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Extensive transcriptome data
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genetic research and adaptive
gene discovery: a case study of
Elymus sibiricus L.
(Poaceae, Triticeae)
Yanli Xiong1†, Daxu Li2†, Tianqi Liu1, Yi Xiong1, Qingqing Yu2,
Xiong Lei2, Junming Zhao1, Lijun Yan2* and Xiao Ma1*

1College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu,
Sichuan, China, 2Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
Genetic markers play a central role in understanding genetic diversity, speciation,

evolutionary processes, and how species respond to environmental stresses.

However, conventional molecular markers are less effective when studying

polyploid species with large genomes. In this study, we compared gene

expression levels in 101 accessions of Elymus sibiricus, a widely distributed

allotetraploid forage species across the Eurasian continent. A total of 20,273 high

quality transcriptomic SNPs were identified. In addition, 72,344 evolutionary

information loci of these accessions of E. sibiricus were identified using genome

skimming data in conjunction with the assembled composite genome. The

population structure results suggest that transcriptome SNPs were more effective

than SNPs derived from genome skimming data in revealing the population

structure of E. sibiricus from different locations, and also outperformed gene

expression levels. Compared with transcriptome SNPs, the investigation of

population-specifically-expressed genes (PSEGs) using expression levels revealed

a larger number of locally adapted genes mainly involved in the ion response

process in the Sichuan, Inner Mongolia, and Xizang geographical groups.

Furthermore, we performed the weighted gene co-expression network analysis

(WGCNA) and successfully identified potential regulators of PSEGs. Therefore, for

species lacking genomic information, the use of transcriptome SNPs is an efficient

approach to perform population structure analysis. In addition, analyzing genes

under selection through nucleotide diversity and genetic differentiation index

analysis based on transcriptome SNPs, and exploring PSEG through expression

levels is an effective method for analyzing locally adaptive genes.
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Introduction

Local adaptation occurs when divergent selection outweighs

random genetic drift and the equalizing effect of gene flow between

populations (Kawecki and Ebert, 2004). These premises suggest that

certain widely distributed wild plants show distinctive local

adaptations caused by restricted gene flow between populations

due to geographical and environmental isolation. Multiple selection

factors interact with geographic distance between populations to

shape the evolutionary dynamics of species by restricting gene flow

(López-Goldar and Agrawal, 2021). In addition to the molecular

perspective and adaptive effects, a comprehensive study of local

adaptation in species should also consider ecological factors and the

co-evolution of plants and their environment. For example, local

adaptation along natural gradients such as latitude and altitude,

which have been extensively studied, may be the result of the

combined influences of different ecological effects on selection

and gene flow (López-Goldar and Agrawal, 2021; Tiffin and Ross-

Ibarra, 2014).

Compared to neutral regions, where selection is not expected,

regions of genes and linked loci under divergent selection are

expected to experience stronger selection pressures (Limborg et al.,

2012). The adaptive significance of existing polymorphic sites is often

difficult to estimate, as they may not be the direct targets of selection,

but rather by-products of hitchhiking effects (Zhang et al., 2024).

Large-scale transcriptome sequencing can help us study functional

genetic variation, thereby increasing the chances of detecting natural

selection, as functional genetic variation is expected to be more

directly influenced by natural selection and result in a population-

specific expression (Tang et al., 2021). The regulation of gene

expression is a complex and intricate process, and studies of the

evolution of gene expression have shown significant variability in the

variability of regulatory elements both within and between natural

populations (Shi et al., 2012). However, studying adaptive evolution

at the level of gene expression is only relevant for specific genes or sets

of co-expression gene. Given that the environment always influences

gene expression, this implies that general evolutionary patterns of

gene expression are not necessarily adaptive (Signor and Nuzhdin,

2018). Common garden experiments test how heritable traits are

influenced by natural selection (leading to natural variation) and

ultimately affect optimal outcomes for population persistence

(Schwinning et al., 2022). The natural variation observed could be

attributed to the prolonged acclimatization processes that occur in

response to the particular environmental conditions of the sites where

the species occur.

Elymus sibiricus, the model species of the genus Elymus, is

widely distributed across the Eurasian continent and exhibits

significant genetic diversity and phenotypic variance (Xiong et al.,

2021). The extensive habitat diversity has contributed to the unique

adaptability of E. sibiricus ecotypes across different geographic

groups (Han et al., 2022). Due to its remarkable adaptability to

the high altitude environment, superior nutritional value and ease

of cultivation, E. sibiricus is the dominant forage crop and is

extensively cultivated in the artificial forage grasslands of the

Qinghai-Tibetan Plateau. Nevertheless, the unavailability of the

reference genome hampers genetic research on E. sibiricus,
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resulting in previous studies relying solely on molecular markers

such as genomic SSRs (Xiong et al., 2021; Lei et al., 2014), EST-SSRs

(Zhang et al., 2019; Zheng et al., 2020), and chloroplast/

mitochondrial SSRs (Lei et al., 2014; Xiong et al., 2022), to

investigate the population structure and adaptive evolution of the

species. Due to their limited coverage, these markers can only reveal

specific genetic variations. Considering their larger number and

wider distribution, SNP markers are more suitable for population

genetic research (Sun et al., 2020). Some SNPs derived from

simplified genome sequencing have been used to study the

population structure of E. sibiricus (Han et al., 2022). However, a

significant proportion of these markers are located in non-

functional regions. Furthermore, mapping SNPs located in genic

regions to specific genes is challenging due to the lack of

comprehensive reference genomic information. In this context,

the use of transcriptome data allows a thorough investigation of

functional regions and genes associated with adaptive traits, and the

detection of sequence variation and expression levels within these

regions. SNP-based studies of the transcriptome can provide a

wealth of SNP markers, and these variants can affect the coding

sequence of proteins, thus affecting gene expression and function. In

addition, the abundance of SNP markers in the transcriptome

allows accurate assessment of genetic variation and population

structure (Yang, 1998). However, issues of widespread purifying

selection in the transcriptome and concerns about sample size point

to the need for comparisons between mRNA and established DNA-

based methods (Thorstensen et al., 2020; Pratlong et al., 2015;

Thorstensen et al., 2021). Genome skimming sequencing is a cost-

effective protocol for obtaining genome-level variation and has

shown excellent potential for phylogenetics, species identification,

and genetic diversity assessment (Richter et al., 2015; Trevisan et al.,

2019). Furthermore, SISRS software allows the identification of

phylogenetically informative sites across the genome by skimming

sequencing data without reference genome information (Schwartz

et al., 2015; Literman et al., 2023), allowing us to perform

population variation calling at the DNA level.

This study included 101 wild E. sibiricus accessions from both

domestic and international sources, covering the primary distribution

regions of E. sibiricus. The transcriptomes of these collected

accessions were sequenced, and the full-length transcriptome of E.

sibiricus was assembled using previous research data to construct a

reference sequence. The aims of this study included: (1) studying

population genetic analysis using transcriptome SNPs and expression

levels; (2) analyzing population (geo-group)-specific expression genes

(PSEG), investigating genes related to adaptability of E. sibiricus; (3)

using genome skimming data from 101 accessions as reported by

Xiong et al. (2023) to identify homologous sequences at the genome

level (Schwartz et al., 2015) and compare their effectiveness in

population structure studies with transcriptome data (both

transcriptome SNPs and expression levels). This study provides a

comprehensive analysis of the population structure of E. sibiricus,

including transcriptome SNPs, expression levels and genome-level

homologous sequences, which could provide a genetic research mode

in polyploid species without genomic information. It will also identify

the functional genes that contribute to the differentiation of

geographic groups of E. sibiricus.
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Results

Full-length transcriptome assembly, SNPs
calling from the transcriptome and
genome skimming data

The reference transcriptome of E. sibiricus was assembled,

comprising 6982 contigs with an N50 of 42,573 bp and a GC

content of 48.08% (Table 1). Using this reference transcriptome,

20,273 high quality SNPs were identified from 101 E. sibiricus

accessions. Furthermore, the genome skimming data were used to

assemble the E. sibiricus composite genome, which consisted of

33,234 contigs with a total length of more than 3.8 million bp,

covering more than 0.05% of the 6.8 Gb nuclear genome. Among

these contigs, 1525 had a length of more than 200 bp. A total of

72,344 SNPs were identified based on genome skimming data from

101 E. sibiricus accessions.
SNPs derived from the transcriptome data
exhibited higher discriminatory ability for
various geo-groups of E. sibiricus

The PCA plots and phylogenetic trees based on three data sets

(transcriptome SNPs, the expression levels, and SNPs-GS) were

combined to reveal the population structure of the tested E. sibiricus

accessions (Figures 1, 2). In general, a greater discriminatory power

of SNP data (both transcriptome SNPs and SNPs-GS) to

discriminate different geo-groups was observed in PCA plots.

Specifically, the PCA plot constructed using SNPs-GS could

distinguish several E. sibiricus accessions from the QTP

(Figure 1B), while the PCA plot constructed using transcriptome

SNPs could distinguish more E. sibiricus accessions from the QTP

and other regions (Figure 1C). However, based on expression levels,

the tested E. sibiricus accessions had a mixed population structure

(Figure 1A). In addition, the phylogenetic analysis also showed a

greater discriminatory ability of transcriptome SNPs for

distinguishing E. sibiricus accessions from different geo-groups

(Figure 2), indicating the suitability of SNP data from

transcriptome sequencing for further population structure

analysis compared to expression levels or SNPs-GS.
Genetic diversity indices using
transcriptome SNPs

As transcriptomic SNPs were more effective in revealing the

population structure of E. sibiricus (Figures 1, 2), we subsequently

used transcriptomic SNPs to perform further genetic studies. In
Frontiers in Plant Science 03
summary, XJ and SC/XZ had the highest (0.3248) and lowest

(0.3186) MAF values (Table 2), respectively. For O_het, except

for the QH geo-group, all groups had values greater than 0.6, with

the MGL geo-group having the highest value (0.625). However, the

QH geo-group had the highest value of E_het (0.3894). The O_het

values of all the geo-groups were greater than the E_het values.
Gene flow and differentiation among geo-
groups based on transcriptome SNPs

The result of the gene flow analysis showed that the optimal K

value (migration edges) was eight, indicating the presence of eight

gene flow events between the nine geo-groups of E. sibiricus

(Supplementary Figure S1). This was consistent with the generally

low Fst values between these geo-groups (Supplementary Figure S2).

The SC geo-group had the highest number of gene flow events,

including gene flows from QH and RUSS to SC, and SC to NM in the

early stages (Figure 3). Only a single gene flow event was detected for

the Canada, NM, KAZA, and XJ geo-groups. In contrast, no gene

flow was observed between MGL and the remaining geo-groups.

We further integrated the Pi values for each geo-group and the

pairwise Fst values to identify the selected regions and associated

genes. As the Canada geo-group contained only a single accession, it

was excluded from this analysis. A total of 12, 267, 3, 81, 1, 54, 824,

and 259 genes were identified in the XZ, XJ, SC, RUSS, QH, NM,

MGL, and KAZA geo-groups, respectively. Three and one genes

selected in the SC and QH geo-groups, respectively, could not be

annotated in the GO database. The selected genes from all six geo-

groups were involved in the “development” and “metabolic”

processes (Figure 4). With the exception of the NM and KAZA

geo-groups, the genes under selection in other geo-groups were also

involved in the homeostasis process. In addition, the genes under

selection in each geo-group showed responsiveness to specific

stresses or stimuli, potentially contributing to the cumulative

variation experienced during the long-term adaptation process to

environmental factors.
Population differentiation from the
perspective of gene expression

Using the expression levels of all genes cannot effectively resolve

the population structure of E. sibiricus (Figures 1A, 2A). Therefore,

we attempted to analyze genes specifically expressed in each geo-

group to investigate population differentiation from the standpoint

of gene expression. A total of 414, 1899, 1797, 498, 1529, 3295, 556,

and 4499 genes were specifically expressed in KAZA, MGL, NM,

QH, RUSS, SC, XJ, and XZ geo-groups, respectively. The heatmap
TABLE 1 The quality assessment of the assembled reference transcriptome of E. sibiricus.

Number of
contig

Largest
contig

contigs
(>= 50 kbp) N50 L50

N’s per
100 kbp GC content

6982 170,783 342 42,573 448 0 48.08%
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results indicated that the specifically expressed genes in each geo-

group showed a significant difference in expression profiles

(Supplementary Figure S3).

We also performed GSVA (gene set variation analysis) to

identify differentially enriched gene sets in each geo-group

compared to the others. Several GO terms related to plant energy

metabolism processes were identified, including GO:0052855 and

GO:0047453, which are associated with NAD(P)H-hydrate

dehydratase activity and were significantly up-regulated in the

KAZA geo-group. In addition, GO:0033178 (related to ATPase

complex) and GO:0006086, GO:0006637, and GO:0047617 (related

to acyl-CoA metabolic process), were significantly upregulated in

the MGL geo-group. Furthermore, several GO terms related to

carbohydrate metabolism pathways were discovered, including

GO:0009052, GO:0061615, and GO:0003872 in the MGL geo-

group, GO:0019673, and GO:0008446 in the RUSS geo-group,

GO:0006486, GO:0008378, and GO:0019255 in the SC geo-group,

GO:0004576 in the XJ geo-group, GO:0019375 and GO:0047714 in

the XZ geo-group. Although the plants were grown under

controlled growth conditions, some GO terms related to stress

tolerance were also detected for some geo-groups. For example,

GO:0009408 and GO:0031990, which are associated with heat

stress, were up-regulated in the KAZA geo-group, GO:0010225

(response to UV-C) and GO:0009411 (response to UV) were down-

regulated in the MGL and SC geo-groups, respectively. GO:1901700
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(response to oxygen-containing compound) and GO:0071215

(cellular response to abscisic acid stimulus) were downregulated

in the SC geo-group. In particular, six GO terms (GO:0006833,

GO:0015793, GO:0015254, GO:0015250, GO:0009992, and

GO:0016798) related to water transport were significantly

downregulated in the XJ geo-group.

The PSEG were further analyzed between two geo-groups. The

analysis revealed that the XZ geo-group had the highest number of

shared specifically expressed genes shared with the other geo-group,

with a total of 1599 genes (Figure 5). GO annotation results

indicated that some of these genes were involved in the response

process to UV (Figure 5). In addition, the common specifically

expressed genes in the QH, NM and SC geo-groups were found to

be responsive to ion, especially in the SC geo-group where the genes

were responsive to salt and involved in ion transport process.
WGCNA analysis can help identify potential
regulators of PSEG

In this study, we performed a weighted gene co-expression

network analysis (WGCNA) to identify the possible core regulatory

genes in PSEG. The result showed that all the co-expressed genes

could be assigned to 46 modules (Supplementary Figure S4). The

regulatory networks in each model identified by WGCNA analysis
FIGURE 2

The hierarchical clustering based on Euclidean distance using the expression levels (A); Maximum likelihood tree using SNPs-GS (B) and
transcriptome SNPs (C) of 101 E. sibiricus accessions.
FIGURE 1

The PCA plots based on the gene expression levels (A), SNPs called from the genome skimming [SNPs-GS, (B)] data, and transcriptome SNPs (C).
QTP, Qinghai-Tibet Plateau, China; KAZA, Kazakhstan; MGL, Mongolia; NM, Inner Mongolia, China; RUSS, Russian; XJ, Xinjiang, China.
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were constructed and an extensive regulatory relationship between

TFs such as NAC, MYB, C2H2, and downstream genes was found

in the black model (Figure 6A). Furthermore, we also identified the

potential TFs that have the ability to regulate the expression of

PSEG in each geo-group (Figure 6B). It is important to note that the

genes in the QH, XJ, and NM geo-groups do not function as

regulatory genes. Conversely, in the SC geo-group, we discovered

two TFs (MADS-box and NAC) that play a regulatory role in the

genes encoding the senescence-associated protease (SAG39) and the

C2H2-finger domain. In addition, we identified more regulatory

TFs in the XZ geo-group, including two genes belonging to the zinc

finger family. Notably, our analysis also revealed that some PSEGs

are regulated by multiple TFs. For example, one gene, DNA

damage-repair/toleration (DRT), specifically expressed in the XZ

geo-group, was regulated by six TFs. These findings highlight the

importance of using transcriptome data to effectively identify

potential population-specific regulatory genes that may be

associated with their own local adaptation.
Frontiers in Plant Science 05
Discussion

To the best of our knowledge, this study represents the first

attempt to assess the effectiveness of three methods - expression

levels, transcriptome SNPs, and SNPs-GS - for analyzing population

structure in a species lacking a reference genome, with a focus on

E. sibiricus. The results showed that SNPs, especially transcriptome

SNPs, were most effective in analyzing the population structure of

E. sibiricus. This method identified numerous genes associated with

local adaptation in E. sibiricus. In addition, although expression

levels were less effective in population structure analysis, a

significant number of PSEGs were also detected. Their

annotations suggested their relevance to local environmental

adaptation. Furthermore, by performing WGCNA analysis, some

potential regulatory genes of the PSEGs were identified. Thus, we

propose that in the absence of a reference genome, the use of

transcriptome data (including both expression levels and SNP data)

can reveal genes related to local adaptation and evolution of

a species.
Transcriptome SNPs is an effective strategy
in population analysis

SNP markers have several advantages over other markers,

including ease of development and deployment. However, using

SNP markers to study the population structure of certain species,

particularly polyploidy species in the absence of reference genome

information, can be challenging. Most previous studies have relied

on genome skimming methods to obtain plastid sequences and

nuclear ribosomal genes (Trevisan et al., 2019; Liu et al., 2021b).

However, these approaches have only revealed limited genetic

variation, which is insufficient for a comprehensive understanding

of the true population structure (Del Valle et al., 2020). It is possible

to jointly de novo assemble and identify evolutionarily informative

sites from genome skimming data, as demonstrated for species

identification in buffalo fish (Literman et al., 2023) and

phylogenomic reconstruction in Leishmania (Harkins et al.,

2016). Notably, there are no reports of genome skimming data

being used to identify evolutionarily informative sites within

species. Given the significant variation among the wild E. sibiricus

accessions used in our study, we attempted to use genome

skimming data to detect evolutionarily informative sites and

analyze the population structure of E. sibiricus. The assembled

composite genome covered approximately 0.05% of the E. sibiricus

nuclear genome (Xiong et al., 2021). Although the coverage of

typical simplified genome sequencing is typically around 5%

(Literman et al., 2023), it remains a challenge to effectively

assemble and align genome sequencing data, as well as

complicating the annotation of variant sites, in the absence of the

reference genome for population structure analysis. In addition, the

PCA analysis distinguished only a few E. sibiricus accessions from

Qinghai that showed significant differences from other accessions

(Figure 1), while the phylogenetic tree results show that the

accessions from the Qinghai-Tibetan Plateau (in purple) are

generally clustered together, while the accessions from the
FIGURE 3

The gene flow among nine geo-groups of E. sibiricus.
TABLE 2 Genetic diversity indices of each geo-group of E. sibiricus.

Geo-groups MAF O_het E_het

Canada 0.3096 0.6191 0.3096

SC 0.3186 0.6188 0.3651

XJ 0.3248 0.6124 0.3824

RUSS 0.3237 0.6189 0.3786

QH 0.3218 0.5881 0.3894

NM 0.3240 0.6207 0.3758

MGL 0.3258 0.6250 0.3779

KAZA 0.3238 0.6012 0.3865

XZ 0.3186 0.6176 0.3605
MAF, minor allele frequency; O_het, observed heterozygosity; E_het, expected heterozygosity.
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Xinjiang are mainly clustered in three branches in the lower right

corner (Figure 2). This suggests that in the absence of genome

information, using genome skimming data to identify

evolutionarily informative sites for population structure analysis

is a viable alternative. However, it is essential to adequately increase

the sequencing depth and propose more efficient algorithms for the

analysis of short-read sequencing data to accurately infer genetic

structure, especially for polyploid species with large genome sizes.

Data from coding genes allow for quality control steps that help

to distinguish biological patterns from technical artefacts, enabling

SNP analysis data to be tested against neutral expectations at multiple
Frontiers in Plant Science 06
levels, outperforming typical outlier approaches (DeWit et al., 2015).

Many researchers (Wang et al., 2021; Mossion et al., 2022) have

successfully developed transcriptome SNPs for the analysis of

population structure and genetic diversity. Furthermore, the power

of transcriptome SNPs to study intraspecific relationships in Camellia

sinensis has been shown to exceed that of low-copy nuclear genes

(Cheng et al., 2023). In this study, the higher effectiveness of

transcriptome SNPs in deciphering the population structure of E.

sibiricus from different locations compared to expression levels and

SNPs-GS (Figures 1, 2) was also found. On the other hand,

transcriptomic SNPs may be concentrated in regions of active gene
FIGURE 4

The GO annotation result of genes under selection in each geo-group of E. sibiricus.
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FIGURE 5

The Venn diagram of population-specifically-expressed genes between two geo-groups, and the GO annotation results of these shared specific-
expressed-genes in each geo-group.
FIGURE 6

The node-link graph showing the regulating relationship between the population-specifically-expressed genes and the TFs. (A) regulatory network
between TFs and genes in black model; (B) the node-link graph of PSEGs, the circles from the inside to out represent geo-groups, TFs and
population-specific genes, respectively. The circle size indicates the number of times that the genes regulating or be regulated.
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expression where variation and recombination may be more

frequent, so the present study detected frequent gene flow

(Figure 3) and generally small pairwise Fst coefficients between

geo-groups using transcriptomic SNPs (Supplementary Figure S4).

This is consistent with a previous research using chloroplast markers

(Xiong et al., 2022). However, this seems to differ from the results of

previous studies using whole chloroplast genomes (Xiong et al., 2023)

and nuclear makers (Han et al., 2022): their results show that gene

flow between geo-groups of E. sibiricus is relatively low due to the

existence of geographic barriers. This may be because transcriptome

SNPs capture more recent or small-scale gene flow than chloroplast

or nuclear DNA, as these data provide more detailed genetic

information (Chen et al., 2021; Tepolt and Palumbi, 2015).
The combination of transcriptome SNPs
and expression levels can help
understanding adaptive mechanism

Transcriptome SNP can reduce complexity and provide more

accurate functional annotation than reduced representation of

genomic DNA libraries. This is considered an important method

for identifying genes associated with local adaptation for population

genomic analyses in non-model plants (Cheng et al., 2023; Liu et al.,

2021a). In this study, the Pi and pairwise Fst values based on

transcriptome SNPs were used to identify genes under selection

within each geo-group. The majority of these genes are involved in

the regulation of homeostasis, growth, and developmental processes

(Figure 4). While some genes under selection in each geo-group are

involved in various stress processes, only the NM geo-group had

genes annotated as responding to ion stress processes. This is

noteworthy because the NM geo-group is an area with severe

saline alkali soils, and E. sibiricus from this region shows stronger

salt tolerance (Chen et al., 2023). However, no adaptive genes

related to local climatic or environmental characteristics (such as

the arid climate of Xinjiang and the high altitude of Tibet) were

detected in other geo-groups, possibly due to the frequent gene flow

events between E. sibiricus geo-groups (Figure 3).

In addition to transcriptome SNPs, variation in gene expression

levels is also an important source of adaptive traits, as gene

transcription levels serve as the medium for gene coding

information and final phenotypes (Alonso-Blanco et al., 2009;

Bullard et al., 2010). Previous studies have shown that gene

expression levels do not support the expected population

structure compared to transcriptome variation (Wang et al.,

2018), which is consistent with the present study. However, to

understand the impact of genetic variation in gene expression levels

and its effect on trait adaptation, it is essential to characterize

expression level variation at the population scale (Fraser et al.,

2011). In this study, transcript abundance was determined at the

individual level using 101 wild E. sibiricus accessions and PSEGs

were identified. In the SC, QH, XZ, and NM geo-groups, the

number of PSEGs exceeded the number of selective genes

identified by transcriptomic SNPs, and more genes related to

local climate adaptation were discovered, such as ion transport

(caused by the severe saline-alkaline soils of SC, QH, and NM) and
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UV-B radiation (caused by the high altitude of XZ). As the

expression levels of many genes controlling quantitative traits are

often influenced by regulatory genes (i.e., TFs), this study used

WGCNA analysis to explore some transcription factor family

members, such as NAC and zinc finger protein, that could

potentially regulate PSEGs. Identification of transcriptome SNPs

and PSEGs associated with adaptation can shed light on the

selective pressures faced by species in their natural environment

and their effects on genotype and phenotype. The integration of

genotype and regulatory network (especially functional network) is

a prominent and inevitable trend in current research on

adaptive evolution.
Materials and methods

Materials and transcriptome sequencing

A total of 101 accessions covering the main distribution regions

of E. sibiricus were included in the present study, divided into seven

geographical groups, namely MGL (Mongolia), RUSS (Russia),

KAZA (Kazakhstan), Canada (Canada), XJ (Xinjiang, China), NM

(Inner Mongolia, China), and QTP (Qinghai, China; Sichuan,

China; and Xizang, China) (Supplementary Table S1). Accessions

from MGL, RUSS, KAZA and Canada were collected from the

National Plant Germplasm System (NPGS). The remaining

accessions were collected by the research team according to the

following rules: Spikelets were harvested from each individual plant,

ensuring a minimum sampling distance of 50 meters between

plants. Seeds of all accessions were planted in sand and grown in

the greenhouse to minimize the influence of the environment on the

expression of the different accessions. At the three-leaf stage, leaves

from each accession were collected within one hour and

immediately preserved in liquid nitrogen for subsequent RNA

extraction. High quality RNA was purified and fragmented after

assessment of purity, quantity, and RNA integrity. First-strand

cDNA was then synthesized, followed by the addition of A-tailing

and adaptor. The amplified products were then purified and paired‐

end sequenced to a read length of 150 bp on the Illumina platform.

Finally, approximately 6 Gb of raw data was obtained for each

accession, with each accession having three biological replicates.
The assembly and annotation of the full-
length transcriptome, and SNP calling

The full-length E. sibiricus transcriptome bam file was obtained

from Yu et al. (2023) and converted to a fasta file using the

bam2fasta tool (part of the bambamv1.4tool-kit) (Page et al.,

2014). This was used for assembly using flye v2.9 with the

following parameters: ‘flye –pacbio-raw input.fasta –out-dir

out_pacbio’ (Kolmogorov et al., 2019), which uses repeat graphs

for the assembly of long and error-prone reads. The quality of the

assembly was accessed using QUAST (Gurevich et al., 2013). The

resulting transcript sequences were aligned using the NR (Pruitt

et al., 2005), COG (Tatusov et al., 2000), KOG (Koonin et al., 2004),
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KEGG (Kanehisa et al., 2004), and GO (Ashburner et al., 2000)

databases with an E-value of 10-5. The transferred amino acid

sequences were searched against the library of Pfam HMMs using

pfam_scan.pl (Finn et al., 2014). Coding sequences (CDS) and

transcription factors were then identified using the online software

TransDecoder v3.0.0 (https://github.com/TransDecoder/

TransDecoder) and ITAK v1.6 (Zheng et al., 2016), respectively.

Quality control was performed on the reads of the RNA sequencing

data using the fastQC v0.12.0 software with the command ‘fastqc

*.fastq.gz’ (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Low quality sequences (Phred < 20 and length < 50 bp)

and adaptor sequences were trimmed using trim_galore. The clean

high-quality reads were compared to the full-length transcriptome

data using RSEM v1.1.17 (Li and Dewey, 2011) to calculate gene

abundance using default settings, which was further standardized to

FPKM (fragment per kb per million reads).

Raw RNA sequencing data from one replicate of each accession

were aligned to the assembled full-length transcriptome using the

BWA-MEM algorithm of bwa v0.7.17-r1188 (Li, 2013; Tarasov et

al., 2015) and converted to bam files using samtools v1.18 with the

command ‘samtools view -b’ (Li et al., 2009), followed by the use of

sambamba v0.5.9 (Li et al., 2009) to sort the resulting bam files and

create index files using ‘sambamba index’. Finally, variant detection

was performed using the HaplotypeCaller and GenotypeGVCFs

with gatk v4.0 (McKenna et al., 2010). SNPs near indels were

filtered, and the resulting vcf file was further filtered based on

specific criteria: minor allele frequency (MAF) < 0.05, maximum

missing data < 0.8, minimum depth of sequencing (minDP) < 2,

maximum depth of sequencing (maxDP) < 1000, minimum Phred-

scale quality score (minQ) < 30, minimum genotype quality score

(minGQ) < 10. Finally, only biallelic loci are retained.
Genetic diversity and population
structure analysis

SNPs obtained by mapping to the full-length transcriptome

(transcriptome SNPs) were used to calculate MAF, observed

heterozygosity (Ho), and expected heterozygosity (He) values for

each geo-group using PLINK v1.90b4.6 software (Purcell et al.,

2007). In addition, transcriptome SNPs were used to perform

principal component analysis (PCA) using PLINK v1.90b4.6

(Purcell et al., 2007) with visualization using the pca_plink_plot R

package. Expression levels were subjected to PCA analysis using the

prcomp function and then visualized using the scatterplot3d R

package (Mächler and Ligges, 2003). The vcf file was sorted using

tassel v5.0 software (Bradbury et al., 2007) and then converted to

Phylip format using run_pipeline.pl. This was then used to

construct the maximum likelihood (ML) tree using FastTree v2.1

(Price et al., 2009). The hierarchical clustering tree was constructed

based on the Euclidean distance using the ggraph R package (Si

et al., 2020).

Using the vcf file containing all transcriptome variations,

nucleotide diversity (Pi) values of each geo-group and pairwise
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genetic differentiation index (Fst) were calculated using vcftools

v0.1.16 (Danecek et al., 2011) with a window size of 1000 bp and a

step size of 100 bp. Regions with the top 5% Fst values were

identified as candidate selected regions and used to extract genes

under selection. Gene flow between geo-groups was analyzed using

Treemix v1.13 software (Pickrell and Pritchard, 2012) and the

optimal m value was accessed using the optM R package (Fitak,

2021). Finally, the plotting_funcs.R implemented in Treemix was

used for visualization.
Population divergence in gene expression

The rsgcc R package (Ma and Wang, 2012) was used to identify

PSEG with a threshold of 1. GSVA, a method for estimating

variation in gene set enrichment through samples of an

expression dataset, was used to determine the significantly

different Gene Ontology (GO) terms between each geo-group and

other accessions using the GSVA R package (Hänzelmann et al.,

2013). Furthermore, the functional annotation of common

specifically expressed genes in each geo-group was analyzed using

the simplifyEnrichment R package (Gu and Hübschmann, 2023).
Homologous sequences isolation based on
short read sequencing

SISRS (SNP Identification from Short Read Sequences)

(Schwartz et al., 2015) allows the extraction of phylogenetically

relevant sites from genome sequencing data, even for low coverage

sequencing (genome skimming), and is not constrained by the

availability of reference genome information. The genome

skimming data for the test 101 E. sibiricus accessions were

obtained from Xiong et al. (2023), with approximately 8 Gb of

raw reads (fastq format) for each accession. Given that the genome

size of E. sibiricus is approximately 6.86 Gb based on survey

sequencing (Xiong et al., 2021), the data set of approximately 800

Gb can achieve a minimum coverage of approximately 10X and was

found to be sufficient for assembly of a composite genome using

Velvet v1.2.10 (Zerbino and Birney, 2008). The raw data for each

accession were then mapped back to the composite genome using

Bowtie 2 (Langmead and Salzberg, 2012) to extract conserved and

variant regions. Alignment file containing the variant information

were used to perform the PCA analysis and construct the ML trees

using the adegenet (Jombart, 2008) and ggtree (Yu et al., 2017) R

packages, respectively.
WGCNA analysis and network construction

WGCNA is a systems biology approach to describe the

correlation patterns between genes (Langfelder and Horvath,

2008). We performed WGCNA using the WGCNA R package

(Langfelder and Horvath, 2008) based on the gene expression
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matrix of all 101 accessions. The genes with the FPKM values

greater than 0.1 in more than 95% of the samples were used for

analysis (Li et al., 2020). The weighted score threshold was set to 0.8

(Wan et al., 2018; Liang et al., 2020), and then the regulatory

network between transcription factor (TFs) genes and downstream

genes was constructed and visualized using the ggraph R package (Si

et al., 2020). The node-link graph of PSEGs was connected to show

the unique regulatory network of each geo-group.
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