsequently,

the shoot and root lengths of the seeds were analyzed in depth by

further length measurement analysis methods. In the field of image

segmentation, the DeepLab family is one of the widely used and

excellent models. DeepLabv3+ has achieved 89.0% and 82.1% test

performance on PASCAL VOC 2012 and Cityscapes datasets,

respectively (Chen et al., 2017), which is accurate enough for

high-precision image segmentation tasks. However, the main

backbone network of this model, Xception, has a large number of

parameters, which consumes a significant amount of GPU memory.

Additionally, the model’s memory footprint is substantial. As a

result, it fails to meet the efficiency requirements for bud growth

detection. To achieve fast and efficient detection, we optimized and

improved the DeepLabv3+ model. We chose the FasterNet (Chen

et al., 2023) network module with PConv as the backbone network

to reduce the computational complexity. At the same time, we

introduced the PSPA-ASPP structure and applied the EMA

attention mechanism (Ouyang et al., 2023) to the network to

improve the network operation speed and segmentation accuracy.

This enables us to realize image segmentation in terms of efficiency

and accuracy and significantly extends the applicability of the

algorithm in practical applications. With this improvement, we

can quickly and accurately recognize sprout root targets on the
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germination plate. After obtaining the target contour, we used a

length recognition algorithm and performed skeleton extraction

based on the sprout-root contour, thus obtaining a high-precision

skeleton of the seed germination and realizing the automated

detection of sprout length and root length.

The goal of this study is to perform detailed phenotyping of rice

seed germination and seedling stages based on deep learning

techniques and high-throughput plant phenotyping methods. By

deeply investigating the phenotypic changes in these critical growth

stages, we can better understand the mechanisms of plant growth,

development, and adaptation to the environment, and provide

strong support for plant breeding and crop improvement.

Meanwhile, this study is also expected to reveal the dynamic

changes in root system structure during plant seed germination

and seedling growth, thus providing new strategies and directions

for improving crop yield and adapting to planting under different

environmental conditions.

The contributions or innovations of this paper are mainly

the following:
Fron
(1) A deep-learning-based high-throughput phenotyping tool

for hypocotyls is presented, which is fully automated and

achieves the accuracy of a human expert in length

measurement tasks across various plant species.

(2) Using a germination plate to simulate the growth

environment of rice seeds, images of rice seedlings were

collected under the germination plate. Three common

phenotypic targets—shoots, roots, and seeds—were

selected to produce the dataset.

(3) An efficient plant phenotype segmentation method is

provided, which can achieve efficient segmentation of

crop images at the pixel level.

(4) The FasterNet-DeepLabv3+ (DFMA) semantic

segmentation model is proposed, which reduces the

computational complexity of the network and the impact

of hollow convolutional meshing. It improves detection

efficiency and accuracy, and addresses the problem of

frequent memory accesses and inefficiency caused by

using depth-separable convolution in the original network.
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2 Materials and methods

2.1 Image acquisition and data preparation

The dataset is divided into two parts. The first part is a

homemade rice seedling dataset for training and testing the

model. The second part is the publicly available dataset used to

validate the generalization of the proposed model.

The construction of the self-made rice seedling dataset involves

two main stages, beginning with the setup of the growth

environment. To simulate the natural growth environment of rice

and ensure sample consistency, a custom-designed germination

board was developed for this experiment. Seeds were laid flat on a

black velvet cloth, then gently clamped between two acrylic sheets,

which secured both the cloth and seeds without disrupting the

normal growth process or disturbing their stable positions. The

germination board was placed vertically in an incubator set to a

temperature of 28°C, thus controlling the temperature to provide

optimal conditions for germination. To maintain a moist

environment, water was evenly sprayed onto the seed surface

every 12 hours using a spray bottle. This controlled environment

minimized external disturbances, creating consistent experimental

conditions. The experiment spanned the critical 7- to 14-day

growth period for rice seedlings, during which there are

significant morphological changes, from germination to the

preliminary formation of plant structure, capturing key

characteristics of each growth stage. Consequently, the dataset

contains images of seedlings from various growth stages,

establishing a foundational resource for model development to

recognize growth stage characteristics. A germination board

seedling image is illustrated in Figure 1A.

During the germination and image capture phase, the

experiment ensured stable seedling growth on the germination

board under constant temperature and humidity conditions.

Images were taken using various mobile devices to increase

dataset diversity. All images were captured perpendicular to the

germination board to minimize viewpoint deviation, while the well-

lit laboratory environment ensured high-quality image sources. The

use of different devices introduced natural device noise, attributed
FIGURE 1

Homemade dataset germination plate pictures, (A) raw images, (B) mask images.
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to sensor variations or light reflections, enhancing both the dataset’s

diversity and its robustness in real-world applications. To ensure

data quality, all images were meticulously reviewed by botanical

experts. A total of 115 healthy rice seedling samples were collected,

spanning the 7- to 14-day growth period, thereby ensuring both

representativeness and diversity in the dataset. In this study,

Labelme open-source annotation software was used for manual

image segmentation of images. The image was divided into four

categories including shoots, roots, seeds and background. In the

segmentation process, the parts of rice seedlings were separated

from the background. For the fluff and secondary roots on the roots,

they were treated as background. In this way, a homemade labeled

dataset with the file suffix “.json” was obtained. Processed by the

program, 115 sets of images were finally obtained. The sample

image is shown in Figure 1B.

The public dataset was created using the Plant Segmentation

Dataset, which was made public on the Kaggle platform by Orsolya

Dobos et al. (https://www.kaggle.com/tivadardanka/plant-

segmentation) in 2019. This dataset contains images of three

seedlings, including Arabidopsis thaliana, Brachypodium

distachyon, and Sinapis alba. The authors manually placed

seedlings of these three plants on the surface of 1% agar plates

and collected images using an EPSON PERFECTION V30 scanner.

Images were saved in “.tif” or “.jpg” format using 800 dpi and 24-bit

color settings. After collection, hypocotyls, cotyledons, seed coats,

and roots were labeled using FIJI and used to create masks to train

the segmentation algorithm. A sample of the dataset is shown

in Figure 2.
2.2 Seedling phenotyping method

2.2.1 FasterNet network model
Some common network models, such as MobileNet (Howard

et al., 2017), ShuffleNet (Zhang et al., 2017), and GhostNet (Han

et al., 2020), widely utilize Depth-wise Separable Convolution

(DWConv) and Group Convolution (GConv) to extract spatial

features. Depth-wise Separable Convolution is favored for its

advantage in reducing the number of parameters. However,

replacing 2D convolution with Depth-wise Separable Convolution
Frontiers in Plant Science 04
may result in a drop in model performance, yielding suboptimal

models. Furthermore, Depth-wise Separable Convolution places

higher demands on memory access, leading to slower

computation speeds on GPUs, lower FLOPs, and higher latency.

Similarly, Group Convolution can reduce the number of

parameters, but the limited interaction between channels within

the group may result in the loss of global channel information.

During the process of reducing parameters and FLOPs, the

computational operators often experience the side effect of

increased memory access. These networks are often accompanied

by additional data operations, such as concatenation, shuffling, and

pooling, and the runtime latency of these operations is crucial for

small-scale models. The formula for calculating latency is as follows:

Latency = FLOPs
FLOPS (1)

One of them, FLOPS (floating point operations per second), is

widely used to evaluate the effectiveness of computational speed.

Although there are many approaches aimed at reducing FLOPs, few

of them also consider low-latency optimization. To address this

issue, the authors (Chen et al., 2023) introduced PConv and

proposed FasterNet. as a new family of net-works with lower

latency, on a variety of devices, FasterNet not only provides state-

of-the-art performance, but also enables lower latency and

higher throughput.

The overall architecture of FasterNet has four layers, each

containing respectively l1, and l2, l3, and l4 individual FasterNet

blocks, which are preceded by an embedding or merging layer. The

last layer is used for feature classification. In each FasterNet block,

there is one PConv and two PWConv layers, corresponding to the two

Conv 1×1 layers shown in the bottom-right corner of Figure 3. The

resulting feature maps are convolved 1×1 after data normalization and

ReLU activation function to preserve the complexity of the feature

maps and to achieve lower latency. where PConv is a convolution

operator that reduces computational redundancy and memory access.

Figure 3, bottom left, illustrates how PConv works. It simply applies

regular Conv to a portion of the input channel for spatial feature

extraction while keeping the rest of the channel unchanged. For

consecutive or regular memory accesses, the first or last consecutive

channel is computed by considering the first or last consecutive

channel as a representation of the entire feature map. The input
FIGURE 2

Plant segmentation public datasets. (A) Arabidopsis thaliana (B) Brachypodium dis-tachyon (C) Sinapis alba.
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and output feature maps are considered to have the same number

of channels without loss of generality. As a result, PConv reduces

the FLOPs from h� w � 2c0 + k2 � c0 ≈ h� w � 2c0 down to the

number of channels in the h� w � k2 � c2p.

2.2.2 EMA attention mechanisms module
Attention mechanism modules are employed in neural

networks to improve the selection and integration of information

from image data, thereby enhancing model performance and

accuracy. Examples include SE (Squeeze-and-Excitation) (Hu

et al., 2020), CBAM (Convolutional Block Attention Module)

(Woo et al., 2018), and CA (Channel Attention) (Hou et al.,

2021). The SE attention mechanism focuses solely on channel-

level attention and is suitable for scenarios with a higher number of

channels but performs poorly when channels are limited. CBAM

requires more computational resources, increasing computational

complexity and FLOPs. CA also incurs additional computational

overhead as it computes attention weights for the entire feature

map, and it cannot capture long-range dependencies.

To further improve the performance of DeepLabv3+ network in

extracting global information, we introduce a new efficient multi-

scale attention module, EMA (Efficient Multiscale Attention)

(Ouyang et al., 2023). EMA aims to preserve the information in

each channel and reduce the computational overhead to achieve the

goal of simultaneously preserving rich information and reducing

the goal of computational cost. It achieves the effect of uniformly

distributing spatial semantic features in each feature group by

reconstructing some of the channels into batch dimensions and

grouping the channel dimensions into multiple sub-features. The

specific structure of EMA is shown in Figure 4.

A parallel substructure is used in the EMA module, which is

applied in the attention mechanism to help the network avoid more

parameters and greater depth, and the large local receptive fields of

the neurons enable the neurons to collect multiscale spatial

information. Therefore, EMA utilizes three parallel routes to

extract the attention weight descriptors for the grouped feature
Frontiers in Plant Science 05
maps. Two of the parallel routes are 1×1 branches and the third

route is 3×3 branches. Cross-channel information interactions are

also modeled in the channel direction. More specifically two 1D

global average pooling operations are employed in the 1×1 branch

to encode the channel along the two spatial directions respectively,

while only one 3×3 kernel is stacked in the 3×3 branch for capturing

multi-scale feature representations. Based on such a structure, EMA

not only encodes the inter-channel information to adjust the

importance of different channels, but also preserves the precise

spatial structure information.
Groups

X Avg Pool Conv(3x3)Y Avg Pool

Concat+Conv(1x1)

Sigmoid Sigmoid

Re-weight

GroupNorm

Avg Pool

Softmax

Matmul

Sigmoid

Avg Pool

Softmax
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Input C x H x W

+

C//G x H x W

C//G x 1 x W C//G x H x 1 C//G x H x W
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C//G x 1 x W C//G x H x 1

C//G x H x W

C//G x 1 x 1
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1 x H x W 1 x H x W

Cross-spatial learning

Output C x H x W
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C//G x 1 x 1
C//G x H x W
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FIGURE 4

EMA self-attention module.
FIGURE 3

Overall architecture of FasterNet.
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2.2.3 PSPA-ASPP spatial pooling pyramid layer
Inspired by Spatial Pyramid Pooling (SPP) (He et al., 2014),

DeepLabv2 (Chen et al., 2017) introduced a novel module for

semantic segmentation known as Atrous Spatial Pyramid Pooling

(ASPP). The ASPP module’s design is primarily based on the

concept of dilated convolution. Traditional image segmentation

algorithms often use pooling and convolution layers to increase the

receptive field while simultaneously reducing the feature map size.

However, when it becomes necessary to upsample or restore the size

of feature maps from downsample and pooled layers, it can lead to a

loss in the accuracy of image features and potential loss of semantic

information from the original image. To address this issue, a

method is needed that can increase the receptive field while

keeping the feature map size unchanged, thus replacing

upsampling and downsampling operations. Dilated convolution is

precisely designed to meet this requirement. Dilated convolution

extends the receptive field of convolutional operations by

introducing holes (gaps) in the convolution kernel without

changing the kernel’s size. Specifically, dilated convolution

introduces some virtual zero-value pixels in the convolution

operation, allowing the expansion of the convolution kernel’s

receptive field without altering the feature map size. Figure 5A

represents regular convolution, while (Figure 5B) represents dilated

convolution with a dilation rate of 2, providing a comparison of the

changes in receptive field between the two. ASPP’s design represents

a typical application of dilated convolution, achieving multiscale

target information by parallelizing three dilated convolutions with
Frontiers in Plant Science 06
different dilation rates, along with a standard convolution and a

pooling operation.

Although introducing dilated convolutions can increase the

receptive field, it also suffers from two significant drawbacks.

Firstly, dilated convolutions can lead to the problem of sparse

sampling. While dilated convolutions excel in extracting global

information, they may lack some semantic information when

dealing with small targets. This is because larger dilation rates can

result in excessive gaps between sampled points, making it

challenging to capture fine details of small objects. Secondly,

dilated convolutions exhibit the grid effect issue. When the same

dilation rate is used or there exists a common divisor greater than 1,

during the process of feature map stacking, it may lead to the loss of

local detailed information in image features, resulting in a pixelated

grid-like effect in the im-ages. This occurs because the same dilation

rate or common divisor causes multiple sampled points to form a

regular grid structure on the feature map, preventing the recovery

of certain local information. Figure 6 illustrates the gridding effect

of feature maps. When three consecutive convolution operations

with a dilation rate of 2 and a kernel size of 3×3 are applied to a

feature map, not all pixels on the feature map participate in

the computation.

2.2.4 CARAFE up-sampling operator
The operator for feature upsampling is essential for increasing

the resolution of low-resolution feature maps to match the size of

high-resolution feature maps, and the design of an effective

upsampling operator is of paramount importance (Mazzini, 2018;

Chen et al., 2021; Dai et al., 2021). Among the widely used feature

upsampling operators, nearest-neighbor interpolation and bilinear

interpolation only consider sub-pixel neighborhoods, failing to

capture the rich semantic information required for dense

prediction tasks. The Transposed Convolution (Dumoulin and

Visin, 2016), serving as the inverse operator of convolutional

layers, employs convolution kernels of the same size throughout

the entire image, thereby neglecting local information variations

and leading to a significant increase in parameter count.

Wang et al. (Wang et al., 2019) introduced the CARAFE

(Content-Aware ReAssembly of Features) feature re-sampling

operator, which adaptively aggregates information within larger

receptive fields, while maintaining remarkable computational

efficiency. CARAFE generates weights in a content-aware manner

by combining features within predefined regions near the central

position. Multiple sets of such upsampling weights are computed

for each central position, and the resulting features are rearranged

into spatial blocks to complete the feature upsampling process. To

validate the effectiveness of the CARAFE operator, the original

authors conducted extensive experiments on Faster RCNN (Ren

et al., 2015), employing various operators for upsampling within the

Feature Pyramid Network (FPN). The results, as shown in Table 1,

included cases denoted as “nearest neighbor + convolution” (N.C.)

and “bilinear + convolution” (B.C.), where an additional 3×3

convolution layer was added after the corresponding upsampling.

The comparative experiments also included three typical

upsampling methods: deconvolution (Deconv), pixel shuffle (P.S.),
Stride=1

Kernel size=3

Stride=1

Kernel size=3

Dilated=2

FIGURE 5

Visualization of the receptive field after the introduction of the null
rate. (A) Represents regular convolution and (B) represents
dilated convolution.
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and guided upsampling (GUM), as well as spatial attention (S.A.).

CARAFE exhibited the highest average precision (AP) among all

upsampling operators while maintaining lower FLOPs and

parameter counts, indicating its efficiency in enhancing detail

recovery and excelling in model lightweighting. Results for N.C.

and B.C. suggested that additional parameters did not yield

significant gains, whereas Deconv, P.S., GUM, and S.A. all

exhibited inferior performance compared to CARAFE.

As shown in Figure 8, CARAFE, as an upsampling operator

with a content-aware kernel, consists of two steps. The first step is to

predict the reassembly kernel for each target position based on its

content (i.e., the Kernel Prediction Module in Figure 8). The second

step is to use the predicted kernel to reassemble the features (i.e., the

Content-aware Reassembly Module in Figure 8). In the first step, a

feature map X of size C �W � H is upsampled by a factor of s,
resulting in a new feature map of size C×sH×sW. Assuming an

upsample kernel size of kup � kup, if different upsample kernels are

desired for each position in the output feature map, the predicted
Frontiers in Plant Science 07
upsample kernel should have a shape of sH � sW � kup � kup.

To compress the input feature map, a convolution layer with a

kernel size of   kencoder � kencoder is used to predict the upsample

kernel, with an input channel number of Cm and an output channel

number of s 2k2up, resulting in an upsample kernel of shape sH �
sW � k2up. In the second step, for each position in the output

feature map, it is mapped back to the input feature map, and a kup �
kup region centered on that point is extracted. The dot product is

then computed between the extracted region and the predicted

upsample kernel for that point to obtain the output value. Different

channels at the same position share the same upsample kernel.

In the improved Deeplab v3+ network, as illustrated in

Equation 2, the kernel prediction module y predicts the position

for each location based on the learned weights  W l0 in the first step.

Subsequently, as described in Equation 3, the content-aware

recombination module f recombines the features X l with the

kernel W l0 in the second step. To reduce the parameter count of

upsampling operators and enhance efficiency, an 8-fold upsampling

CARAFE module is introduced after the ASPP module, which

restores the size of the feature maps from 256 × 16 × 16 to 256 ×

128 × 128. Following feature fusion, a 4-fold upsampling operation

is applied to restore the final feature map to 4 × 512 × 512

dimensions.

W l0 = y (N(X l , kencoder)) (2)

X l0 = f(N(X l , kup),W l0 ) (3)
2.2.5 DFMA overall network structure
The DFMA model integrates the FasterNet backbone with the

SPA-ASPP module enhanced by an EMA attention mechanism,

aimed at improving feature extraction and segmentation accuracy

for plant seedling images while being optimized for mobile

deployment. Initially, the input RGB image undergoes feature

extraction via the FasterNet backbone. FasterNet leverages a
TABLE 1 Comparison of the performance of sampling operators
on CARAFE.

Method AP FLOPs Params

Nearest 36.5 0 0

Bilinear 36.7 8k 0

N.C 36.6 4.7M 590K

B.C 36.6 4.7M 590K

Deconv 36.4 1.2M 590K

P.S 36.5 4.7M 2.4M

GUM 36.9 1.1M 132K

S.A 36.9 28K 2.3K

CARAFE 37.8 199K 74K
FIGURE 6

Mapping of gridding effects. From left to right, the dilation rates are 2, 2, and 2, respectively. Following the approach outlined by Shi et al (Shi and
Bao, 2023), our research team devised a novel ASPP (Atrous Spatial Pyramid Pooling) structure known as PSPA-ASPP. Firstly, we replaced the original
ASPP’s first branch layer’s 1×1 convolution with a 3×3 Pconv convolution to broaden the receptive field of the first layer while avoiding redundant
learning. Secondly, we employed two 3×3 dilated convolutions with dilation rates of 2 and 3, each with 128 convolution kernels, which is half of the
original ASPP’s individual branch, and concatenated them in the channel dimension. Subsequently, we applied two additional 3×3 dilated
convolutions with dilation rates of 5 and 7 in a similar concatenated manner. This design allows the network to capture features from different scales
while substantially reducing the grid effect and making more effective use of feature layer information. The final layer still employs average pooling
to capture global features of the feature map. Figure 7 illustrates the overall network architecture of PSPA-ASPP.
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CARAFE up-sampling operator.
FIGURE 7

PSPA-ASPP series-parallel network structure diagram.
Frontiers in Plant Science frontiersin.org08

https://doi.org/10.3389/fpls.2024.1457360
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2024.1457360
hybrid structure combining Pconv, PWconv, and standard

convolution to efficiently extract both low-level and high-level

features, overcoming the limitations of depthwise separable

convolution. To ensure the participation of shallow features in

subsequent processing, the model retains shallow feature maps

downsampled four times within the backbone network. Following

this, DFMA introduces an EMA (attention mechanism) module

that enhances the fusion capability of high-level features. The EMA

mechanism dynamically reweights features from different layers,

enabling the network to focus on key parts of the image when

extracting high-level features, thus boosting overall performance.

During the multi-scale feature extraction stage, DFMA employs

the SPA-ASPP module with EMA attention. This module captures

high-level semantic information across multiple scales through

several branches, effectively avoiding grid effects common in

traditional methods. The EMA attention mechanism further

strengthens the representation capacity of these branches,

allowing the model to concentrate on crucial features within plant

seedling images.

In the decoding stage, the multi-scale feature information is

merged and upsampled using the CARAFER operator, aligning the

high-level feature map dimensions with the low-level feature map for

subsequent fusion. DFMA applies a 1×1 convolution on the shallow

feature map to match channel dimensions with the upsampled deep

feature map, preparing it for concatenation. The concatenated feature

map then undergoes partial convolution and additional upsampling,

ultimately generating the model’s prediction. This integrated design

combines the strengths of FasterNet and the SPA-ASPP module,

enhancing the model’s feature extraction capacity while ensuring

efficiency and accuracy for mobile deployment. The DFMA model

structure is shown in Figure 9.
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2.3 Seedling length detection method

Through training the DFMA network model, we can easily input

seedling images for analysis and obtain corresponding masks. These

masks accurately represent the different positions of seeds within the

images, allowing researchers to observe the developmental details of

seed germination, embryonic axis, and root structure clearly. In

certain studies, it is not only necessary to conduct in-depth analysis

of the development of various plant parts but also to acquire precise

parameters for these developmental aspects. Therefore, we introduce

a seedling length measurement algorithm, which not only provides

accurate segmentation masks for the images but also enables us to

obtain exact parameters for the development of different plant parts.

In this seedling length detection, we divided into two main

steps. First, we skeletonize the image using the Hilditch algorithm to

obtain the median length of the segmented image. Secondly, we

utilize Hough Transform to obtain the transformation relationship

between the true length of the seedling detection site and the pixels.

The Hough Transform is an early image processing algorithm that

employs a voting-based approach for shape fitting. Its objective is to

mathematically describe certain edges in an image to enhance

information extraction. Unlike alternative techniques such as least

squares, robust estimation, and RANSAC, the Hough Transform

excels in simultaneously fitting multiple objects. The detection process

in the Hough Transform involves iterating through all non-zero points,

accumulating votes for each point’s center, and assigning scores. For

each point along a circle, its center lies on the vector perpendicular to

the point and passing through the point’s location. The intersection

point of these center vectors corresponds to the desired circle center

position. In this experiment, coins serve as a real-world scale for

converting lengths to pixels, enabling the detection of coin diameters.
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FIGURE 9

Improvement of the overall architecture of FasterNet-Deeplab v3+.
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Within the Hough Transform, fitting circles requires three parameters -

(x, y, r), where x and y denote coordinates, and r represents the circle’s

radius. These parameters are determined using the following formula:

(X − x2) + (Y − y2) = r2 (4)

The Hough Gradient method optimizes the standard Hough Circle

Transform by eliminating the need to draw complete circles in

parameter space for voting. Instead, it calculates the gradient vectors

at contour points and casts votes along the gradient direction, at a

distance of R in both directions from the contour point, effectively

conducting one vote on each side. Ultimately, the circle center’s position

is determined based on the voting results as depicted in Figure 10.

As shown in the diagram, assuming that the gradient directions

of the contour points ACDE all pass through point B, they will each

cast a vote for point B. Within a search radius of R, votes are cast on

both sides of the contour points at a distance of R based on the

gradient direction. Ultimately, the center position is determined

based on the voting results. Compared to the parameter space

voting method for determining the center, this approach offers

better resistance to interference. Even if other points also cast votes,

their voting results are too dispersed, and their interference with the

overall voting result can be almost negligible.

For this experiment we use coins as a scale between real and

pixel values, and the actual value of the sprout length can be

calculated based on the coin diameter. A dollar coin as a circle

with a diameter of 25mm, get how many pixels it occupies in the

figure, it can get the number of pixels per metric (pixel Per Metric),

and then calculate the pixels occupied by other objects n, it can get

the actual length (n × pixel Per Metric).
3 Experiments and results

3.1 Model evaluation criteria

In this network model of bud root region segmentation, the

deep learning network mainly adopts Mean Intersection over
Frontiers in Plant Science 10
Union (mIoU) as the evaluation index of the model, and mean

intersection over union refers to the ratio of intersection and

concatenation values between the true and predicted values of

each classification, and then averages over multiple classifications.

In the field of scientific research and data analysis, True Positive

(TP)is defined as the portion where both the actual value and the

predicted value are true. True Negative (TN)corresponds to cases

where both the actual value and the predicted value are false. False

Positive (FP)refers to instances where the actual value is false, but

the predicted value is true. False Negative (FN) denotes situations

where the actual value is true, but the predicted value is false.

MIoU = 1
k+1o

k

i=0

TP
FN + FP + TP

(5)

In addition to mIoU, precision (Pre), recall (Rec), and accuracy

(Acc) are also used as evaluation metrics for the algorithm. Precision

(Pre) is used to measure the proportion of predictions that are

correct in the samples that the model predicts as positive examples,

with the formula shown in Equation 6:

precision   = TP
 TP+FP (6)

Recall (Rec) is the proportion of all positive cases that the model

predicts correctly, as shown in Equation 7:

recall   = TP
 TP+FN (7)

Accuracy (Acc) is the number of samples with all correct

predictions as a percentage of all samples. The higher its value,

the better the model. As shown in Equation 8:

Accuracy   = TP+TN
TP+TN+FP+FN (8)
3.2 Data augmentation settings in the
training phase

In this study, we employed online data augmentation

techniques to enhance the robustness and generalization

capability of the model. The data augmentation operations

included random scaling (with a scale range of 0.25 to 2 times),

aspect ratio distortion, horizontal flipping (with a probability of

50%), gray padding (pixel value of 128), random adjustments to

hue, saturation, and brightness in the HSV color space, as well as

random cropping and shifting. These augmentation methods were

dynamically applied to the training data’s images and labels during

each training iteration, thereby expanding the original data

distribution, simulating target variations under different scenarios

and conditions, and significantly improving the model’s

adaptability to changes in lighting, orientation, and target shapes.

Moreover, dynamic augmentation reduced the need for storing pre-

augmented data while significantly increasing data diversity,

thereby improving training effectiveness. It is important to note

that data augmentation was only applied during the training phase

and not during the validation phase to ensure that the validation

results objectively reflect the true performance of the model. The

FIGURE 10

Hough gradient method.
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experimental results demonstrate the effectiveness of the proposed

method in reducing overfitting and improving model performance.
3.3 Experimental platform and
parameter design

The network is implemented based on the PyTorch library and

trained on a single Nvidia RTX 3060 GPU, with a 12th Gen Intel(R)

Core(TM) i5 - 12400F processor. The initial batch size is set to 10,

and the initial learning rate is 0.05. Stochastic Gradient Descent

(SGD) is adopted as the optimization method, and both Dice loss

and cross - entropy loss are utilized as the objective functions. L2

regularization is applied for model regularization. We use online

data augmentation techniques, such as rotation (by 90, 180, and 270

degrees), horizontal flipping, and random adjustments to hue,

saturation, and brightness in the HSV color space. The original

dataset contains 115 images, which are split into a training set of 92

images and a validation set of 23 images following an 8:2 ratio.

Through these online augmentation operations, each original

training image can generate multiple variants during each

training iteration. To estimate the approximate quantity of the

augmented training data, considering that each image has 7

different augmented forms on average (3 rotations + 1 horizontal
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flip + 3 color space adjustments), the total number of augmented

training images is about 644. During training, the batch size is

adjusted to 8. The training process will automatically stop when the

loss function output of the validation set does not decrease for 20

consecutive epochs, with a maximum of 500 epochs permitted. The

segmentation performance is evaluated on the validation set using

the Mean Intersection over Union (mIoU) metric (Table 2).
3.4 Evaluation of the results of the seedling
phenotype segmentation experiment

According to the analysis results in Table 3, it is evident that

FasterNet exhibits significant advantages in network backbone

selection. Moreover, during the experimental phase, we observed

that FasterNet’s training process is notably faster, which may be

attributed to the frequent memory access associated with depth-

wise separable convolutions and pointwise convolutions used in

Xception and MobileNet. In our proposed PSPA-ASPP structure,

when the backbone networks are the same, the combination of

FasterNet with ASPP achieves an mIoU of 79.84, whereas when

combined with PSPA-ASPP, it reaches 81.36. It is noteworthy that

FasterNet+PSPA-ASPP also boasts lower GFLOPs, indicating its

competitiveness in terms of computational efficiency. The final

experimental results demonstrate that the FasterNet+EMA

+PSPA-ASPP+CARAFE combination exhibits the best

performance, further substantiating its outstanding performance

in image segmentation tasks.

The primary objective of this experiment is to achieve more

precise phenotypic analysis; therefore, when differences in other

metrics are minimal, this study prioritizes model accuracy. The

improved FasterNet-DeepLab V3+ achieves the highest mIoU while

significantly reducing GFLOPs. By simplifying the branches with

the PSPA-ASPPmodule, the GFLOPs are reduced by approximately

2.161 G, effectively enhancing the model’s learning capacity.

In accordance with Figure 11, we conducted a comparative

experimental analysis of prediction results using the DeepLabv3+

semantic segmentation model with MobileNet and Xception as
TABLE 3 Results of ablation experiments.

Xception MobileNetV2 FasterNet CA SP EMA PSPA_ASPP CARAFE MIoU/% GFLOPs/G

✔ 67.09 167.00

✔ 74.21 53.03

✔ 79.84 138.70

✔ ✔ 78.79 138.71

✔ ✔ ✔ 81.32 141.52

✔ ✔ ✔ 81.35 139.45

✔ ✔ 81.36 135.23

✔ ✔ ✔ 81.63 139.83

✔ ✔ ✔ 81.58 137.29

✔ ✔ ✔ ✔ 81.72 137.67
Bold value represents the highest mIoU achieved by our model in the tests.
TABLE 2 Training parameters.

Parameter Value

Initial learning rate 0.005

End Lr 0.0001

Momentum 0.937

Batch size 8

Lr policy Adam

Lr decay cos

epoch 500
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backbone networks, the Unet-VGG segmentation model, and our

improved DFMA network in our research. As evident from the

results in Figure 11D, the segmentation performance is the poorest

in this case, with issues of coherence in the regions covered by

masks for rice seedling shoots and root areas, resulting in

suboptimal segmentation. In contrast, our proposed DFMA

network model exhibits the best performance, accurately

segmenting each region.

On the public dataset, the DFMA was compared with networks

such as UNet (a network provided by the original authors of the

public dataset), MobileNetV2, and Xception in terms of

equalization and concurrency results, as shown in the Table 4.

Based on the analysis results presented in Table 4 and illustrated

in Figure 12, it is evident that our proposed DFMA model

demonstrates exceptional performance on publicly available

datasets, outperforming other models. Across three distinct plant

datasets, namely short-stalked grass, white Sinapis alba, and

Arabidopsis thaliana, the DFMA model achieves average

intersection over union (mIoU) ratios of 87.69%, 91.07%, and

66.44%, respectively, surpassing the other two models by at least

2 percentage points. Furthermore, as depicted in Figure 12, during

the training process, it is apparent that the DFMA network model

converges more swiftly and maintains a lower loss function value,

providing additional evidence of its superior performance

and efficiency.
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In accordance with Table 5, our proposed DFMA network

achieves the best segmentation performance on publicly available

datasets. Due to the limitations of depth-wise separable convolution,

the MobileNet network exhibits poor mask recognition in the bud

apex region. Conversely, due to its restricted network depth, UNet

produces relatively coarse results in fine detail recognition.

The DFMA model outperforms other models in plant

phenotyping analysis, largely due to its design tailored to address

the unique challenges of seedling segmentation tasks. Plant

phenotyping often requires accurate identification of intricate and

complex structures. Seedling images commonly contain multi-scale,

fine structural features, such as leaf edges and stems, which demand

high segmentation precision. Additionally, the execution

environment for seedling segmentation tasks is typically resource-

limited, such as mobile devices or automated equipment, imposing

strict requirements for model efficiency and lightweight design.

The DFMA model utilizes FasterNet as its backbone network,

known for its efficient spatial feature extraction without relying on

depthwise separable convolutions. While depthwise separable

convolutions offer a lightweight solution, they may fall short in

efficiently capturing details within complex structural images.

FasterNet’s design, incorporating a combination of Pconv,

PWconv, and standard convolution, achieves a balance between

lightweight operation and efficiency, making it well-suited for

deployment in resource-constrained environments.

Furthermore, DFMA integrates an SPA-ASPP module with

EMA (Attention Mechanism), enabling detailed feature capture

across multi-scale branches and mitigating the grid effect

commonly seen in traditional ASPP modules. The grid effect can

lead to feature loss or blurred image boundaries, but the EMA

attention mechanism allows the model to focus precisely on key

areas of seedlings, such as leaves and stems, resulting in outstanding

performance in detail-rich scenarios. This capability is critical for

fine-grained segmentation in plant phenotyping, as capturing

details aids researchers in better understanding plant growth

conditions and morphological characteristics.
FIGURE 12

Loss curves of different models on two-spike phragmites
picture dataset.
FIGURE 11

Phenotypic recognition results for homemade datasets. (A) Original
figure. (B) DFMA. (C) deepLab v3+-MobileNet. (D) deepLab v3
+-Xception. (E) UNet-VGG.
TABLE 4 MIoU results (%) of different network trainings on
public dataset.

Model Brachypodium
distachyon

Sinapis
alba

Arabidopsis
thaliana

DFMA 87.69 91.07 66.44

MobileNetV2 84.84 87.21 63.39

Xception 78.78 68.75 56.22

UNet-VGG 80.10 85.65 62.82
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TABLE 5 Plant phenotype segmentation results for different networks of the open dataset.

original figure
Improvement of

FasterNet-Deeplab
V3+

Deeplab
V3+-MobileNet

UNet-VGG

Arabidopsis thaliana

Brachypodium distachyon

Sinapis alba
F
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FIGURE 13

Scatterplot of identifying rice seedlings (A) Adam optimizer detects bud length (B) SGD optimizer detects bud length (C) Adam optimizer detects
root length (D) The SGD optimizer detects root length.
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3.5 Evaluation of the results of the seedling
phenotype segmentation experiment

The skeleton extraction algorithm was employed to identify the

central axis of the mask, enabling the computation of the seedling

shoot and root length. Figure 13 and Table 6 depict the image
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analysis results obtained through both manual detection and the

experimental method described in this paper. In these

visualizations, the horizontal axis represents the manually

measured values, while the vertical axis represents the

corresponding measurements obtained from seedling images

using the method outlined in this study. Statistical analysis in
TABLE 6 Relative errors of different algorithms for length recognition of rice seedling images.

Model
Serial

number
Maximum absolute

error (cm)
Minimum absolute

error (cm)
Mean absolute

error (cm)

Improvement (%)

Vs.
DeepLabV3+

Vs.
Unet-VGG

Original Deeplab
V3+ model

bud 0.583 0.028 0.386
– –

radical 0.506 0.016 0.724

UNet-VGG
bud 0.876 0.034 0.410

– –
radical 1.467 0.074 0.862

DFMA
bud 0.384 0.007 0.146 +62.20 +64.44

radical 0.393 0.006 0.231 +68.09 +73.20
FIGURE 14

Results of batch testing of rice shoot root lengths.
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Table 6 is conducted by grouping every 5 seedlings together

for assessment.

The measured values obtained by the algorithm used in this paper

and the manual measurement values are highly consistent, and the

improved DeepLabv3+ network yields better results than the original

DeepLabv3+ network. However, there is still a small error. Possible

reasons for the error include the skeleton extraction step after filling

the interior of the contour, which causes the algorithm to use the

centerline instead of the main root. Additionally, there is an offset in

the refinement process, resulting in inconsistent calculated lengths.

Compared to the original DeepLabv3+ model, the improved

model reduced the mean absolute errors in measuring shoots and

roots by 62.20% and 68.09%, respectively. Compared with the

UNet-VGG model, it achieved improvements of 64.44% and

73.20%, respectively, and demonstrated a more significant

detection advantage in terms of maximum and minimum

absolute errors.

In this study, based on the improved DeepLabv3+ target

segmentation network combined with the length detection

algorithm, the sprout target is recognized and segmented, and the

sprout length is ultimately obtained. The recognition results are

shown in Figure 14 below. The model in this study demonstrates

superior recognition of the target, accurately segments the outline

and key parts of the target, and simultaneously avoids confusion

between the target and the background. It provides more accurate

length detection results and is capable of batch detection.
4 Discussion

This study proposes a high-throughput plant phenotyping

method based on deep learning, highlighting its broad application

potential and significance across multiple fields. Through a non-

destructive, efficient, accurate, and consistent measurement

approach, we achieved phenotypic analysis of rice seedlings at

early growth stages, significantly improving research efficiency

and broadening future applications. In line with specific

experimental tasks, we selected datasets from four species, three

from public Kaggle datasets and one collected independently. This

choice allowed us to test the model’s performance under relatively

consistent environmental conditions, minimizing external factors

and yielding clearer experimental results. However, we recognize

that the current datasets are limited in species and environmental

diversity, and expanding this diversity is necessary to further

enhance the model’s robustness and generalizability. Future

research will therefore introduce more samples from diverse

species and environmental conditions to improve the model’s

adaptability and applicability in complex, dynamic scenarios.

Although the improved DeepLabv3+ and the newly introduced

DFMA semantic segmentation model perform excellently in

segmentation efficiency and accuracy, they still face limitations in

lighting adaptability, cross-crop transferability, and multi-species

analysis. To enhance the model’s broad applicability, future work

will focus on further strengthening the model’s robustness to

varying lighting conditions and exploring ways to adjust feature
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extraction and attention modules to better accommodate plants

with diverse morphological features. As research progresses, we also

plan to expand this technology to other crops and plant species,

further uncovering growth and developmental characteristics. This

will provide scientific support for crop improvement and

cultivation, and advance ecological research, helping scientists

better understand plant responses to environmental changes.

The application prospects of this technology extend beyond

plant phenotyping, with potential in fields such as medical image

analysis and autonomous driving, demonstrating deep learning’s

immense potential for automation and precision in image

processing. This technology holds significant value for research in

biology and botany. In the future, we plan to open-source a

WeChat-based plant phenotyping mini-program to promote

practical applications of this research and facilitate further

developments. This will provide innovative tools and directions

for plant breeding and crop improvement.
5 Conclusion

In summary, our study addresses a critical need in the rapidly

evolving field of plant phenotypic research. Accurate seedling

length measurement is essential for evaluating seed viability and

growth status. We have developed an efficient and versatile deep

learning approach, named DFMA, which incorporates the

innovative PSPA-ASPP structure. Our model consistently

outperforms traditional methods and other models, achieving

remarkable segmentation and detection results across various

plant species. DFMA generates precise segmentation masks that

highlight detailed developmental aspects of seedling components,

such as cotyledons, hypocotyls, and roots. Furthermore, we

introduce a novel seedling length measurement algorithm,

providing precise parameters for a comprehensive plant

phenotypic analysis. Our research holds great promise for offering

more efficient tools and data support to advance the field of plant

biology, enhancing our understanding of plant genetics and growth

trends in the top-tier scientific community.
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